Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
f39f415f
Commit
f39f415f
authored
Feb 17, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1001 from arrybn:tests_for_torch
parents
556307a2
b964d3a1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
56 additions
and
16 deletions
+56
-16
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+8
-1
max_unpooling_layer.cpp
modules/dnn/src/layers/max_unpooling_layer.cpp
+2
-0
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+29
-11
torch_gen_test_data.lua
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
+17
-4
No files found.
modules/dnn/samples/torch_enet.cpp
View file @
f39f415f
...
@@ -23,6 +23,7 @@ const String keys =
...
@@ -23,6 +23,7 @@ const String keys =
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
"{show s || whether to show all output channels or not}"
"{show s || whether to show all output channels or not}"
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
;
;
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
...
@@ -112,7 +113,13 @@ int main(int argc, char **argv)
...
@@ -112,7 +113,13 @@ int main(int argc, char **argv)
//! [Gather output]
//! [Gather output]
dnn
::
Blob
prob
=
net
.
getBlob
(
net
.
getLayerNames
().
back
());
//gather output of "prob" layer
String
oBlob
=
net
.
getLayerNames
().
back
();
if
(
!
parser
.
get
<
String
>
(
"o_blob"
).
empty
())
{
oBlob
=
parser
.
get
<
String
>
(
"o_blob"
);
}
dnn
::
Blob
prob
=
net
.
getBlob
(
oBlob
);
//gather output of "prob" layer
Mat
&
result
=
prob
.
matRef
();
Mat
&
result
=
prob
.
matRef
();
...
...
modules/dnn/src/layers/max_unpooling_layer.cpp
View file @
f39f415f
...
@@ -28,6 +28,8 @@ void MaxUnpoolLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vector<
...
@@ -28,6 +28,8 @@ void MaxUnpoolLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vector<
outShape
[
2
]
=
outSize
.
height
;
outShape
[
2
]
=
outSize
.
height
;
outShape
[
3
]
=
outSize
.
width
;
outShape
[
3
]
=
outSize
.
width
;
CV_Assert
(
inputs
[
0
]
->
total
()
==
inputs
[
1
]
->
total
());
outputs
.
resize
(
1
);
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
outShape
);
outputs
[
0
].
create
(
outShape
);
}
}
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
f39f415f
...
@@ -72,7 +72,8 @@ TEST(Torch_Importer, simple_read)
...
@@ -72,7 +72,8 @@ TEST(Torch_Importer, simple_read)
importer
->
populateNet
(
net
);
importer
->
populateNet
(
net
);
}
}
static
void
runTorchNet
(
String
prefix
,
String
outLayerName
,
bool
isBinary
)
static
void
runTorchNet
(
String
prefix
,
String
outLayerName
=
""
,
bool
check2ndBlob
=
false
,
bool
isBinary
=
false
)
{
{
String
suffix
=
(
isBinary
)
?
".dat"
:
".txt"
;
String
suffix
=
(
isBinary
)
?
".dat"
:
".txt"
;
...
@@ -92,52 +93,69 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
...
@@ -92,52 +93,69 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
Blob
out
=
net
.
getBlob
(
outLayerName
);
Blob
out
=
net
.
getBlob
(
outLayerName
);
normAssert
(
outRef
,
out
);
normAssert
(
outRef
,
out
);
if
(
check2ndBlob
)
{
Blob
out2
=
net
.
getBlob
(
outLayerName
+
".1"
);
Blob
ref2
=
readTorchBlob
(
_tf
(
prefix
+
"_output_2"
+
suffix
),
isBinary
);
normAssert
(
out2
,
ref2
);
}
}
}
TEST
(
Torch_Importer
,
run_convolution
)
TEST
(
Torch_Importer
,
run_convolution
)
{
{
runTorchNet
(
"net_conv"
,
"l1_Convolution"
,
false
);
runTorchNet
(
"net_conv"
);
}
}
TEST
(
Torch_Importer
,
run_pool_max
)
TEST
(
Torch_Importer
,
run_pool_max
)
{
{
runTorchNet
(
"net_pool_max"
,
"
l1_Pooling"
,
fals
e
);
runTorchNet
(
"net_pool_max"
,
"
"
,
tru
e
);
}
}
TEST
(
Torch_Importer
,
run_pool_ave
)
TEST
(
Torch_Importer
,
run_pool_ave
)
{
{
runTorchNet
(
"net_pool_ave"
,
"l1_Pooling"
,
false
);
runTorchNet
(
"net_pool_ave"
);
}
}
TEST
(
Torch_Importer
,
run_reshape
)
TEST
(
Torch_Importer
,
run_reshape
)
{
{
runTorchNet
(
"net_reshape"
,
"l1_Reshape"
,
false
);
runTorchNet
(
"net_reshape"
);
runTorchNet
(
"net_reshape_batch"
,
"l1_Reshape"
,
false
);
runTorchNet
(
"net_reshape_batch"
);
}
}
TEST
(
Torch_Importer
,
run_linear
)
TEST
(
Torch_Importer
,
run_linear
)
{
{
runTorchNet
(
"net_linear_2d"
,
"l1_InnerProduct"
,
false
);
runTorchNet
(
"net_linear_2d"
);
}
}
TEST
(
Torch_Importer
,
run_paralel
)
TEST
(
Torch_Importer
,
run_paralel
)
{
{
runTorchNet
(
"net_parallel"
,
"l2_torchMerge"
,
false
);
runTorchNet
(
"net_parallel"
,
"l2_torchMerge"
);
}
}
TEST
(
Torch_Importer
,
run_concat
)
TEST
(
Torch_Importer
,
run_concat
)
{
{
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
,
false
);
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
);
}
}
TEST
(
Torch_Importer
,
run_deconv
)
TEST
(
Torch_Importer
,
run_deconv
)
{
{
runTorchNet
(
"net_deconv"
,
""
,
false
);
runTorchNet
(
"net_deconv"
);
}
}
TEST
(
Torch_Importer
,
run_batch_norm
)
TEST
(
Torch_Importer
,
run_batch_norm
)
{
{
runTorchNet
(
"net_batch_norm"
,
""
,
false
);
runTorchNet
(
"net_batch_norm"
);
}
TEST
(
Torch_Importer
,
net_prelu
)
{
runTorchNet
(
"net_prelu"
);
}
TEST
(
Torch_Importer
,
net_cadd_table
)
{
runTorchNet
(
"net_cadd_table"
);
}
}
#if defined(ENABLE_TORCH_ENET_TESTS)
#if defined(ENABLE_TORCH_ENET_TESTS)
...
