Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
f080b344
Commit
f080b344
authored
Jun 27, 2014
by
Alex Leontiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
commit
parent
be49e4a0
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
26 additions
and
27 deletions
+26
-27
TLD.hpp
modules/tracking/src/TLD.hpp
+1
-1
trackerTLD.cpp
modules/tracking/src/trackerTLD.cpp
+25
-26
No files found.
modules/tracking/src/TLD.hpp
View file @
f080b344
...
...
@@ -56,7 +56,7 @@ namespace cv
start=clock();{a} milisec=1000.0*(clock()-start)/CLOCKS_PER_SEC;\
printf("%-90s took %f milis\n",#a,milisec); }
#define HERE fprintf(stderr,"%d\n",__LINE__);fflush(stderr);
#define START_TICK(name) { clock_t start;
float
milisec=0.0; start=clock();
#define START_TICK(name) { clock_t start;
double
milisec=0.0; start=clock();
#define END_TICK(name) milisec=1000.0*(clock()-start)/CLOCKS_PER_SEC;\
printf("%s took %f milis\n",name,milisec); }
extern
Rect2d
etalon
;
...
...
modules/tracking/src/trackerTLD.cpp
View file @
f080b344
...
...
@@ -81,6 +81,7 @@ public:
static
void
onMouse
(
int
event
,
int
x
,
int
y
,
int
,
void
*
obj
){
((
MyMouseCallbackDEBUG
*
)
obj
)
->
onMouse
(
event
,
x
,
y
);
}
MyMouseCallbackDEBUG
&
operator
=
(
const
MyMouseCallbackDEBUG
&
/*other*/
){
return
*
this
;}
private
:
void
onMouse
(
int
event
,
int
x
,
int
y
);
Mat
&
img_
,
imgBlurred_
;
...
...
@@ -309,13 +310,15 @@ bool TrackerTLD::updateImpl(const Mat& image, Rect2d& boundingBox){
}
data
->
printme
();
tldModel
->
printme
(
stdout
);
if
(
!
true
&&
data
->
frameNum
==
82
){
#if !1
if
(
data
->
frameNum
==
82
){
printf
(
"here I am
\n
"
);
MyMouseCallbackDEBUG
*
callback
=
new
MyMouseCallbackDEBUG
(
imageForDetector
,
image_blurred
,
detector
);
imshow
(
"picker"
,
imageForDetector
);
setMouseCallback
(
"picker"
,
MyMouseCallbackDEBUG
::
onMouse
,
(
void
*
)
callback
);
waitKey
();
}
#endif
if
(
it
==
candidatesRes
.
end
()){
data
->
confident
=
false
;
...
...
@@ -397,25 +400,21 @@ timeStampPositiveNext(0),timeStampNegativeNext(0),params_(params){
for
(
int
i
=
0
;
i
<
(
int
)
closest
.
size
();
i
++
){
for
(
int
j
=
0
;
j
<
20
;
j
++
){
Mat_
<
uchar
>
standardPatch
(
15
,
15
);
if
(
true
){
center
.
x
=
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
));
center
.
y
=
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
));
size
.
width
=
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
);
size
.
height
=
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
);
float
angle
=
rng
.
uniform
((
double
)
-
10.0
,(
double
)
10.0
);
center
.
x
=
(
float
)(
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
center
.
y
=
(
float
)(
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
size
.
width
=
(
float
)(
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
));
size
.
height
=
(
float
)(
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
));
float
angle
=
rng
.
uniform
(
-
10.0
,
10.0
);
resample
(
scaledImg
,
RotatedRect
(
center
,
size
,
angle
),
standardPatch
);
for
(
int
y
=
0
;
y
<
standardPatch
.
rows
;
y
++
){
for
(
int
x
=
0
;
x
<
standardPatch
.
cols
;
x
++
){
standardPatch
(
x
,
y
)
+=
rng
.
gaussian
(
5.0
);
standardPatch
(
x
,
y
)
+=
(
uchar
)
rng
.
gaussian
(
5.0
);
}
}
resample
(
blurredImg
,
RotatedRect
(
center
,
size
,
angle
),
blurredPatch
);
}
else
{
resample
(
scaledImg
,
closest
[
i
],
standardPatch
);
}
pushIntoModel
(
standardPatch
,
true
);
resample
(
blurredImg
,
closest
[
i
],
blurredPatch
);
for
(
int
k
=
0
;
k
<
(
int
)
classifiers
.
size
();
k
++
){
...
...
@@ -502,7 +501,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
if
(
!
patchVariance
(
intImgP
,
intImgP2
,
originalVariance
,
Point
(
dx
*
i
,
dy
*
j
),
initSize
)){
continue
;
}
if
(
!
ensembleClassifier
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
),
blurred_img
.
step
[
0
])){
if
(
!
ensembleClassifier
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
),
(
int
)
blurred_img
.
step
[
0
])){
continue
;
}
pass
++
;
...
...
@@ -530,12 +529,12 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
size
.
height
/=
1.2
;
scale
*=
1.2
;
resize
(
img
,
resized_img
,
size
);
GaussianBlur
(
resized_img
,
blurred_img
,
GaussBlurKernelSize
,
0.0
);
GaussianBlur
(
resized_img
,
blurred_img
,
GaussBlurKernelSize
,
0.0
f
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
END_TICK
(
"detector"
);
fprintf
(
stdout
,
"after NCC: nneg=%d npos=%d
\n
"
,
nneg
,
npos
);
if
(
!
false
){
#if !0
std
::
vector
<
Rect2d
>
poss
,
negs
;
for
(
int
i
=
0
;
i
<
(
int
)
rect
.
size
();
i
++
){
if
(
isObject
[
i
])
...
...
@@ -545,8 +544,8 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
}
fprintf
(
stdout
,
"%d pos and %d neg
\n
"
,(
int
)
poss
.
size
(),(
int
)
negs
.
size
());
drawWithRects
(
img
,
negs
,
poss
);
}
if
(
!
true
){
#endif
#if !1
std
::
vector
<
Rect2d
>
scanGrid
;
generateScanGrid
(
img
.
rows
,
img
.
cols
,
initSize
,
scanGrid
);
std
::
vector
<
double
>
results
;
...
...
@@ -561,8 +560,8 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
rectangle
(
image
,
scanGrid
[
it
-
results
.
begin
()],
255
,
1
,
1
);
imshow
(
"img"
,
image
);
waitKey
();
}
if
(
!
true
){
#endif
#if !1
Mat
image
;
img
.
copyTo
(
image
);
rectangle
(
image
,
res
,
255
,
1
,
1
);
...
...
@@ -571,7 +570,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
}
imshow
(
"img"
,
image
);
waitKey
();
}
#endif
fprintf
(
stdout
,
"%d after ensemble
\n
"
,
pass
);
if
(
maxSc
<
0
){
...
...
@@ -698,7 +697,7 @@ void TrackerTLDModel::integrateAdditional(const std::vector<Mat_<uchar> >& eForM
}
double
p
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
){
p
+=
classifiers
[
i
].
posteriorProbability
(
eForEnsemble
[
k
].
data
,
eForEnsemble
[
k
].
step
[
0
]);
p
+=
classifiers
[
i
].
posteriorProbability
(
eForEnsemble
[
k
].
data
,
(
int
)
eForEnsemble
[
k
].
step
[
0
]);
}
p
/=
classifiers
.
size
();
if
((
p
>
0.5
)
!=
isPositive
){
...
...
@@ -739,17 +738,17 @@ int Pexpert::additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std:
for
(
int
i
=
0
;
i
<
(
int
)
closest
.
size
();
i
++
){
for
(
int
j
=
0
;
j
<
10
;
j
++
){
Mat_
<
uchar
>
standardPatch
(
15
,
15
),
blurredPatch
(
initSize_
);
center
.
x
=
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
));
center
.
y
=
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
));
size
.
width
=
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
);
size
.
height
=
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
);
float
angle
=
rng
.
uniform
(
(
double
)
-
5.0
,(
double
)
5.0
);
center
.
x
=
(
float
)(
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)
));
center
.
y
=
(
float
)(
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)
));
size
.
width
=
(
float
)(
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
)
);
size
.
height
=
(
float
)(
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,(
double
)
1.01
)
);
float
angle
=
rng
.
uniform
(
-
5.0
,
5.0
);
resample
(
scaledImg
,
RotatedRect
(
center
,
size
,
angle
),
standardPatch
);
resample
(
blurredImg
,
RotatedRect
(
center
,
size
,
angle
),
blurredPatch
);
for
(
int
y
=
0
;
y
<
standardPatch
.
rows
;
y
++
){
for
(
int
x
=
0
;
x
<
standardPatch
.
cols
;
x
++
){
standardPatch
(
x
,
y
)
+=
rng
.
gaussian
(
5.0
);
standardPatch
(
x
,
y
)
+=
(
uchar
)
rng
.
gaussian
(
5.0
);
}
}
examplesForModel
.
push_back
(
standardPatch
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment