/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Itseez Inc or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/face.hpp" #include "opencv2/datasets/fr_lfw.hpp" #include <iostream> #include <cstdio> #include <string> #include <vector> #include <map> using namespace std; using namespace cv; using namespace cv::datasets; using namespace cv::face; map<string, int> people; int getLabel(const string &imagePath); int getLabel(const string &imagePath) { size_t pos = imagePath.find('/'); string curr = imagePath.substr(0, pos); map<string, int>::iterator it = people.find(curr); if (people.end() == it) { people.insert(make_pair(curr, (int)people.size())); it = people.find(curr); } return (*it).second; } int main(int argc, const char *argv[]) { const char *keys = "{ help h usage ? | | show this message }" "{ path p |true| path to dataset (lfw2 folder) }" "{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }"; CommandLineParser parser(argc, argv, keys); string path(parser.get<string>("path")); if (parser.has("help") || path=="true") { parser.printMessage(); return -1; } string trainMethod(parser.get<string>("train")); // These vectors hold the images and corresponding labels. vector<Mat> images; vector<int> labels; // load dataset Ptr<FR_lfw> dataset = FR_lfw::create(); dataset->load(path); unsigned int numSplits = dataset->getNumSplits(); printf("splits number: %u\n", numSplits); if (trainMethod == "dev") printf("train size: %u\n", (unsigned int)dataset->getTrain().size()); else printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size()); printf("test size: %u\n", (unsigned int)dataset->getTest().size()); // 2200 pairsDevTrain, first split: correct: 373, from: 600 -> 62.1667% Ptr<FaceRecognizer> model = createLBPHFaceRecognizer(); // 2200 pairsDevTrain, first split: correct: correct: 369, from: 600 -> 61.5% //Ptr<FaceRecognizer> model = createEigenFaceRecognizer(); // 2200 pairsDevTrain, first split: correct: 372, from: 600 -> 62% //Ptr<FaceRecognizer> model = createFisherFaceRecognizer(); if (trainMethod == "dev") // train on personsDevTrain.txt { for (unsigned int i=0; i<dataset->getTrain().size(); ++i) { FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get()); int currNum = getLabel(example->image1); Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); images.push_back(img); labels.push_back(currNum); currNum = getLabel(example->image2); img = imread(path+example->image2, IMREAD_GRAYSCALE); images.push_back(img); labels.push_back(currNum); } model->train(images, labels); //string saveModelPath = "face-rec-model.txt"; //cout << "Saving the trained model to " << saveModelPath << endl; //model->save(saveModelPath); } vector<double> p; for (unsigned int j=0; j<numSplits; ++j) { if (trainMethod == "split") // train on the remaining 9 splits from pairs.txt { images.clear(); labels.clear(); for (unsigned int j2=0; j2<numSplits; ++j2) { if (j==j2) continue; // skip test split for training vector < Ptr<Object> > &curr = dataset->getTest(j2); for (unsigned int i=0; i<curr.size(); ++i) { FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); int currNum = getLabel(example->image1); Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); images.push_back(img); labels.push_back(currNum); currNum = getLabel(example->image2); img = imread(path+example->image2, IMREAD_GRAYSCALE); images.push_back(img); labels.push_back(currNum); } } model->train(images, labels); } unsigned int incorrect = 0, correct = 0; vector < Ptr<Object> > &curr = dataset->getTest(j); for (unsigned int i=0; i<curr.size(); ++i) { FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get()); //int currNum = getLabel(example->image1); Mat img = imread(path+example->image1, IMREAD_GRAYSCALE); int predictedLabel1 = model->predict(img); //currNum = getLabel(example->image2); img = imread(path+example->image2, IMREAD_GRAYSCALE); int predictedLabel2 = model->predict(img); if ((predictedLabel1 == predictedLabel2 && example->same) || (predictedLabel1 != predictedLabel2 && !example->same)) { correct++; } else { incorrect++; } } p.push_back(1.0*correct/(correct+incorrect)); printf("correct: %u, from: %u -> %f\n", correct, correct+incorrect, p.back()); } double mu = 0.0; for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) { mu += *it; } mu /= p.size(); double sigma = 0.0; for (vector<double>::iterator it=p.begin(); it!=p.end(); ++it) { sigma += (*it - mu)*(*it - mu); } sigma = sqrt(sigma/p.size()); double se = sigma/sqrt(double(p.size())); printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se); return 0; }