- The first parameter is the size of the output image in pixels. In this case 600x500 pixels. If this is not proportional
to the board dimensions, it will be centered on the image.
...
...
@@ -156,13 +156,13 @@ The output image will be something like this:
A full working example of board creation is included in the ```create_board.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
@@ -199,7 +199,7 @@ Finally, a full example of board detection:
if (key == 27)
break;
}
```
@endcode
Sample video:
...
...
@@ -210,9 +210,9 @@ Sample video:
A full working example is included in the ```detect_board.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
The ChArUco corners and ChArUco identifiers captured on each viewpoint are stored in the vectors ```allCharucoCorners``` and ```allCharucoIds```, one element per viewpoint.
...
...
@@ -62,9 +62,9 @@ Finally, the ```calibrationFlags``` parameter determines some of the options for
A full working example is included in the ```calibrate_camera_charuco.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
In this case, and contrary to the ```calibrateCameraCharuco()``` function, the detected markers on each viewpoint are concatenated in the arrays ```allCornersConcatenated``` and
```allCornersConcatenated``` (the first two parameters). The third parameter, the array ```markerCounterPerFrame```, indicates the number of marker detected on each viewpoint.
...
...
@@ -107,6 +107,6 @@ any ```Board``` object.
A full working example is included in the ```calibrate_camera.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
First, the ```Dictionary``` object is created by choosing one of the predefined dictionaries in the aruco module.
Concretely, this dictionary is composed by 250 markers and a marker size of 6x6 bits (```DICT_6X6_250```).
...
...
@@ -104,9 +104,9 @@ The generated image is:
A full working example is included in the ```create_marker.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
Note that some of the optional parameters have been omitted, like the detection parameter object or the
output vector of rejected candidates.
...
...
@@ -231,9 +231,9 @@ output vector of rejected candidates.
A full working example is included in the ```detect_markers.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
``` c++
@code{.cpp}
-c="_path_/calib.txt" -d=10
```
@endcode
...
...
@@ -262,12 +262,12 @@ information).
The aruco module provides a function to estimate the poses of all the detected markers:
-```image``` is the input/output image where the axis will be drawn (it will normally be the same image where the markers were detected).
-```cameraMatrix``` and ```distCoeffs``` are the camera calibration parameters.
...
...
@@ -295,7 +295,7 @@ checked:
A basic full example for pose estimation from single markers:
``` c++
@code{.cpp}
cv::VideoCapture inputVideo;
inputVideo.open(0);
...
...
@@ -330,7 +330,7 @@ A basic full example for pose estimation from single markers:
if (key == 27)
break;
}
```
@endcode
Sample video:
...
...
@@ -341,9 +341,9 @@ Sample video:
A full working example is included in the ```detect_markers.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
``` c++
@code{.cpp}
-c="_path_/calib.txt" -d=10
```
@endcode
...
...
@@ -373,9 +373,9 @@ you can increase your system robustness:
This is the easiest way to select a dictionary. The aruco module includes a set of predefined dictionaries
of a variety of marker sizes and number of markers. For instance:
- The first parameter is the size of the output image in pixels. In this case 600x500 pixels. If this is not proportional
to the board dimensions, it will be centered on the image.
...
...
@@ -79,9 +79,9 @@ The output image will be something like this:
A full working example is included in the ```create_board_charuco.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
@@ -102,7 +102,7 @@ ChArUco corners are interpolated from markers.
The function that detect the ChArUco corners is ```cv::aruco::interpolateCornersCharuco()``` . This example shows the whole process. First, markers are detected, and then the ChArUco corners are interpolated from these markers.
``` c++
@code{.cpp}
cv::Mat inputImage;
cv::Mat cameraMatrix, distCoeffs;
// camera parameters are read from somewhere
...
...
@@ -120,7 +120,7 @@ The function that detect the ChArUco corners is ```cv::aruco::interpolateCorners
-```image``` is the image where the corners will be drawn (it will normally be the same image where the corners were detected).
- The ```outputImage``` will be a clone of ```inputImage``` with the corners drawn.
...
...
@@ -199,7 +199,7 @@ In the presence of occlusion. like in the following image, although some corners
Finally, this is a full example of ChArUco detection (without using calibration parameters):
``` c++
@code{.cpp}
cv::VideoCapture inputVideo;
inputVideo.open(0);
...
...
@@ -235,7 +235,7 @@ Finally, this is a full example of ChArUco detection (without using calibration
if (key == 27)
break;
}
```
@endcode
Sample video:
...
...
@@ -246,9 +246,9 @@ Sample video:
A full working example is included in the ```detect_board_charuco.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
- The ```charucoCorners``` and ```charucoIds``` parameters are the detected charuco corners from the ```interpolateCornersCharuco()```
function.
...
...
@@ -278,7 +278,7 @@ The axis can be drawn using ```drawAxis()``` to check the pose is correctly esti
A full example of ChArUco detection with pose estimation:
``` c++
@code{.cpp}
cv::VideoCapture inputVideo;
inputVideo.open(0);
...
...
@@ -319,11 +319,11 @@ A full example of ChArUco detection with pose estimation:
if (key == 27)
break;
}
```
@endcode
A full working example is included in the ```detect_board_charuco.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
This will create a diamond marker image with a square size of 200 pixels and a marker size of 120 pixels.
The marker ids are given in the second parameter as a ```Vec4i``` object. The order of the marker ids
...
...
@@ -61,9 +61,9 @@ The image produced will be:
A full working example is included in the ```create_diamond.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
The result is the same that the one produced by ```drawDetectedMarkers()```, but printing the four ids of the diamond:
...
...
@@ -121,9 +121,9 @@ The result is the same that the one produced by ```drawDetectedMarkers()```, but
A full working example is included in the ```detect_diamonds.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
The function will obtain the rotation and translation vector for each of the diamond marker and store them
in ```rvecs``` and ```tvecs```. Note that the diamond corners are a chessboard square corners and thus, the square length
...
...
@@ -169,6 +169,6 @@ Sample video:
A full working example is included in the ```detect_diamonds.cpp``` inside the module samples folder.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
std::vector<Ptr<Mat>>backgroundModel;// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
MatpotentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value.
MatepslonPixelsValue;// epslon threshold
MatepslonPixelsValue;// epslon threshold
MatactivityPixelsValue;// Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
MatnoisePixelMask;// We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
//detection process,however, after the low resolution detection, it has become a
// background pixel. The matrix is two-channel matrix. In the first layer there is the mask ( the identified noise-pixels are set to 1 while other pixels are 0)
// for each pixel. In the second layer, there is the value of activity level A for each pixel.
//fixed parameter
boolactivityControlFlag;
boolneighborhoodCheck;
intN_DS;// Number of template to be downsampled and used in lowResolutionDetection function
CV_PROP_RWintimageWidth;// Width of input image
...
...
@@ -257,6 +270,13 @@ private:
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts.
ucharAinc;// Activity Incrementation;
intBmax;// Upper-bound value for pixel activity
intBth;// Max activity threshold
intBinc,Bdec;// Threshold for pixel-level decision threshold (epslon) adaptation
floatdeltaINC,deltaDEC;// Increment-decrement value for epslon adaptation
intepslonMIN,epslonMAX;// Range values for epslon threshold
};
/************************************ Specific Objectness Specialized Classes ************************************/
...
...
@@ -417,7 +437,7 @@ private:
int_Clr;//
staticconstchar*_clrName[3];
// Names and paths to read model and to store results
// Names and paths to read model and to store results