Commit fe056816 authored by previ's avatar previ

text python bindings

parent c8053da4
This diff is collapsed.
...@@ -88,6 +88,45 @@ void OCRBeamSearchDecoder::run(Mat& image, Mat& mask, string& output_text, vecto ...@@ -88,6 +88,45 @@ void OCRBeamSearchDecoder::run(Mat& image, Mat& mask, string& output_text, vecto
component_confidences->clear(); component_confidences->clear();
} }
CV_WRAP String OCRBeamSearchDecoder::run(InputArray image, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
run(image_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
//cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
CV_WRAP String OCRBeamSearchDecoder::run(InputArray image, InputArray mask, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
Mat mask_m = mask.getMat();
run(image_m, mask_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
//cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
void OCRBeamSearchDecoder::ClassifierCallback::eval( InputArray image, vector< vector<double> >& recognition_probabilities, vector<int>& oversegmentation) void OCRBeamSearchDecoder::ClassifierCallback::eval( InputArray image, vector< vector<double> >& recognition_probabilities, vector<int>& oversegmentation)
{ {
...@@ -460,6 +499,16 @@ Ptr<OCRBeamSearchDecoder> OCRBeamSearchDecoder::create( Ptr<OCRBeamSearchDecoder ...@@ -460,6 +499,16 @@ Ptr<OCRBeamSearchDecoder> OCRBeamSearchDecoder::create( Ptr<OCRBeamSearchDecoder
return makePtr<OCRBeamSearchDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, _mode, _beam_size); return makePtr<OCRBeamSearchDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, _mode, _beam_size);
} }
CV_EXPORTS_W Ptr<OCRBeamSearchDecoder> OCRBeamSearchDecoder::create(Ptr<OCRBeamSearchDecoder::ClassifierCallback> _classifier,
const String& _vocabulary,
InputArray transition_p,
InputArray emission_p,
int _mode,
int _beam_size)
{
return makePtr<OCRBeamSearchDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, (decoder_mode)_mode, _beam_size);
}
class CV_EXPORTS OCRBeamSearchClassifierCNN : public OCRBeamSearchDecoder::ClassifierCallback class CV_EXPORTS OCRBeamSearchClassifierCNN : public OCRBeamSearchDecoder::ClassifierCallback
{ {
...@@ -727,11 +776,10 @@ double OCRBeamSearchClassifierCNN::eval_feature(Mat& feature, double* prob_estim ...@@ -727,11 +776,10 @@ double OCRBeamSearchClassifierCNN::eval_feature(Mat& feature, double* prob_estim
return dec_max_idx; return dec_max_idx;
} }
Ptr<OCRBeamSearchDecoder::ClassifierCallback> loadOCRBeamSearchClassifierCNN(const String& filename)
Ptr<OCRBeamSearchDecoder::ClassifierCallback> loadOCRBeamSearchClassifierCNN(const std::string& filename)
{ {
return makePtr<OCRBeamSearchClassifierCNN>(filename); return makePtr<OCRBeamSearchClassifierCNN>(std::string(filename));
} }
} }
......
...@@ -90,6 +90,46 @@ void OCRHMMDecoder::run(Mat& image, Mat& mask, string& output_text, vector<Rect> ...@@ -90,6 +90,46 @@ void OCRHMMDecoder::run(Mat& image, Mat& mask, string& output_text, vector<Rect>
component_confidences->clear(); component_confidences->clear();
} }
CV_WRAP String OCRHMMDecoder::run(InputArray image, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
run(image_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
//cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
CV_WRAP cv::String OCRHMMDecoder::run(InputArray image, InputArray mask, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
Mat mask_m = mask.getMat();
run(image_m, mask_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
void OCRHMMDecoder::ClassifierCallback::eval( InputArray image, vector<int>& out_class, vector<double>& out_confidence) void OCRHMMDecoder::ClassifierCallback::eval( InputArray image, vector<int>& out_class, vector<double>& out_confidence)
{ {
CV_Assert(( image.getMat().type() == CV_8UC3 ) || ( image.getMat().type() == CV_8UC1 )); CV_Assert(( image.getMat().type() == CV_8UC3 ) || ( image.getMat().type() == CV_8UC1 ));
...@@ -635,6 +675,16 @@ Ptr<OCRHMMDecoder> OCRHMMDecoder::create( Ptr<OCRHMMDecoder::ClassifierCallback> ...@@ -635,6 +675,16 @@ Ptr<OCRHMMDecoder> OCRHMMDecoder::create( Ptr<OCRHMMDecoder::ClassifierCallback>
} }
Ptr<OCRHMMDecoder> OCRHMMDecoder::create( Ptr<OCRHMMDecoder::ClassifierCallback> _classifier,
const String& _vocabulary,
InputArray transition_p,
InputArray emission_p,
int _mode)
{
return makePtr<OCRHMMDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, (decoder_mode)_mode);
}
class CV_EXPORTS OCRHMMClassifierKNN : public OCRHMMDecoder::ClassifierCallback class CV_EXPORTS OCRHMMClassifierKNN : public OCRHMMDecoder::ClassifierCallback
{ {
public: public:
...@@ -867,14 +917,12 @@ void OCRHMMClassifierKNN::eval( InputArray _mask, vector<int>& out_class, vector ...@@ -867,14 +917,12 @@ void OCRHMMClassifierKNN::eval( InputArray _mask, vector<int>& out_class, vector
} }
Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierNM(const std::string& filename) Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierNM(const String& filename)
{ {
return makePtr<OCRHMMClassifierKNN>(filename); return makePtr<OCRHMMClassifierKNN>(std::string(filename));
} }
class CV_EXPORTS OCRHMMClassifierCNN : public OCRHMMDecoder::ClassifierCallback class CV_EXPORTS OCRHMMClassifierCNN : public OCRHMMDecoder::ClassifierCallback
{ {
public: public:
...@@ -1139,10 +1187,10 @@ double OCRHMMClassifierCNN::eval_feature(Mat& feature, double* prob_estimates) ...@@ -1139,10 +1187,10 @@ double OCRHMMClassifierCNN::eval_feature(Mat& feature, double* prob_estimates)
} }
Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierCNN(const std::string& filename) Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierCNN(const String& filename)
{ {
return makePtr<OCRHMMClassifierCNN>(filename); return makePtr<OCRHMMClassifierCNN>(std::string(filename));
} }
/** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon). /** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon).
...@@ -1201,5 +1249,17 @@ void createOCRHMMTransitionsTable(string& vocabulary, vector<string>& lexicon, O ...@@ -1201,5 +1249,17 @@ void createOCRHMMTransitionsTable(string& vocabulary, vector<string>& lexicon, O
return; return;
} }
Mat createOCRHMMTransitionsTable(const String& vocabulary, vector<cv::String>& lexicon)
{
std::string voc(vocabulary);
vector<string> lex;
for(vector<cv::String>::iterator l = lexicon.begin(); l != lexicon.end(); l++)
lex.push_back(std::string(*l));
Mat _transitions;
createOCRHMMTransitionsTable(voc, lex, _transitions);
return _transitions;
}
} }
} }
...@@ -86,6 +86,47 @@ void OCRTesseract::run(Mat& image, Mat& mask, string& output_text, vector<Rect>* ...@@ -86,6 +86,47 @@ void OCRTesseract::run(Mat& image, Mat& mask, string& output_text, vector<Rect>*
component_confidences->clear(); component_confidences->clear();
} }
CV_WRAP String OCRTesseract::run(InputArray image, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
run(image_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
// cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
CV_WRAP String OCRTesseract::run(InputArray image, InputArray mask, int min_confidence, int component_level)
{
std::string output1;
std::string output2;
vector<string> component_texts;
vector<float> component_confidences;
Mat image_m = image.getMat();
Mat mask_m = mask.getMat();
run(image_m, mask_m, output1, NULL, &component_texts, &component_confidences, component_level);
for(unsigned int i = 0; i < component_texts.size(); i++)
{
cout << "confidence: " << component_confidences[i] << " text:" << component_texts[i] << endl;
if(component_confidences[i] > min_confidence)
{
output2 += component_texts[i];
}
}
return String(output2);
}
class OCRTesseractImpl : public OCRTesseract class OCRTesseractImpl : public OCRTesseract
{ {
private: private:
...@@ -215,13 +256,20 @@ public: ...@@ -215,13 +256,20 @@ public:
run( mask, output, component_rects, component_texts, component_confidences, component_level); run( mask, output, component_rects, component_texts, component_confidences, component_level);
} }
void setWhiteList(const String& char_whitelist)
{
#ifdef HAVE_TESSERACT
tess.SetVariable("tessedit_char_whitelist", char_whitelist.c_str());
#else
(void)char_whitelist;
#endif
}
}; };
Ptr<OCRTesseract> OCRTesseract::create(const char* datapath, const char* language, Ptr<OCRTesseract> OCRTesseract::create(const char* datapath, const char* language,
const char* char_whitelist, int oem, int psmode) const char* char_whitelist, int oem, int psmode)
{ {
return makePtr<OCRTesseractImpl>(datapath,language,char_whitelist,oem,psmode); return makePtr<OCRTesseractImpl>(datapath, language, char_whitelist, oem, psmode);
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment