Commit fae2d927 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #1884 from LaurentBerger:derichetest

parents feec6d7e cd6f7d12
......@@ -51,25 +51,25 @@ namespace ximgproc {
*
* For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
*
* @param _op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param _dst result CV_32FC image with same number of channel than _op.
* @param alphaDerive double see paper
* @param alphaMean double see paper
* @param op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param dst result CV_32FC image with same number of channel than _op.
* @param alpha double see paper
* @param omega double see paper
*
*/
CV_EXPORTS void GradientDericheY(InputArray _op, OutputArray _dst, double alphaDerive,double alphaMean);
CV_EXPORTS_W void GradientDericheY(InputArray op, OutputArray dst, double alpha,double omega);
/**
* @brief Applies X Deriche filter to an image.
*
* For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
*
* @param _op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param _dst result CV_32FC image with same number of channel than _op.
* @param alphaDerive double see paper
* @param alphaMean double see paper
* @param op Source 8-bit or 16bit image, 1-channel or 3-channel image.
* @param dst result CV_32FC image with same number of channel than _op.
* @param alpha double see paper
* @param omega double see paper
*
*/
CV_EXPORTS void GradientDericheX(InputArray _op, OutputArray _dst, double alphaDerive,double alphaMean);
CV_EXPORTS_W void GradientDericheX(InputArray op, OutputArray dst, double alpha,double omega);
}
}
......
import sys
import numpy as np
import cv2 as cv
def AddSlider(sliderName,windowName,minSlider,maxSlider,valDefault, update=[]):
if update is None:
cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1)
else:
cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1, update)
cv.setTrackbarMin(sliderName, windowName, minSlider)
cv.setTrackbarMax(sliderName, windowName, maxSlider)
cv.setTrackbarPos(sliderName, windowName, valDefault)
class Filtrage:
def __init__(self):
self.s =0
self.alpha = 100
self.omega = 100
self.updateFiltre=True
self.img=[]
self.dximg=[]
self.dyimg=[]
self.module=[]
def DericheFilter(self):
self.dximg = cv.ximgproc.GradientDericheX( self.img, self.alpha/100., self.omega/1000. )
self.dyimg = cv.ximgproc.GradientDericheY( self.img, self.alpha/100., self.omega/1000. )
dx2=self.dximg*self.dximg
dy2=self.dyimg*self.dyimg
self.module = np.sqrt(dx2+dy2)
cv.normalize(src=self.module,dst=self.module,norm_type=cv.NORM_MINMAX)
def SlideBarDeriche(self):
cv.destroyWindow(self.filename)
cv.namedWindow(self.filename)
AddSlider("alpha",self.filename,1,400,self.alpha,self.UpdateAlpha)
AddSlider("omega",self.filename,1,1000,self.omega,self.UpdateOmega)
def UpdateOmega(self,x ):
self.updateFiltre=True
self.omega=x
def UpdateAlpha(self,x ):
self.updateFiltre=True
self.alpha=x
def run(self,argv):
# Load the source image
self.filename = argv[0] if len(argv) > 0 else "../doc/pics/corridor_fld.jpg"
self.img=cv.imread(self.filename,cv.IMREAD_GRAYSCALE)
if self.img is None:
print ('cannot read file')
return
self.SlideBarDeriche()
while True:
cv.imshow(self.filename,self.img)
if self.updateFiltre:
self.DericheFilter()
cv.imshow("module",self.module)
self.updateFiltre =False
code = cv.waitKey(10)
if code==27:
break
if __name__ == '__main__':
Filtrage().run(sys.argv[1:])
......@@ -46,23 +46,23 @@ Using Canny's criteria to derive a recursively implemented optimal edge detector
namespace cv {
namespace ximgproc {
template<typename T> static void
VerticalIIRFilter(Mat &img,Mat &dst,const Range &r,double alphaDerive)
VerticalIIRFilter(Mat &img,Mat &dst,const Range &r,double alpha,double omega)
{
float *f2;
int tailleSequence = (img.rows>img.cols) ? img.rows : img.cols;
Mat matG1(1, tailleSequence, CV_64FC1), matG2(1, tailleSequence, CV_64FC1);
double *g1 = matG1.ptr<double>(0), *g2 = (double*)matG2.ptr<double>(0);
double kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
double a1, a2, a3, a4;
double a2, a3;
double b1, b2;
int rows = img.rows, cols = img.cols;
double c = (1 - 2 * exp(-alpha)*cos(omega) + exp(-2 * alpha)) / (exp(-alpha)*sin(omega));
double a = -c * exp(-alpha)*sin(omega);
a2 = 1;// kp*exp(-alpha);
a3 = 1;//-kp*exp(-alpha);
b1 = -2 * exp(-alpha)*cos(omega);
b2 = exp(-2 * alpha);
kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
a1 = 0;
a2 = kp*exp(-alphaDerive), a3 = -kp*exp(-alphaDerive);
a4 = 0;
b1 = 2 * exp(-alphaDerive);
b2 = -exp(-2 * alphaDerive);
for (int j = r.start; j<r.end; j++)
{
// Causal vertical IIR filter
......@@ -71,78 +71,76 @@ VerticalIIRFilter(Mat &img,Mat &dst,const Range &r,double alphaDerive)
f2 += j;
c1 += j;
int i = 0;
g1[i] = (a1 + a2)* *c1;
g1[i] = a2* *c1;
i++;
c1 += cols;
g1[i] = a1 * *c1 + a2 * c1[-cols] + (b1)* g1[i - 1];
g1[i] =a2 * c1[-cols] - (b1)* g1[i - 1];
i++;
c1 += cols;
for (i = 2; i<rows; i++, c1 += cols)
g1[i] = a1 * *c1 + a2 * c1[-cols] + b1*g1[i - 1] + b2 *g1[i - 2];
g1[i] = a2 * c1[-cols] - b1*g1[i - 1] - b2 *g1[i - 2];
// Anticausal vertical IIR filter
c1 = img.ptr<T>(0);
c1 += (rows - 1)*cols + j;
i = rows - 1;
g2[i] = (a3 + a4)* *c1;
g2[i] = a3 * *c1;
i--;
c1 -= cols;
g2[i] = a3* c1[cols] + a4 * c1[cols] + (b1)*g2[i + 1];
g2[i] = a3* c1[cols] + (b1)*g2[i + 1];
i--;
c1 -= cols;
for (i = rows - 3; i >= 0; i--, c1 -= cols)
g2[i] = a3*c1[cols] + a4* c1[2 * cols] +
b1*g2[i + 1] + b2*g2[i + 2];
g2[i] = a3*c1[cols] -
b1*g2[i + 1] - b2*g2[i + 2];
for (i = 0; i<rows; i++, f2 += cols)
*f2 = (float)(g1[i] + g2[i]);
*f2 = static_cast<float>(a*(g1[i] - g2[i]));
}
}
template<typename T> static void
HorizontalIIRFilter(Mat &img, Mat &dst, const Range &r, double alphaDerive)
HorizontalIIRFilter(Mat &img, Mat &dst, const Range &r, double alpha, double omega)
{
float *f1;
int rows = img.rows, cols = img.cols;
int tailleSequence = (rows>cols) ? rows : cols;
Mat matG1(1, tailleSequence, CV_64FC1), matG2(1, tailleSequence, CV_64FC1);
double *g1 = (double*)matG1.ptr(0), *g2 = (double*)matG2.ptr(0);
double kp;;
double a1, a2, a3, a4;
double a,a2, a3;
double b1, b2;
double c = (1 - 2 * exp(-alpha)*cos(omega) + exp(-2 * alpha)) / (exp(-alpha)*sin(omega));
kp = pow(1 - exp(-alphaDerive), 2.0) / exp(-alphaDerive);
a1 = 0;
a2 = kp*exp(-alphaDerive);
a3 = -kp*exp(-alphaDerive);
a4 = 0;
b1 = 2 * exp(-alphaDerive);
b2 = -exp(-2 * alphaDerive);
a = -c*exp(-alpha)*sin(omega);
a2 = 1;// kp*exp(-alpha);
a3 = 1;//-kp*exp(-alpha);
b1 = -2 * exp(-alpha)*cos(omega);
b2 = exp(-2 * alpha);
for (int i = r.start; i<r.end; i++)
{
f1 = dst.ptr<float>(i);
T *c1 = img.ptr<T>(i);
int j = 0;
g1[j] = (a1 + a2)* *c1;
g1[j] = a2* *c1;
j++;
c1++;
g1[j] = a1 * c1[0] + a2*c1[j - 1] + (b1)* g1[j - 1];
g1[j] = a2*c1[j - 1] - (b1)* g1[j - 1];
j++;
c1++;
for (j = 2; j<cols; j++, c1++)
g1[j] = a1 * c1[0] + a2 * c1[-1] + b1*g1[j - 1] + b2*g1[j - 2];
g1[j] = a2 * c1[-1] - b1*g1[j - 1] - b2*g1[j - 2];
c1 = img.ptr<T>(0);
c1 += i*cols + cols - 1;
j = cols - 1;
g2[j] = (a3 + a4)* *c1;
g2[j] = a3* *c1;
j--;
c1--;
g2[j] = (a3 + a4) * c1[1] + b1 * g2[j + 1];
g2[j] = a3 * c1[1] - b1 * g2[j + 1];
j--;
c1--;
for (j = cols - 3; j >= 0; j--, c1--)
g2[j] = a3*c1[1] + a4*c1[2] + b1*g2[j + 1] + b2*g2[j + 2];
g2[j] = a3*c1[1] - b1*g2[j + 1] - b2*g2[j + 2];
for (j = 0; j<cols; j++, f1++)
*f1 = (float)(g1[j] + g2[j]);
*f1 = static_cast<float>(a*(g1[j] - g2[j]));
}
}
......@@ -151,15 +149,17 @@ class ParallelGradientDericheYCols : public ParallelLoopBody
private:
Mat &img;
Mat &dst;
double alphaDerive;
double alpha;
double omega;
bool verbose;
public:
ParallelGradientDericheYCols(Mat &imgSrc, Mat &d, double ald) :
ParallelGradientDericheYCols(Mat &imgSrc, Mat &d, double ald,double o) :
img(imgSrc),
dst(d),
alphaDerive(ald),
alpha(ald),
omega(o),
verbose(false)
{
int type = img.depth();
......@@ -175,19 +175,19 @@ public:
switch (img.depth()) {
case CV_8U:
VerticalIIRFilter<uchar>(img,dst,range, alphaDerive);
VerticalIIRFilter<uchar>(img,dst,range, alpha,omega);
break;
case CV_8S:
VerticalIIRFilter<char>(img, dst, range, alphaDerive);
VerticalIIRFilter<char>(img, dst, range, alpha, omega);
break;
case CV_16U:
VerticalIIRFilter<ushort>(img, dst, range, alphaDerive);
VerticalIIRFilter<ushort>(img, dst, range, alpha, omega);
break;
case CV_16S:
VerticalIIRFilter<short>(img, dst, range, alphaDerive);
VerticalIIRFilter<short>(img, dst, range, alpha, omega);
break;
case CV_32F:
VerticalIIRFilter<float>(img, dst, range, alphaDerive);
VerticalIIRFilter<float>(img, dst, range, alpha, omega);
break;
default:
return;
......@@ -204,14 +204,16 @@ class ParallelGradientDericheYRows : public ParallelLoopBody
private:
Mat &img;
Mat &dst;
double alphaMoyenne;
double alpha;
double omega;
bool verbose;
public:
ParallelGradientDericheYRows(Mat& imgSrc, Mat &d, double alm) :
ParallelGradientDericheYRows(Mat& imgSrc, Mat &d, double ald,double o) :
img(imgSrc),
dst(d),
alphaMoyenne(alm),
alpha(ald),
omega(o),
verbose(false)
{
int type = img.depth();
......@@ -228,42 +230,44 @@ public:
int tailleSequence = (img.rows>img.cols) ? img.rows : img.cols;
Mat matG1(1,tailleSequence,CV_64FC1), matG2(1,tailleSequence,CV_64FC1);
double *g1 = matG1.ptr<double>(0), *g2 = matG2.ptr<double>(0);
double k, a5, a6, a7, a8;
double b3, b4;
int cols = img.cols;
k = pow(1 - exp(-alphaMoyenne), 2.0) / (1 + 2 * alphaMoyenne*exp(-alphaMoyenne) - exp(-2 * alphaMoyenne));
a5 = k;
a6 = k*exp(-alphaMoyenne)*(alphaMoyenne - 1);
a7 = k*exp(-alphaMoyenne)*(alphaMoyenne + 1);
a8 = -k*exp(-2 * alphaMoyenne);
b3 = 2 * exp(-alphaMoyenne);
b4 = -exp(-2 * alphaMoyenne);
double a2po2 = (alpha*alpha + omega * omega);
double k = (1 - 2 * exp(-alpha)*cos(omega) + exp(-2 * alpha))*a2po2;
k = k / (2 * alpha*exp(-alpha)*sin(omega) + omega - omega * exp(-2 * alpha));
double c1 = k * alpha / a2po2;
double c2 = k * omega / a2po2;
double a0 = c2;
double a1 = (-c2 * cos(omega) + c1 * sin(omega))*exp(-alpha);
double b1 = -2 * exp(-alpha)*cos(omega);
double b2 = exp(-2 * alpha);
double a2 = a1 - c2 * b1, a3 = -c2 * b2;
for (int i = range.start; i<range.end; i++)
{
f2 = dst.ptr<float>(i);
f1 = img.ptr<float>(i);
int j = 0;
g1[j] = (a5 + a6)* *f1;
g1[j] = (a0 + a1)* *f1;
j++;
f1++;
g1[j] = a5 * f1[0] + a6*f1[j - 1] + (b3)* g1[j - 1];
g1[j] = a0 * f1[0] + a1*f1[j - 1] - b1* g1[j - 1];
j++;
f1++;
for (j = 2; j<cols; j++, f1++)
g1[j] = a5 * f1[0] + a6 * f1[-1] + b3*g1[j - 1] + b4*g1[j - 2];
g1[j] = a0 * f1[0] + a1 * f1[-1] - b1*g1[j - 1] - b2*g1[j - 2];
f1 = ((float*)img.ptr(0));
f1 += i*cols + cols - 1;
j = cols - 1;
g2[j] = (a7 + a8)* *f1;
g2[j] = (a2 + a3)* *f1;
j--;
f1--;
g2[j] = (a7 + a8) * f1[1] + (b3)* g2[j + 1];
g2[j] = (a2 + a3) * f1[1] - b2* g2[j + 1];
j--;
f1--;
for (j = cols - 3; j >= 0; j--, f1--)
g2[j] = a7*f1[1] + a8*f1[2] + b3*g2[j + 1] + b4*g2[j + 2];
g2[j] = a2*f1[1] + a3*f1[2] - b1*g2[j + 1] - b2*g2[j + 2];
for (j = 0; j<cols; j++, f2++)
*f2 = (float)(g1[j] + g2[j]);
}
......@@ -280,14 +284,16 @@ class ParallelGradientDericheXCols : public ParallelLoopBody
private:
Mat &img;
Mat &dst;
double alphaMoyenne;
double alpha;
double omega;
bool verbose;
public:
ParallelGradientDericheXCols(Mat& imgSrc, Mat &d, double alm) :
ParallelGradientDericheXCols(Mat& imgSrc, Mat &d, double alm,double o) :
img(imgSrc),
dst(d),
alphaMoyenne(alm),
alpha(alm),
omega(o),
verbose(false)
{
int type = img.depth();
......@@ -306,40 +312,43 @@ public:
int tailleSequence = (rows>cols) ? rows : cols;
Mat matG1(1,tailleSequence,CV_64FC1), matG2(1,tailleSequence,CV_64FC1);
double *g1 = (double*)matG1.ptr(0), *g2 = (double*)matG2.ptr(0);
double k, a5, a6, a7, a8 = 0;
double b3, b4;
double a2po2 = (alpha*alpha + omega * omega);
double k = (1 - 2 * exp(-alpha)*cos(omega) + exp(-2 * alpha))*a2po2;
k = k / (2 * alpha*exp(-alpha)*sin(omega) + omega - omega * exp(-2 * alpha));
double c1 = k * alpha / a2po2;
double c2 = k * omega / a2po2;
double a0 = c2;
double a1 = (-c2 * cos(omega) + c1 * sin(omega))*exp(-alpha);
double b1 = -2 * exp(-alpha)*cos(omega);
double b2=exp(-2*alpha);
double a2=a1-c2*b1, a3=-c2*b2;
k = pow(1 - exp(-alphaMoyenne), 2.0) / (1 + 2 * alphaMoyenne*exp(-alphaMoyenne) - exp(-2 * alphaMoyenne));
a5 = k, a6 = k*exp(-alphaMoyenne)*(alphaMoyenne - 1);
a7 = k*exp(-alphaMoyenne)*(alphaMoyenne + 1), a8 = -k*exp(-2 * alphaMoyenne);
b3 = 2 * exp(-alphaMoyenne);
b4 = -exp(-2 * alphaMoyenne);
for (int j = range.start; j<range.end; j++)
{
f1 = img.ptr<float>(0);
f1 += j;
int i = 0;
g1[i] = (a5 + a6)* *f1;
g1[i] = (a0 + a1)* *f1;
i++;
f1 += cols;
g1[i] = a5 * *f1 + a6 * f1[-cols] + (b3)* g1[i - 1];
g1[i] = a0 * *f1 + a1 * f1[-cols] - (b1)* g1[i - 1];
i++;
f1 += cols;
for (i = 2; i<rows; i++, f1 += cols)
g1[i] = a5 * *f1 + a6 * f1[-cols] + b3*g1[i - 1] + b4 *g1[i - 2];
g1[i] = a0 * *f1 + a1 * f1[-cols] - b1*g1[i - 1] - b2 *g1[i - 2];
f1 = img.ptr<float>(0);
f1 += (rows - 1)*cols + j;
i = rows - 1;
g2[i] = (a7 + a8)* *f1;
g2[i] = (a2 + a3)* *f1;
i--;
f1 -= cols;
g2[i] = (a7 + a8)* f1[cols] + (b3)*g2[i + 1];
g2[i] = (a2 + a3)* f1[cols] - b2*g2[i + 1];
i--;
f1 -= cols;
for (i = rows - 3; i >= 0; i--, f1 -= cols)
g2[i] = a7*f1[cols] + a8* f1[2 * cols] +
b3*g2[i + 1] + b4*g2[i + 2];
g2[i] = a2*f1[cols] + a3* f1[2 * cols] -
b1*g2[i + 1] - b2*g2[i + 2];
for (i = 0; i<rows; i++, f2 += cols)
{
f2 = (dst.ptr<float>(i)) + (j*img.channels());
......@@ -358,14 +367,16 @@ class ParallelGradientDericheXRows : public ParallelLoopBody
private:
Mat &img;
Mat &dst;
double alphaDerive;
double alpha;
double omega;
bool verbose;
public:
ParallelGradientDericheXRows(Mat& imgSrc, Mat &d, double ald) :
ParallelGradientDericheXRows(Mat& imgSrc, Mat &d, double ald, double o) :
img(imgSrc),
dst(d),
alphaDerive(ald),
alpha(ald),
omega(o),
verbose(false)
{
int type = img.depth();
......@@ -381,19 +392,19 @@ public:
switch (img.depth()) {
case CV_8U:
HorizontalIIRFilter<uchar>(img,dst,range,alphaDerive);
HorizontalIIRFilter<uchar>(img,dst,range, alpha,omega);
break;
case CV_8S:
HorizontalIIRFilter<char>(img, dst, range, alphaDerive);
HorizontalIIRFilter<char>(img, dst, range, alpha, omega);
break;
case CV_16U:
HorizontalIIRFilter<ushort>(img, dst, range, alphaDerive);
HorizontalIIRFilter<ushort>(img, dst, range, alpha, omega);
break;
case CV_16S:
HorizontalIIRFilter<short>(img, dst, range, alphaDerive);
HorizontalIIRFilter<short>(img, dst, range, alpha, omega);
break;
case CV_32F:
HorizontalIIRFilter<float>(img, dst, range, alphaDerive);
HorizontalIIRFilter<float>(img, dst, range, alpha, omega);
break;
default:
return;
......@@ -404,10 +415,11 @@ public:
};
};
void GradientDericheY(InputArray _op, OutputArray _dst,double alphaDerive, double alphaMean)
void GradientDericheY(InputArray _op, OutputArray _dst,double alphaDerive, double omega)
{
std::vector<Mat> planSrc;
split(_op, planSrc);
std::vector<Mat> planTmp;
std::vector<Mat> planDst;
for (size_t i = 0; i < planSrc.size(); i++)
......@@ -415,15 +427,15 @@ void GradientDericheY(InputArray _op, OutputArray _dst,double alphaDerive, doubl
planTmp.push_back(Mat(_op.size(), CV_32FC1));
planDst.push_back(Mat(_op.size(), CV_32FC1));
CV_Assert(planSrc[i].isContinuous() && planTmp[i].isContinuous() && planDst[i].isContinuous());
ParallelGradientDericheYCols x(planSrc[i], planTmp[i], alphaDerive);
ParallelGradientDericheYCols x(planSrc[i], planTmp[i], alphaDerive,omega);
parallel_for_(Range(0, planSrc[i].cols), x, getNumThreads());
ParallelGradientDericheYRows xr(planTmp[i], planDst[i], alphaMean);
ParallelGradientDericheYRows xr(planTmp[i], planDst[i], alphaDerive, omega);
parallel_for_(Range(0, planTmp[i].rows), xr, getNumThreads());
}
merge(planDst, _dst);
}
void GradientDericheX(InputArray _op, OutputArray _dst, double alphaDerive, double alphaMean)
void GradientDericheX(InputArray _op, OutputArray _dst, double alpha, double omega)
{
std::vector<Mat> planSrc;
split(_op, planSrc);
......@@ -435,9 +447,9 @@ void GradientDericheX(InputArray _op, OutputArray _dst, double alphaDerive, doub
planDst.push_back(Mat(_op.size(), CV_32FC1));
CV_Assert(planSrc[i].isContinuous() && planTmp[i].isContinuous() && planDst[i].isContinuous());
ParallelGradientDericheXRows x(planSrc[i], planTmp[i], alphaDerive);
ParallelGradientDericheXRows x(planSrc[i], planTmp[i], alpha, omega);
parallel_for_(Range(0, planSrc[i].rows), x, getNumThreads());
ParallelGradientDericheXCols xr(planTmp[i], planDst[i], alphaMean);
ParallelGradientDericheXCols xr(planTmp[i], planDst[i], alpha, omega);
parallel_for_(Range(0, planTmp[i].cols), xr, getNumThreads());
}
merge(planDst, _dst);
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
TEST(ximgproc_DericheFilter, regression)
{
Mat img = Mat::zeros(64, 64, CV_8UC3);
Mat res = Mat::zeros(64, 64, CV_32FC3);
img.at<Vec3b>(31, 31) = Vec3b(1, 2, 4);
double a = 0.5;
double w = 0.0005;
Mat dst;
ximgproc::GradientDericheX(img, dst, a, w);
double c = pow(1 - exp(-a), 2.0) * exp(a);
double k = pow(a*(1 - exp(-a)), 2.0) / (1 + 2 * a*exp(-a) - exp(-2 * a));
for (int i = 0; i < img.rows; i++)
{
double n = -31 + i;
for (int j = 0; j < img.cols; j++)
{
double m = -31 + j;
double x = -c * exp(-a * fabs(m))*sin(w*m);
x = x * (k*(a*sin(w*fabs(n)) + w * cos(w*fabs(n)))*exp(-a * fabs(n))) / (a*a + w * w);
x = x / (w*w);
float xx=static_cast<float>(x);
res.at<Vec3f>(i, j) = Vec3f(xx, 2 * xx, 4 * xx);
}
}
EXPECT_LE(cv::norm(res, dst, NORM_INF), 1e-5);
Mat dst2;
ximgproc::GradientDericheY(img, dst2, a, w);
cv::transpose(dst2, dst2);
EXPECT_LE(cv::norm(dst2, dst, NORM_INF), 1e-5);
}
}
} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment