Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
fc9c41b8
Commit
fc9c41b8
authored
Jun 23, 2017
by
sghoshcvc
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Minor modification
parent
40db9626
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
489 deletions
+16
-489
ocr.hpp
modules/text/include/opencv2/text/ocr.hpp
+2
-0
text_detector.cpp
modules/text/src/text_detector.cpp
+14
-489
No files found.
modules/text/include/opencv2/text/ocr.hpp
View file @
fc9c41b8
...
@@ -722,6 +722,8 @@ public:
...
@@ -722,6 +722,8 @@ public:
/** @brief simple getter method returning the size of the oputput row-vector
/** @brief simple getter method returning the size of the oputput row-vector
*/
*/
CV_WRAP
virtual
int
getOutputSize
()
=
0
;
CV_WRAP
virtual
int
getOutputSize
()
=
0
;
/** @brief simple getter method returning the shape of the oputput from caffe
*/
CV_WRAP
virtual
Size
getOutputGeometry
()
=
0
;
CV_WRAP
virtual
Size
getOutputGeometry
()
=
0
;
/** @brief simple getter method returning the size of the minibatches for this classifier.
/** @brief simple getter method returning the size of the minibatches for this classifier.
...
...
modules/text/src/text_detector.cpp
View file @
fc9c41b8
...
@@ -22,468 +22,6 @@
...
@@ -22,468 +22,6 @@
namespace
cv
{
namespace
text
{
namespace
cv
{
namespace
text
{
//Maybe OpenCV has a routine better suited
//inline bool fileExists (String filename) {
// std::ifstream f(filename.c_str());
// return f.good();
//}
//************************************************************************************
//****************** ImagePreprocessor *******************************************
//************************************************************************************
/*void ImagePreprocessor::preprocess(InputArray input,OutputArray output,Size sz,int outputChannels){
Mat inpImg=input.getMat();
Mat outImg;
this->preprocess_(inpImg,outImg,sz,outputChannels);
outImg.copyTo(output);
}*/
/*class ResizerPreprocessor: public ImagePreprocessor{
protected:
void preprocess_(const Mat& input,Mat& output,Size outputSize,int outputChannels){
//TODO put all the logic of channel and depth conversions in ImageProcessor class
CV_Assert(outputChannels==1 || outputChannels==3);
CV_Assert(input.channels()==1 || input.channels()==3);
if(input.channels()!=outputChannels)
{
Mat tmpInput;
if(outputChannels==1){
cvtColor(input,tmpInput,COLOR_BGR2GRAY);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC1);
}
}else
{
cvtColor(input,tmpInput,COLOR_GRAY2BGR);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC3);
}
}
}else
{
if(input.channels()==1)
{
if(input.depth()==CV_8U)
{
input.convertTo(output, CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC1);
}
}else
{
if(input.depth()==CV_8U){
input.convertTo(output, CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC3);
}
}
}
if(outputSize.width!=0 && outputSize.height!=0)
{
resize(output,output,outputSize);
}
}
public:
ResizerPreprocessor(){}
~ResizerPreprocessor(){}
};
class StandarizerPreprocessor: public ImagePreprocessor{
protected:
double sigma_;
void preprocess_(const Mat& input,Mat& output,Size outputSize,int outputChannels){
//TODO put all the logic of channel and depth conversions in ImageProcessor class
CV_Assert(outputChannels==1 || outputChannels==3);
CV_Assert(input.channels()==1 || input.channels()==3);
if(input.channels()!=outputChannels)
{
Mat tmpInput;
if(outputChannels==1)
{
cvtColor(input,tmpInput,COLOR_BGR2GRAY);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC1);
}
}else
{
cvtColor(input,tmpInput,COLOR_GRAY2BGR);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC3);
}
}
}else
{
if(input.channels()==1)
{
if(input.depth()==CV_8U)
{
input.convertTo(output, CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC1);
}
}else
{
if(input.depth()==CV_8U)
{
input.convertTo(output, CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC3);
}
}
}
if(outputSize.width!=0 && outputSize.height!=0)
{
resize(output,output,outputSize);
}
Scalar dev,mean;
meanStdDev(output,mean,dev);
subtract(output,mean[0],output);
divide(output,(dev[0]/sigma_),output);
}
public:
StandarizerPreprocessor(double sigma):sigma_(sigma){}
~StandarizerPreprocessor(){}
};
class MeanSubtractorPreprocessor: public ImagePreprocessor{
protected:
Mat mean_;
void preprocess_(const Mat& input,Mat& output,Size outputSize,int outputChannels){
//TODO put all the logic of channel and depth conversions in ImageProcessor class
CV_Assert(this->mean_.cols==outputSize.width && this->mean_.rows ==outputSize.height);
CV_Assert(outputChannels==1 || outputChannels==3);
CV_Assert(input.channels()==1 || input.channels()==3);
if(input.channels()!=outputChannels)
{
Mat tmpInput;
if(outputChannels==1)
{
cvtColor(input,tmpInput,COLOR_BGR2GRAY);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC1);
}
}else
{
cvtColor(input,tmpInput,COLOR_GRAY2BGR);
if(input.depth()==CV_8U)
{
tmpInput.convertTo(output,CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC3);
}
}
}else
{
if(input.channels()==1)
{
if(input.depth()==CV_8U)
{
input.convertTo(output, CV_32FC1,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC1);
}
}else
{
if(input.depth()==CV_8U)
{
input.convertTo(output, CV_32FC3,1/255.0);
}else
{//Assuming values are at the desired [0,1] range
input.convertTo(output, CV_32FC3);
}
}
}
if(outputSize.width!=0 && outputSize.height!=0)
{
resize(output,output,outputSize);
}
subtract(output,this->mean_,output);
}
public:
MeanSubtractorPreprocessor(Mat mean)
{
mean.copyTo(this->mean_);
}
~MeanSubtractorPreprocessor(){}
};
Ptr<ImagePreprocessor> ImagePreprocessor::createResizer()
{
return Ptr<ImagePreprocessor>(new ResizerPreprocessor);
}
Ptr<ImagePreprocessor> ImagePreprocessor::createImageStandarizer(double sigma)
{
return Ptr<ImagePreprocessor>(new StandarizerPreprocessor(sigma));
}
Ptr<ImagePreprocessor> ImagePreprocessor::createImageMeanSubtractor(InputArray meanImg)
{
Mat tmp=meanImg.getMat();
return Ptr<ImagePreprocessor>(new MeanSubtractorPreprocessor(tmp));
}
//************************************************************************************
//****************** TextImageClassifier *****************************************
//************************************************************************************
void TextImageClassifier::preprocess(const Mat& input,Mat& output)
{
this->preprocessor_->preprocess_(input,output,this->inputGeometry_,this->channelCount_);
}
void TextImageClassifier::setPreprocessor(Ptr<ImagePreprocessor> ptr)
{
CV_Assert(!ptr.empty());
preprocessor_=ptr;
}
Ptr<ImagePreprocessor> TextImageClassifier::getPreprocessor()
{
return preprocessor_;
}*/
/*
class DeepCNNCaffeImpl: public DeepCNN{
protected:
void classifyMiniBatch(std::vector<Mat> inputImageList, Mat outputMat)
{
//Classifies a list of images containing at most minibatchSz_ images
CV_Assert(int(inputImageList.size())<=this->minibatchSz_);
CV_Assert(outputMat.isContinuous());
#ifdef HAVE_CAFFE
net_->input_blobs()[0]->Reshape(inputImageList.size(), 1,this->inputGeometry_.height,this->inputGeometry_.width);
net_->Reshape();
float* inputBuffer=net_->input_blobs()[0]->mutable_cpu_data();
float* inputData=inputBuffer;
for(size_t imgNum=0;imgNum<inputImageList.size();imgNum++)
{
Mat preprocessed;
cv::Mat netInputWraped(this->inputGeometry_.height, this->inputGeometry_.width, CV_32FC1, inputData);
this->preprocess(inputImageList[imgNum],preprocessed);
preprocessed.copyTo(netInputWraped);
inputData+=(this->inputGeometry_.height*this->inputGeometry_.width);
}
this->net_->ForwardPrefilled();
const float* outputNetData=net_->output_blobs()[0]->cpu_data();
float*outputMatData=(float*)(outputMat.data);
memcpy(outputMatData,outputNetData,sizeof(float)*this->outputSize_*inputImageList.size());
#endif
}
#ifdef HAVE_CAFFE
Ptr<caffe::Net<float> > net_;
#endif
//Size inputGeometry_;
int minibatchSz_;//The existence of the assignment operator mandates this to be nonconst
int outputSize_;
public:
DeepCNNCaffeImpl(const DeepCNNCaffeImpl& dn):
minibatchSz_(dn.minibatchSz_),outputSize_(dn.outputSize_){
channelCount_=dn.channelCount_;
inputGeometry_=dn.inputGeometry_;
//Implemented to supress Visual Studio warning "assignment operator could not be generated"
#ifdef HAVE_CAFFE
this->net_=dn.net_;
#endif
}
DeepCNNCaffeImpl& operator=(const DeepCNNCaffeImpl &dn)
{
#ifdef HAVE_CAFFE
this->net_=dn.net_;
#endif
this->setPreprocessor(dn.preprocessor_);
this->inputGeometry_=dn.inputGeometry_;
this->channelCount_=dn.channelCount_;
this->minibatchSz_=dn.minibatchSz_;
this->outputSize_=dn.outputSize_;
this->preprocessor_=dn.preprocessor_;
return *this;
//Implemented to supress Visual Studio warning "assignment operator could not be generated"
}
DeepCNNCaffeImpl(String modelArchFilename, String modelWeightsFilename,Ptr<ImagePreprocessor> preprocessor, int maxMinibatchSz)
:minibatchSz_(maxMinibatchSz)
{
CV_Assert(this->minibatchSz_>0);
CV_Assert(fileExists(modelArchFilename));
CV_Assert(fileExists(modelWeightsFilename));
CV_Assert(!preprocessor.empty());
this->setPreprocessor(preprocessor);
#ifdef HAVE_CAFFE
this->net_.reset(new caffe::Net<float>(modelArchFilename, caffe::TEST));
CV_Assert(net_->num_inputs()==1);
CV_Assert(net_->num_outputs()==1);
CV_Assert(this->net_->input_blobs()[0]->channels()==1
||this->net_->input_blobs()[0]->channels()==3);
this->channelCount_=this->net_->input_blobs()[0]->channels();
this->net_->CopyTrainedLayersFrom(modelWeightsFilename);
caffe::Blob<float>* inputLayer = this->net_->input_blobs()[0];
this->inputGeometry_=Size(inputLayer->width(), inputLayer->height());
inputLayer->Reshape(this->minibatchSz_,1,this->inputGeometry_.height, this->inputGeometry_.width);
net_->Reshape();
this->outputSize_=net_->output_blobs()[0]->channels();
#else
CV_Error(Error::StsError,"Caffe not available during compilation!");
#endif
}
void classify(InputArray image, OutputArray classProbabilities)
{
std::vector<Mat> inputImageList;
inputImageList.push_back(image.getMat());
classifyBatch(inputImageList,classProbabilities);
}
void classifyBatch(InputArrayOfArrays inputImageList, OutputArray classProbabilities)
{
std::vector<Mat> allImageVector;
inputImageList.getMatVector(allImageVector);
size_t outputSize=size_t(this->outputSize_);//temporary variable to avoid int to size_t arithmentic
size_t minibatchSize=size_t(this->minibatchSz_);//temporary variable to avoid int to size_t arithmentic
classProbabilities.create(Size(int(outputSize),int(allImageVector.size())),CV_32F);
Mat outputMat = classProbabilities.getMat();
for(size_t imgNum=0;imgNum<allImageVector.size();imgNum+=minibatchSize)
{
size_t rangeEnd=imgNum+std::min<size_t>(allImageVector.size()-imgNum,minibatchSize);
std::vector<Mat>::const_iterator from=std::vector<Mat>::const_iterator(allImageVector.begin()+imgNum);
std::vector<Mat>::const_iterator to=std::vector<Mat>::const_iterator(allImageVector.begin()+rangeEnd);
std::vector<Mat> minibatchInput(from,to);
classifyMiniBatch(minibatchInput,outputMat.rowRange(int(imgNum),int(rangeEnd)));
}
}
int getOutputSize()
{
return this->outputSize_;
}
int getMinibatchSize()
{
return this->minibatchSz_;
}
int getBackend()
{
return OCR_HOLISTIC_BACKEND_CAFFE;
}
};
Ptr<DeepCNN> DeepCNN::create(String archFilename,String weightsFilename,Ptr<ImagePreprocessor> preprocessor,int minibatchSz,int backEnd)
{
if(preprocessor.empty())
{
preprocessor=ImagePreprocessor::createResizer();
}
switch(backEnd){
case OCR_HOLISTIC_BACKEND_CAFFE:
return Ptr<DeepCNN>(new DeepCNNCaffeImpl(archFilename, weightsFilename,preprocessor, minibatchSz));
break;
case OCR_HOLISTIC_BACKEND_NONE:
default:
CV_Error(Error::StsError,"DeepCNN::create backend not implemented");
return Ptr<DeepCNN>();
break;
}
}
Ptr<DeepCNN> DeepCNN::createDictNet(String archFilename,String weightsFilename,int backEnd)
{
Ptr<ImagePreprocessor> preprocessor=ImagePreprocessor::createImageStandarizer(113);
switch(backEnd){
case OCR_HOLISTIC_BACKEND_CAFFE:
return Ptr<DeepCNN>(new DeepCNNCaffeImpl(archFilename, weightsFilename,preprocessor, 100));
break;
case OCR_HOLISTIC_BACKEND_NONE:
default:
CV_Error(Error::StsError,"DeepCNN::create backend not implemented");
return Ptr<DeepCNN>();
break;
}
}
namespace cnn_config{
namespace caffe_backend{
#ifdef HAVE_CAFFE
bool getCaffeGpuMode()
{
return caffe::Caffe::mode()==caffe::Caffe::GPU;
}
void setCaffeGpuMode(bool useGpu)
{
if(useGpu)
{
caffe::Caffe::set_mode(caffe::Caffe::GPU);
}else
{
caffe::Caffe::set_mode(caffe::Caffe::CPU);
}
}
bool getCaffeAvailable()
{
return true;
}
#else
bool getCaffeGpuMode()
{
CV_Error(Error::StsError,"Caffe not available during compilation!");
return 0;
}
void setCaffeGpuMode(bool useGpu)
{
CV_Error(Error::StsError,"Caffe not available during compilation!");
CV_Assert(useGpu==1);//Compilation directives force
}
bool getCaffeAvailable(){
return 0;
}
#endif
}//namespace caffe
}//namespace cnn_config
*/
class
textDetectImpl
:
public
textDetector
{
class
textDetectImpl
:
public
textDetector
{
private
:
private
:
...
@@ -493,10 +31,6 @@ private:
...
@@ -493,10 +31,6 @@ private:
Rect
bbox
;
Rect
bbox
;
float
probability
;
float
probability
;
// static bool sorter(const NetOutput& o1,const NetOutput& o2)
// {//used with std::sort to provide the most probable class
// return o1.probabillity>o2.probabillity;
// }
static
void
getOutputs
(
const
float
*
buffer
,
int
nbrTextBoxes
,
int
nCol
,
std
::
vector
<
NetOutput
>&
res
,
Size
inputShape
)
static
void
getOutputs
(
const
float
*
buffer
,
int
nbrTextBoxes
,
int
nCol
,
std
::
vector
<
NetOutput
>&
res
,
Size
inputShape
)
{
{
...
@@ -516,22 +50,16 @@ private:
...
@@ -516,22 +50,16 @@ private:
float
ht
=
y_max
-
y_min
+
1
;
float
ht
=
y_max
-
y_min
+
1
;
res
[
k
].
bbox
=
Rect
(
int
(
x_min
),
int
(
y_min
),
int
(
wd
),
int
(
ht
));
res
[
k
].
bbox
=
Rect
(
int
(
x_min
),
int
(
y_min
),
int
(
wd
),
int
(
ht
));
// printf("%f %f %f %f\n",buffer[k*nCol+3],buffer[k*nCol+4],buffer[k*nCol+5],buffer[k*nCol+6]);
res
[
k
].
probability
=
buffer
[
k
*
nCol
+
2
];
res
[
k
].
probability
=
buffer
[
k
*
nCol
+
2
];
}
}
// std::sort(res.begin(),res.end(),NetOutput::sorter);
}
}
// static void getDetections(const float* buffer,int nbOutputs,int &classNum,double& confidence)
// {
// std::vector<NetOutput> tmp;
// getOutputs(buffer,nbOutputs,tmp);
// classNum=tmp[0].wordIdx;
// confidence=tmp[0].probabillity;
// }
};
};
protected
:
protected
:
//std::vector<String> labels_;
Ptr
<
TextImageClassifier
>
classifier_
;
Ptr
<
TextImageClassifier
>
classifier_
;
public
:
public
:
textDetectImpl
(
Ptr
<
TextImageClassifier
>
classifierPtr
)
:
classifier_
(
classifierPtr
)
textDetectImpl
(
Ptr
<
TextImageClassifier
>
classifierPtr
)
:
classifier_
(
classifierPtr
)
...
@@ -544,25 +72,24 @@ public:
...
@@ -544,25 +72,24 @@ public:
void
textDetectInImage
(
InputArray
inputImage
,
CV_OUT
std
::
vector
<
Rect
>&
Bbox
,
CV_OUT
std
::
vector
<
float
>&
confidence
)
void
textDetectInImage
(
InputArray
inputImage
,
CV_OUT
std
::
vector
<
Rect
>&
Bbox
,
CV_OUT
std
::
vector
<
float
>&
confidence
)
{
{
Mat
netOutput
;
Mat
netOutput
;
//
std::cout<<"started detect"<<std::endl;
//
call the detect function of deepCNN class
this
->
classifier_
->
detect
(
inputImage
,
netOutput
);
this
->
classifier_
->
detect
(
inputImage
,
netOutput
);
//std::cout<<"After Detect"<<std::endl;
// get the output geometry i.e height and width of output blob from caffe
Size
OutputGeometry_
=
this
->
classifier_
->
getOutputGeometry
();
Size
OutputGeometry_
=
this
->
classifier_
->
getOutputGeometry
();
int
nbrTextBoxes
=
OutputGeometry_
.
height
;
int
nbrTextBoxes
=
OutputGeometry_
.
height
;
int
nCol
=
OutputGeometry_
.
width
;
int
nCol
=
OutputGeometry_
.
width
;
//std::cout<<nbrTextBoxes<<std::endl;
std
::
vector
<
NetOutput
>
tmp
;
std
::
vector
<
NetOutput
>
tmp
;
// the output bounding box needs to be resized by the input height and width
Size
inputImageShape
=
Size
(
inputImage
.
cols
(),
inputImage
.
rows
());
Size
inputImageShape
=
Size
(
inputImage
.
cols
(),
inputImage
.
rows
());
NetOutput
::
getOutputs
((
float
*
)(
netOutput
.
data
),
nbrTextBoxes
,
nCol
,
tmp
,
inputImageShape
);
NetOutput
::
getOutputs
((
float
*
)(
netOutput
.
data
),
nbrTextBoxes
,
nCol
,
tmp
,
inputImageShape
);
//
Bbox.resize(nbrTextBoxes);
//
put the output in CV_OUT
//confidence.resize(nbrTextBoxes);
for
(
int
k
=
0
;
k
<
nbrTextBoxes
;
k
++
)
for
(
int
k
=
0
;
k
<
nbrTextBoxes
;
k
++
)
{
{
Bbox
.
push_back
(
tmp
[
k
].
bbox
);
Bbox
.
push_back
(
tmp
[
k
].
bbox
);
confidence
.
push_back
(
tmp
[
k
].
probability
);
confidence
.
push_back
(
tmp
[
k
].
probability
);
}
}
//Bbox = netOutput.data;
//confidence = netOutput.data;
}
}
...
@@ -602,10 +129,7 @@ public:
...
@@ -602,10 +129,7 @@ public:
this
->
run
(
image
,
component_rects
,
component_confidences
,
component_level
);
this
->
run
(
image
,
component_rects
,
component_confidences
,
component_level
);
}
}
// std::vector<String>& getVocabulary()
// {
// return this->labels_;
// }
Ptr
<
TextImageClassifier
>
getClassifier
()
Ptr
<
TextImageClassifier
>
getClassifier
()
{
{
...
@@ -621,15 +145,16 @@ Ptr<textDetector> textDetector::create(Ptr<TextImageClassifier> classifierPtr)
...
@@ -621,15 +145,16 @@ Ptr<textDetector> textDetector::create(Ptr<TextImageClassifier> classifierPtr)
Ptr
<
textDetector
>
textDetector
::
create
(
String
modelArchFilename
,
String
modelWeightsFilename
)
Ptr
<
textDetector
>
textDetector
::
create
(
String
modelArchFilename
,
String
modelWeightsFilename
)
{
{
// create a custom preprocessor with rawval
Ptr
<
ImagePreprocessor
>
preprocessor
=
ImagePreprocessor
::
createImageCustomPreprocessor
(
255
);
Ptr
<
ImagePreprocessor
>
preprocessor
=
ImagePreprocessor
::
createImageCustomPreprocessor
(
255
);
// set the mean for the preprocessor
Mat
textbox_mean
(
1
,
3
,
CV_8U
);
Mat
textbox_mean
(
1
,
3
,
CV_8U
);
textbox_mean
.
at
<
uchar
>
(
0
,
0
)
=
104
;
textbox_mean
.
at
<
uchar
>
(
0
,
0
)
=
104
;
textbox_mean
.
at
<
uchar
>
(
0
,
1
)
=
117
;
textbox_mean
.
at
<
uchar
>
(
0
,
1
)
=
117
;
textbox_mean
.
at
<
uchar
>
(
0
,
2
)
=
123
;
textbox_mean
.
at
<
uchar
>
(
0
,
2
)
=
123
;
preprocessor
->
set_mean
(
textbox_mean
);
preprocessor
->
set_mean
(
textbox_mean
);
// create a pointer to text box detector(textDetector)
Ptr
<
TextImageClassifier
>
classifierPtr
(
DeepCNN
::
create
(
modelArchFilename
,
modelWeightsFilename
,
preprocessor
,
1
));
Ptr
<
TextImageClassifier
>
classifierPtr
(
DeepCNN
::
create
(
modelArchFilename
,
modelWeightsFilename
,
preprocessor
,
1
));
return
Ptr
<
textDetector
>
(
new
textDetectImpl
(
classifierPtr
));
return
Ptr
<
textDetector
>
(
new
textDetectImpl
(
classifierPtr
));
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment