1. 04 Dec, 2019 1 commit
  2. 02 Dec, 2019 1 commit
  3. 05 Oct, 2019 1 commit
  4. 24 Sep, 2019 1 commit
  5. 19 Jun, 2019 1 commit
  6. 23 May, 2019 1 commit
  7. 08 May, 2019 1 commit
  8. 30 Jan, 2019 1 commit
  9. 17 Nov, 2018 1 commit
  10. 10 Nov, 2018 1 commit
  11. 09 Nov, 2018 1 commit
  12. 16 Oct, 2018 2 commits
  13. 12 Oct, 2018 1 commit
  14. 20 Sep, 2018 1 commit
  15. 07 Sep, 2018 1 commit
  16. 06 Sep, 2018 1 commit
  17. 05 Sep, 2018 1 commit
  18. 20 Aug, 2018 1 commit
  19. 21 May, 2018 1 commit
    • Kushashwa Ravi Shrimali's avatar
      Check if faces detected or not. · c3a2b425
      Kushashwa Ravi Shrimali authored
      Added if condition, whether faces are detected or not, will help to keep program running for some images.
      If imwrite used along with imshow, it may produce error for :  No faces found.Aborting.. in function 'fit' (Bad Argument).
      c3a2b425
  20. 24 Apr, 2018 1 commit
  21. 23 Apr, 2018 1 commit
  22. 17 Apr, 2018 1 commit
  23. 10 Apr, 2018 1 commit
  24. 31 Mar, 2018 1 commit
  25. 28 Mar, 2018 2 commits
  26. 18 Mar, 2018 1 commit
  27. 09 Mar, 2018 1 commit
  28. 02 Feb, 2018 1 commit
  29. 14 Dec, 2017 1 commit
  30. 05 Dec, 2017 1 commit
  31. 11 Nov, 2017 1 commit
  32. 03 Nov, 2017 1 commit
    • sukhad-app's avatar
      Merge pull request #1199 from sukhad-app:face_alignment · bccbec79
      sukhad-app authored
      Face alignment (#1199)
      
      * This commit will add a new functionality of one millisecond face_alignment to OpenCV.
      Face alignment is a computer vision technology for identifying the geometric structure of human faces in digital images.
      Given the location and size of a face, it automatically determines the shape
       of the face components such as eyes and nose.
      Added following functions :
       1) Application to train a face landmark detector.
       2) Application to detect face landmarks using a trained model.
       3) Application to swap faces using face landmark detection
       4) Application to detect landmarks in a video.
      Merged the code with a global facemark API.
      Added Doxygen Documentation for the Class created.
      Added tutorials for the samples added.
      Added visualisations depicting error rate and training time.
      
      Made desired changes
      
      fix
      
      fix
      
      fix
      
      fix
      
      fix
      
      fix
      
      fix
      
      fix
      
      fix
      
      * face: drop duplicated file
      
      -face_alignmentImpl.hpp
      +face_alignmentimpl.hpp
      
      * face: minor refactoring
      
      - replace license headers
      - fix usage of "precomp.hpp"
      bccbec79
  33. 30 Oct, 2017 2 commits
  34. 27 Oct, 2017 1 commit
    • kurnianggoro's avatar
      Merge pull request #1257 from kurnianggoro:facelandmark · e85a802a
      kurnianggoro authored
      GSOC17 - Facemark API (#1257)
      
      * Initial commit of facemark API
      
      Initial structure of the facemark API and AAM header
      
      * make training function as virtual
      
      * Add: dataset parser
      
      * Bug fix: clear the container before add points
      
      * Add: AAM training - procrustes analysis
      
      * Add AAM model
      
      * Added training function for AAM
      
      * Building bot fixes: remove training overload, explicit cast to float for atof
      
      * + add dependency: imgcodecs
      
      * Build bot fixes: add imgproc.hpp and type casting
      
      * Building bot fix: type casting
      
      * fixing the AAM training to match with Matlab version
      
      fewer model parameters, change the image warp method, change the feature extraction method
      
      * add: AAM fitting
      
      added several functionalities for fitting
      
      * fix warings
      
      * Add: transformation for the initial fitting
      
      * add sample file for aam implementation
      
      * fix warning
      
      * Add LFB Header
      
      * loadTrainingData: Throw an error message if file not exist
      
      * add: LBF prepare training data
      
      * add: data augmentation
      
      * change to double
      
      * add: getMeanShape
      
      * shuffling the dataset and parameters initialization
      
      * add: initial structure of LBF class
      
      * add: getDeltaShapes
      
      Difference between the current shape and the desired shape
      
      * add: random forest training
      
      * generate lbf features
      
      * global regression
      
      * save training data
      
      * fix the parameter initialization
      
      * set the default parameters
      
      * add: initial version of lbf sample
      
      * update the current shape
      
      * compute error
      
      * add: prediction function
      
      * fix some warnings
      
      * fitting function
      
      the result is mis-aligned, shuould be double checked
      
      * add: fitting in the demo
      
      * add dependencies
      
      * Add: tutorial
      
      * add: load model
      
      * fixing training
      
      * use user defined face detector
      
      * Documents, tests, and samples
      
      * Allow custom parameters
      
      * Cleaning up
      
      * Custom parameters for default detector, training, and get custom data
      
      * AAM scales
      
      * minor fixes , update the opencv_extra files
      
      * change path to lbp cascade
      
      * face: avoid memory leaks
      
      * utilize the filestorage for the model, fixing some minor issues
      
      * remove the liblinear dependency
      
      * fix the aam test, avoiding to write any files
      
      * use RNG and changes the test files
      e85a802a
  35. 10 Jul, 2017 1 commit
  36. 06 Jul, 2017 1 commit
  37. 03 Jul, 2017 1 commit