syntax = "proto3";

package tensorflow;
option cc_enable_arenas = true;
option java_outer_classname = "OpDefProtos";
option java_multiple_files = true;
option java_package = "org.tensorflow.framework";

import "attr_value.proto";
import "types.proto";

// Defines an operation. A NodeDef in a GraphDef specifies an Op by
// using the "op" field which should match the name of a OpDef.
message OpDef {
  // Op names starting with an underscore are reserved for internal use.
  // Names should be CamelCase and match the regexp "[A-Z][a-zA-Z0-9_]*".
  string name = 1;

  // For describing inputs and outputs.
  message ArgDef {
    // Name for the input/output.  Should match the regexp "[a-z][a-z0-9_]*".
    string name = 1;

    // Human readable description.
    string description = 2;

    // Describes the type of one or more tensors that are accepted/produced
    // by this input/output arg.  The only legal combinations are:
    // * For a single tensor: either the "type" field is set or the
    //   "type_attr" field is set to the name of an attr with type "type".
    // * For a sequence of tensors with the same type: the "number_attr"
    //   field will be set to the name of an attr with type "int", and
    //   either the "type" or "type_attr" field will be set as for
    //   single tensors.
    // * For a sequence of tensors, the "type_list_attr" field will be set
    //   to the name of an attr with type "list(type)".
    DataType type = 3;
    string type_attr = 4;    // if specified, attr must have type "type"
    string number_attr = 5;  // if specified, attr must have type "int"
    // If specified, attr must have type "list(type)", and none of
    // type, type_attr, and number_attr may be specified.
    string type_list_attr = 6;

    // For inputs: if true, the inputs are required to be refs.
    //   By default, inputs can be either refs or non-refs.
    // For outputs: if true, outputs are refs, otherwise they are not.
    bool is_ref = 16;
  };

  // Description of the input(s).
  repeated ArgDef input_arg = 2;

  // Description of the output(s).
  repeated ArgDef output_arg = 3;

  // Description of the graph-construction-time configuration of this
  // Op.  That is to say, this describes the attr fields that will
  // be specified in the NodeDef.
  message AttrDef {
    // A descriptive name for the argument.  May be used, e.g. by the
    // Python client, as a keyword argument name, and so should match
    // the regexp "[a-z][a-z0-9_]+".
    string name = 1;

    // One of the type names from attr_value.proto ("string", "list(string)",
    // "int", etc.).
    string type = 2;

    // A reasonable default for this attribute if the user does not supply
    // a value.  If not specified, the user must supply a value.
    AttrValue default_value = 3;

    // Human-readable description.
    string description = 4;

    // TODO(josh11b): bool is_optional?

    // --- Constraints ---
    // These constraints are only in effect if specified.  Default is no
    // constraints.

    // For type == "int", this is a minimum value.  For "list(___)"
    // types, this is the minimum length.
    bool has_minimum = 5;
    int64 minimum = 6;

    // The set of allowed values.  Has type that is the "list" version
    // of the "type" field above (uses the "list" field of AttrValue).
    // If type == "type" or "list(type)" above, then the "type" field
    // of "allowed_values.list" has the set of allowed DataTypes.
    // If type == "string" or "list(string)", then the "s" field of
    // "allowed_values.list" has the set of allowed strings.
    AttrValue allowed_values = 7;
  }
  repeated AttrDef attr = 4;

  // Optional deprecation based on GraphDef versions.
  OpDeprecation deprecation = 8;

  // One-line human-readable description of what the Op does.
  string summary = 5;

  // Additional, longer human-readable description of what the Op does.
  string description = 6;

  // -------------------------------------------------------------------------
  // Which optimizations this operation can participate in.

  // True if the operation is commutative ("op(a,b) == op(b,a)" for all inputs)
  bool is_commutative = 18;

  // If is_aggregate is true, then this operation accepts N >= 2
  // inputs and produces 1 output all of the same type.  Should be
  // associative and commutative, and produce output with the same
  // shape as the input.  The optimizer may replace an aggregate op
  // taking input from multiple devices with a tree of aggregate ops
  // that aggregate locally within each device (and possibly within
  // groups of nearby devices) before communicating.
  // TODO(josh11b): Implement that optimization.
  bool is_aggregate = 16;  // for things like add

  // Other optimizations go here, like
  //   can_alias_input, rewrite_when_output_unused, partitioning_strategy, etc.

  // -------------------------------------------------------------------------
  // Optimization constraints.

  // By default Ops may be moved between devices.  Stateful ops should
  // either not be moved, or should only be moved if that state can also
  // be moved (e.g. via some sort of save / restore).
  // Stateful ops are guaranteed to never be optimized away by Common
  // Subexpression Elimination (CSE).
  bool is_stateful = 17;  // for things like variables, queue

  // -------------------------------------------------------------------------
  // Non-standard options.

  // By default, all inputs to an Op must be initialized Tensors.  Ops
  // that may initialize tensors for the first time should set this
  // field to true, to allow the Op to take an uninitialized Tensor as
  // input.
  bool allows_uninitialized_input = 19;  // for Assign, etc.
};

// Information about version-dependent deprecation of an op
message OpDeprecation {
  // First GraphDef version at which the op is disallowed.
  int32 version = 1;

  // Explanation of why it was deprecated and what to use instead.
  string explanation = 2;
};

// A collection of OpDefs
message OpList {
  repeated OpDef op = 1;
};