...
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
View file @
f39f415f
...
@@ -27,6 +27,8 @@ function save(net, input, label)
...
@@ -27,6 +27,8 @@ function save(net, input, label)
torch
.
save
(
label
..
'_input.txt'
,
input
,
'ascii'
)
torch
.
save
(
label
..
'_input.txt'
,
input
,
'ascii'
)
--torch.save(label .. '_output.dat', output)
--torch.save(label .. '_output.dat', output)
torch
.
save
(
label
..
'_output.txt'
,
output
,
'ascii'
)
torch
.
save
(
label
..
'_output.txt'
,
output
,
'ascii'
)
return
net
end
end
local
net_simple
=
nn
.
Sequential
()
local
net_simple
=
nn
.
Sequential
()
...
@@ -38,7 +40,8 @@ save(net_simple, torch.Tensor(2, 3, 25, 35), 'net_simple')
...
@@ -38,7 +40,8 @@ save(net_simple, torch.Tensor(2, 3, 25, 35), 'net_simple')
local
net_pool_max
=
nn
.
Sequential
()
local
net_pool_max
=
nn
.
Sequential
()
net_pool_max
:
add
(
nn
.
SpatialMaxPooling
(
4
,
5
,
3
,
2
,
1
,
2
):
ceil
())
--TODO: add ceil and floor modes
net_pool_max
:
add
(
nn
.
SpatialMaxPooling
(
4
,
5
,
3
,
2
,
1
,
2
):
ceil
())
--TODO: add ceil and floor modes
save
(
net_pool_max
,
torch
.
rand
(
2
,
3
,
50
,
30
),
'net_pool_max'
)
local
net
=
save
(
net_pool_max
,
torch
.
rand
(
2
,
3
,
50
,
30
),
'net_pool_max'
)
torch
.
save
(
'net_pool_max_output_2.txt'
,
net
.
modules
[
1
].
indices
-
1
,
'ascii'
)
local
net_pool_ave
=
nn
.
Sequential
()
local
net_pool_ave
=
nn
.
Sequential
()
net_pool_ave
:
add
(
nn
.
SpatialAveragePooling
(
4
,
5
,
2
,
1
,
1
,
2
))
net_pool_ave
:
add
(
nn
.
SpatialAveragePooling
(
4
,
5
,
2
,
1
,
1
,
2
))
...
@@ -74,5 +77,15 @@ net_deconv:add(nn.SpatialFullConvolution(3, 9, 4, 5, 1, 2, 0, 1, 0, 1))
...
@@ -74,5 +77,15 @@ net_deconv:add(nn.SpatialFullConvolution(3, 9, 4, 5, 1, 2, 0, 1, 0, 1))
save
(
net_deconv
,
torch
.
rand
(
2
,
3
,
4
,
3
)
-
0
.
5
,
'net_deconv'
)
save
(
net_deconv
,
torch
.
rand
(
2
,
3
,
4
,
3
)
-
0
.
5
,
'net_deconv'
)
local
net_batch_norm
=
nn
.
Sequential
()
local
net_batch_norm
=
nn
.
Sequential
()
net_batch_norm
:
add
(
nn
.
SpatialBatchNormalization
(
3
))
net_batch_norm
:
add
(
nn
.
SpatialBatchNormalization
(
4
,
1e-3
))
save
(
net_batch_norm
,
torch
.
rand
(
1
,
3
,
4
,
3
)
-
0
.
5
,
'net_batch_norm'
)
save
(
net_batch_norm
,
torch
.
rand
(
1
,
4
,
5
,
6
)
-
0
.
5
,
'net_batch_norm'
)
\ No newline at end of file
local
net_prelu
=
nn
.
Sequential
()
net_prelu
:
add
(
nn
.
PReLU
(
5
))
save
(
net_prelu
,
torch
.
rand
(
1
,
5
,
40
,
50
)
-
0
.
5
,
'net_prelu'
)
local
net_cadd_table
=
nn
.
Sequential
()
local
sum
=
nn
.
ConcatTable
()
sum
:
add
(
nn
.
Identity
()):
add
(
nn
.
Identity
())
net_cadd_table
:
add
(
sum
):
add
(
nn
.
CAddTable
())
save
(
net_cadd_table
,
torch
.
rand
(
1
,
5
,
40
,
50
)
-
0
.
5
,
'net_cadd_table'
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment