Commit eeca8669 authored by Bellaktris's avatar Bellaktris

images -> vectors in xphoto/inpainting

parent a5ba77a0
......@@ -6,6 +6,8 @@
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc/types_c.h"
#include <ctime>
#include <iostream>
const char* keys =
{
......@@ -54,9 +56,15 @@ int main( int argc, const char** argv )
printf( "Cannot read image file: %s\n", maskFilename.c_str() );
return -1;
}
cv::threshold(mask, mask, 128, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
cv::Mat res(src.size(), src.type());
int time = clock();
cv::xphoto::inpaint( src, mask, res, cv::xphoto::INPAINT_SHIFTMAP );
std::cout << "time = " << (clock() - time)
/ double(CLOCKS_PER_SEC) << std::endl;
cv::cvtColor(res, res, CV_Lab2RGB);
if ( outFilename == "" )
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __ADVANCED_TYPES_HPP__
#define __ADVANCED_TYPES_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
/********************* Functions *********************/
namespace cv
{
template <typename _Tp, typename _Tp2> static inline
cv::Size_<_Tp> operator * (const _Tp2 x, const cv::Size_<_Tp> &sz)
{
return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(x*sz.width), cv::saturate_cast<_Tp>(x*sz.height));
}
template <typename _Tp, typename _Tp2> static inline
cv::Size_<_Tp> operator / (const cv::Size_<_Tp> &sz, const _Tp2 x)
{
return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(sz.width/x), cv::saturate_cast<_Tp>(sz.height/x));
}
} // cv
#endif
#endif /* __ADVANCED_TYPES_HPP__ */
\ No newline at end of file
......@@ -40,6 +40,16 @@
#ifndef __ANNF_HPP__
#define __ANNF_HPP__
#include <vector>
#include <stack>
#include <limits>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <fstream>
#include <time.h>
#include <functional>
#include "norm2.hpp"
#include "whs.hpp"
......@@ -170,8 +180,8 @@ updateDist(const int leaf, const int &idx0, int &bestIdx, double &dist)
if (abs(ny - y) < zeroThresh &&
abs(nx - x) < zeroThresh)
continue;
if (nx > width - 1 || nx < 1 ||
ny > height - 1 || ny < 1 )
if (nx >= width - 1 || nx < 1 ||
ny >= height - 1 || ny < 1 )
continue;
double ndist = norm2(data[idx0], data[idx[k]]);
......@@ -186,11 +196,11 @@ updateDist(const int leaf, const int &idx0, int &bestIdx, double &dist)
/************************** ANNF search **************************/
static void dominantTransforms(const cv::Mat &img, std::vector <cv::Matx33f> &transforms,
static void dominantTransforms(const cv::Mat &img, std::vector <cv::Point2i> &transforms,
const int nTransform, const int psize)
{
const int zeroThresh = 2*psize;
const int leafNum = 63;
const int leafNum = 64;
/** Walsh-Hadamard Transformation **/
......@@ -222,13 +232,13 @@ static void dominantTransforms(const cv::Mat &img, std::vector <cv::Matx33f> &tr
int dy[] = {0, 1, 0}, dx[] = {0, 0, 1};
for (int k = 0; k < int( sizeof(dy)/sizeof(int) ); ++k)
if (i - dy[k] >= 0 && j - dx[k] >= 0)
if ( i - dy[k] >= 0 && j - dx[k] >= 0 )
{
int neighbor = (i - dy[k])*whs.cols + (j - dx[k]);
int leafIdx = (dx[k] == 0 && dy[k] == 0)
? neighbor : annf[neighbor] + dy[k]*whs.cols + dx[k];
kdTree.updateDist(leafIdx, current,
annf[i*whs.cols + j], dist);
annf[i*whs.cols + j], dist);
}
}
......@@ -265,15 +275,11 @@ static void dominantTransforms(const cv::Mat &img, std::vector <cv::Matx33f> &tr
std::partial_sort( amount.begin(), amount.begin() + nTransform,
amount.end(), std::greater< std::pair<double, int> >() );
std::ofstream out("C:/Users/Yury/Projects/inpaint/output/log.log");
transforms.resize(nTransform);
for (int i = 0; i < nTransform; ++i)
{
int idx = amount[i].second;
transforms[i] = cv::Matx33f(1, 0, float(shiftM[idx].x),
0, 1, float(shiftM[idx].y),
0, 0, 1 );
out << int(shiftM[idx].x) << "," << int(shiftM[idx].y) << std::endl;
transforms[i] = cv::Point2i( shiftM[idx].x, shiftM[idx].y );
}
}
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __BLENDING_HPP__
#define __BLENDING_HPP__
#endif /* __BLENDING_HPP__ */
\ No newline at end of file
......@@ -254,7 +254,7 @@ TWeight GCGraph<TWeight>::maxFlow()
minWeight = MIN(minWeight, weight);
CV_Assert( minWeight > 0 );
}
weight = fabs(v->weight);
weight = abs( TWeight(v->weight) );
minWeight = MIN(minWeight, weight);
CV_Assert( minWeight > 0 );
}
......
......@@ -60,59 +60,137 @@
#include "opencv2/highgui.hpp"
namespace xphotoInternal
{
# include "photomontage.hpp"
# include "annf.hpp"
}
#include "photomontage.hpp"
#include "annf.hpp"
#include "advanced_types.hpp"
namespace cv
{
namespace xphoto
{
template <typename Tp, unsigned int cn>
static void shiftMapInpaint(const Mat &src, const Mat &mask, Mat &dst,
const int nTransform = 60, const int psize = 8)
static void shiftMapInpaint( const Mat &_src, const Mat &_mask, Mat &dst,
const int nTransform = 60, const int psize = 8, const cv::Point2i dsize = cv::Point2i(800, 600) )
{
/** Preparing input **/
cv::Mat img;
cv::Mat src, mask, img, dmask, ddmask;
const float ls = std::max(/**/ std::min( /*...*/
std::max(_src.rows, _src.cols)/float(dsize.x),
std::min(_src.rows, _src.cols)/float(dsize.y)
), 1.0f /**/);
cv::resize(_mask, mask, _mask.size()/ls, 0, 0, cv::INTER_NEAREST);
cv::resize(_src, src, _src.size()/ls, 0, 0, cv::INTER_AREA);
src.convertTo( img, CV_32F );
img.setTo(0, 255 - mask);
cv::erode( mask, dmask, cv::Mat(), cv::Point(-1,-1), 2);
cv::erode(dmask, ddmask, cv::Mat(), cv::Point(-1,-1), 2);
std::vector <Point2i> pPath;
cv::Mat_<int> backref( ddmask.size(), int(-1) );
for (int i = 0; i < ddmask.rows; ++i)
{
uchar *dmask_data = (uchar *) ddmask.template ptr<uchar>(i);
int *backref_data = (int *) backref.template ptr< int >(i);
for (int j = 0; j < ddmask.cols; ++j)
if (dmask_data[j] == 0)
{
backref_data[j] = int(pPath.size());
pPath.push_back( cv::Point(j, i) );
}
}
/** ANNF computation **/
std::vector <Matx33f> transforms( nTransform );
xphotoInternal::dominantTransforms(img,
transforms, nTransform, psize);
std::vector <cv::Point2i> transforms( nTransform );
dominantTransforms(img, transforms, nTransform, psize);
transforms.push_back( cv::Point2i(0, 0) );
/** Warping **/
std::vector <Mat> images( nTransform + 1 ); // source image transformed with transforms
std::vector <Mat> masks( nTransform + 1 ); // definition domain for current shift
std::vector <std::vector <cv::Vec <float, cn> > > pointSeq( pPath.size() ); // source image transformed with transforms
std::vector <int> labelSeq( pPath.size() ); // resulting label sequence
std::vector <std::vector <int> > linkIdx( pPath.size() ); // neighbor links for pointSeq elements
std::vector <std::vector <unsigned char > > maskSeq( pPath.size() ); // corresponding mask
Mat_<uchar> invMask = 255 - mask;
dilate(invMask, invMask, Mat(), Point(-1,-1), 2);
for (size_t i = 0; i < pPath.size(); ++i)
{
for (int j = 0; j < nTransform + 1; ++j)
{
cv::Point2i u = pPath[i] + transforms[j];
uchar xmask = dmask.template at<uchar>(pPath[i]);
img.copyTo( images[0] );
mask.copyTo( masks[0] );
unsigned char vmask = 0;
cv::Vec <float, cn> vimg = 0;
for (int i = 0; i < nTransform; ++i)
{
warpPerspective( images[0], images[i + 1], transforms[i],
images[0].size(), INTER_LINEAR );
if ( u.y < src.rows && u.y >= 0
&& u.x < src.cols && u.x >= 0 )
{
if ( xmask == 0 || j == nTransform )
vmask = mask.template at<uchar>(u);
vimg = img.template at<cv::Vec<float, cn> >(u);
}
maskSeq[i].push_back(vmask);
pointSeq[i].push_back(vimg);
if (vmask != 0)
labelSeq[i] = j;
}
cv::Point2i p[] = {
pPath[i] + cv::Point2i(0, +1),
pPath[i] + cv::Point2i(+1, 0)
};
warpPerspective( masks[0], masks[i + 1], transforms[i],
masks[0].size(), INTER_NEAREST);
cv::imwrite(cv::format("C:/Users/Yury/Projects/inpaint/output/%d.png", i), images[i]);
masks[i + 1] &= invMask;
for (int j = 0; j < sizeof(p)/sizeof(cv::Point2i); ++j)
if ( p[j].y < src.rows && p[j].y >= 0 &&
p[j].x < src.cols && p[j].x >= 0 )
linkIdx[i].push_back( backref(p[j]) );
else
linkIdx[i].push_back( -1 );
}
/** Stitching **/
Mat photomontageResult;
xphotoInternal::Photomontage < cv::Vec <float, cn> >( images, masks )
.assignResImage(photomontageResult);
photomontage( pointSeq, maskSeq, linkIdx, labelSeq );
/** Upscaling **/
if (ls != 1)
{
// _src.convertTo( img, CV_32F );
//
// for (size_t k = 0; k < pPath.size(); ++k)
// {
// int clabel = labelSeq[k];
// int nearSeam = 0;
//
// for (size_t i = 0; i < linkIdx[k].size(); ++i)
// nearSeam |= linkIdx[k] == -1
// || clabel != labelSeq[linkIdx[k][i]];
//
// if (nearSeam == 0)
// ...
// else
// {
// ...
// }
// }
//
// xphotoInternal::Photomontage < cv::Vec <float, cn> > ( /*...*/
// pointSeq, maskSeq, linkIdx, labelSeq );
}
/** Writing result **/
photomontageResult.convertTo( dst, dst.type() );
for (size_t i = 0; i < labelSeq.size(); ++i)
{
cv::Vec <float, cn> val = pointSeq[i][labelSeq[i]];
img.template at<cv::Vec <float, cn> >(pPath[i]) = val;
}
img.convertTo( dst, dst.type() );
}
template <typename Tp, unsigned int cn>
......
......@@ -40,52 +40,13 @@
#ifndef __NORM2_HPP__
#define __NORM2_HPP__
/************************ General template *************************/
template <typename _Tp> struct is_norm2_type :
std::integral_constant<bool, !std::is_unsigned<_Tp>::value && !std::is_same<_Tp, char>::value> {};
template <typename Tp> static inline Tp sqr(Tp x) { return x*x; }
template <typename Tp, int cn> static inline Tp sqr( cv::Vec<Tp, cn> x) { return x.dot(x); }
template <typename Tp> static inline Tp norm2(const Tp &a, const Tp &b) { return sqr(a - b); }
template <typename Tp, int cn> static inline
Tp norm2(const cv::Vec <Tp, cn> &a, const cv::Vec<Tp, cn> &b) { return sqr(a - b); }
/******************* uchar, char, ushort, uint *********************/
static inline int norm2(const uchar &a, const uchar &b) { return sqr(int(a) - int(b)); }
template <int cn> static inline
int norm2(const cv::Vec <uchar, cn> &a, const cv::Vec<uchar, cn> &b)
{
return sqr( cv::Vec<int, cn>(a) - cv::Vec<int, cn>(b) );
}
static inline int norm2(const char &a, const char &b) { return sqr(int(a) - int(b)); }
template <int cn> static inline
int norm2(const cv::Vec <char, cn> &a, const cv::Vec<char, cn> &b)
{
return sqr( cv::Vec<int, cn>(a) - cv::Vec<int, cn>(b) );
}
static inline short norm2(const ushort &a, const ushort &b) { return sqr <short>(short(a) - short(b)); }
template <int cn> static inline
short norm2(const cv::Vec <ushort, cn> &a, const cv::Vec<ushort, cn> &b)
{
return sqr( cv::Vec<short, cn>(a) - cv::Vec<short, cn>(b) );
}
static inline int norm2(const uint &a, const uint &b) { return sqr(int(a) - int(b)); }
template <int cn> static inline
int norm2(const cv::Vec <uint, cn> &a, const cv::Vec<uint, cn> &b)
{
return sqr( cv::Vec<int, cn>(a) - cv::Vec<int, cn>(b) );
}
template <typename _Tp, int cn> static inline typename std::enable_if< is_norm2_type<_Tp>::value, _Tp >::
type norm2(cv::Vec<_Tp, cn> a, cv::Vec<_Tp, cn> b) { return (a - b).dot(a - b); }
template <typename _Tp> static inline typename std::enable_if< is_norm2_type<_Tp>::value, _Tp >::
type norm2(const _Tp &a, const _Tp &b) { return (a - b)*(a - b); }
#endif /* __NORM2_HPP__ */
\ No newline at end of file
......@@ -40,13 +40,33 @@
#ifndef __PHOTOMONTAGE_HPP__
#define __PHOTOMONTAGE_HPP__
#include <vector>
#include <stack>
#include <limits>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <fstream>
#include <time.h>
#include <functional>
#include "norm2.hpp"
#include "blending.hpp"
namespace gcoptimization
{
#include "gcgraph.hpp"
#define GCInfinity 10*1000*1000*1000.0
typedef float TWeight;
typedef int labelTp;
#define GCInfinity 10*1000*1000
#define eps 0.02
template <typename Tp> static int min_idx(std::vector <Tp> vec)
{
return int( std::min_element(vec.begin(), vec.end()) - vec.begin() );
......@@ -58,22 +78,17 @@ template <typename Tp> static int min_idx(std::vector <Tp> vec)
template <typename Tp> class Photomontage
{
private:
const std::vector <cv::Mat> &images; // vector of images for different labels
const std::vector <cv::Mat> &masks; // vector of definition domains for each image
const std::vector <std::vector <Tp> > &pointSeq; // points for stitching
const std::vector <std::vector <uchar> > &maskSeq; // corresponding masks
std::vector <cv::Mat> labelings; // vector of labelings for different expansions
std::vector <double> distances; // vector of max-flow costs for different labeling
const std::vector <std::vector <int> > &linkIdx; // vector of neighbors for pointSeq
const int height;
const int width;
const int type;
const int channels;
const int lsize;
std::vector <std::vector <labelTp> > labelings; // vector of labelings
std::vector <TWeight> distances; // vector of max-flow costs for different labeling
cv::Mat x_i; // current best labeling
std::vector <labelTp> &labelSeq; // current best labeling
double singleExpansion(const int alpha); // single neighbor computing
void gradientDescent(); // gradient descent in alpha-expansion topology
TWeight singleExpansion(const int alpha); // single neighbor computing
class ParallelExpansion : public cv::ParallelLoopBody
{
......@@ -88,121 +103,86 @@ private:
for (int i = range.start; i <= range.end - 1; ++i)
main->distances[i] = main->singleExpansion(i);
}
};
} parallelExpansion;
void operator =(const Photomontage <Tp>&) const {};
protected:
virtual double dist(const Tp &l1p1, const Tp &l1p2, const Tp &l2p1, const Tp &l2p2);
virtual void setWeights(GCGraph <double> &graph, const cv::Point &pA,
const cv::Point &pB, const int lA, const int lB, const int lX);
virtual TWeight dist(const Tp &l1p1, const Tp &l1p2, const Tp &l2p1, const Tp &l2p2);
virtual void setWeights(GCGraph <TWeight> &graph,
const int idx1, const int idx2, const int l1, const int l2, const int lx);
public:
Photomontage(const std::vector <cv::Mat> &images, const std::vector <cv::Mat> &masks);
virtual ~Photomontage(){};
void gradientDescent(); // gradient descent in alpha-expansion topology
void assignLabeling(cv::Mat &img);
void assignResImage(cv::Mat &img);
Photomontage(const std::vector <std::vector <Tp> > &pointSeq,
const std::vector <std::vector <uchar> > &maskSeq,
const std::vector <std::vector <int> > &linkIdx,
std::vector <labelTp> &labelSeq);
virtual ~Photomontage(){};
};
template <typename Tp> inline double Photomontage <Tp>::
template <typename Tp> inline TWeight Photomontage <Tp>::
dist(const Tp &l1p1, const Tp &l1p2, const Tp &l2p1, const Tp &l2p2)
{
return norm2(l1p1, l2p1) + norm2(l1p2, l2p2);
}
template <typename Tp> void Photomontage <Tp>::
setWeights(GCGraph <double> &graph, const cv::Point &pA, const cv::Point &pB, const int lA, const int lB, const int lX)
setWeights(GCGraph <TWeight> &graph, const int idx1, const int idx2,
const int l1, const int l2, const int lx)
{
if (lA == lB)
if (l1 == l2)
{
/** Link from A to B **/
double weightAB = dist( images[lA].template at<Tp>(pA),
images[lA].template at<Tp>(pB),
images[lX].template at<Tp>(pA),
images[lX].template at<Tp>(pB) );
graph.addEdges( int(pA.y*width + pA.x), int(pB.y*width + pB.x), weightAB, weightAB);
TWeight weightAB = dist( pointSeq[idx1][l1], pointSeq[idx2][l1],
pointSeq[idx1][lx], pointSeq[idx2][lx] );
graph.addEdges( idx1, idx2, weightAB, weightAB );
}
else
{
int X = graph.addVtx();
/** Link from X to sink **/
double weightXS = dist( images[lA].template at<Tp>(pA),
images[lA].template at<Tp>(pB),
images[lB].template at<Tp>(pA),
images[lB].template at<Tp>(pB) );
graph.addTermWeights(X, 0, weightXS);
TWeight weightXS = dist( pointSeq[idx1][l1], pointSeq[idx2][l1],
pointSeq[idx1][l2], pointSeq[idx2][l2] );
graph.addTermWeights( X, 0, weightXS );
/** Link from A to X **/
double weightAX = dist( images[lA].template at<Tp>(pA),
images[lA].template at<Tp>(pB),
images[lX].template at<Tp>(pA),
images[lX].template at<Tp>(pB) );
graph.addEdges( int(pA.y*width + pA.x), X, weightAX, weightAX);
TWeight weightAX = dist( pointSeq[idx1][l1], pointSeq[idx2][l1],
pointSeq[idx1][lx], pointSeq[idx2][lx] );
graph.addEdges( idx1, X, weightAX, weightAX );
/** Link from X to B **/
double weightXB = dist( images[lX].template at<Tp>(pA),
images[lX].template at<Tp>(pB),
images[lB].template at<Tp>(pA),
images[lB].template at<Tp>(pB) );
graph.addEdges(X, int(pB.y*width + pB.x), weightXB, weightXB);
TWeight weightXB = dist( pointSeq[idx1][lx], pointSeq[idx1][lx],
pointSeq[idx1][l2], pointSeq[idx1][l2] );
graph.addEdges( X, idx2, weightXB, weightXB );
}
}
template <typename Tp> double Photomontage <Tp>::
template <typename Tp> TWeight Photomontage <Tp>::
singleExpansion(const int alpha)
{
int actualEdges = (height - 1)*width + height*(width - 1);
GCGraph <double> graph(actualEdges + height*width, 2*actualEdges);
GCGraph <TWeight> graph( 3*int(pointSeq.size()), 4*int(pointSeq.size()) );
/** Terminal links **/
for (int i = 0; i < height; ++i)
{
const uchar *maskAlphaRow = masks[alpha].template ptr <uchar>(i);
const int *labelRow = (const int *) x_i.template ptr <int>(i);
for (int j = 0; j < width; ++j)
graph.addTermWeights( graph.addVtx(),
maskAlphaRow[j] ? 0 : GCInfinity,
masks[ labelRow[j] ].template at<uchar>(i, j) ? 0 : GCInfinity );
}
for (size_t i = 0; i < maskSeq.size(); ++i)
graph.addTermWeights( graph.addVtx(),
maskSeq[i][alpha] ? TWeight(0) : TWeight(GCInfinity), 0 );
/** Neighbor links **/
for (int i = 0; i < height - 1; ++i)
{
const int *currentRow = (const int *) x_i.template ptr <int>(i);
const int *nextRow = (const int *) x_i.template ptr <int>(i + 1);
for (int j = 0; j < width - 1; ++j)
{
setWeights( graph, cv::Point(j, i), cv::Point(j + 1, i), currentRow[j], currentRow[j + 1], alpha );
setWeights( graph, cv::Point(j, i), cv::Point(j, i + 1), currentRow[j], nextRow[j], alpha );
}
setWeights( graph, cv::Point(width - 1, i), cv::Point(width - 1, i + 1),
currentRow[width - 1], nextRow[width - 1], alpha );
}
const int *currentRow = (const int *) x_i.template ptr <int>(height - 1);
for (int i = 0; i < width - 1; ++i)
setWeights( graph, cv::Point(i, height - 1), cv::Point(i + 1, height - 1),
currentRow[i], currentRow[i + 1], alpha );
for (size_t i = 0; i < pointSeq.size(); ++i)
for (size_t j = 0; j < linkIdx[i].size(); ++j)
if ( linkIdx[i][j] != -1)
setWeights( graph, int(i), linkIdx[i][j],
labelSeq[i], labelSeq[linkIdx[i][j]], alpha );
/** Max-flow computation **/
double result = graph.maxFlow();
TWeight result = graph.maxFlow();
/** Writing results **/
labelings[alpha].create( height, width, CV_32SC1 );
for (int i = 0; i < height; ++i)
{
const int *inRow = (const int *) x_i.template ptr <int>(i);
int *outRow = (int *) labelings[alpha].template ptr <int>(i);
for (int j = 0; j < width; ++j)
outRow[j] = graph.inSourceSegment(i*width + j)
? inRow[j] : alpha;
}
for (size_t i = 0; i < pointSeq.size(); ++i)
labelings[i][alpha] = graph.inSourceSegment(int(i)) ? labelSeq[i] : alpha;
return result;
}
......@@ -210,55 +190,55 @@ singleExpansion(const int alpha)
template <typename Tp> void Photomontage <Tp>::
gradientDescent()
{
double optValue = std::numeric_limits<double>::max();
TWeight optValue = std::numeric_limits<TWeight>::max();
for (int num = -1; /**/; num = -1)
{
parallel_for_( cv::Range(0, lsize),
ParallelExpansion(this) );
int range = int( pointSeq[0].size() );
parallel_for_( cv::Range(0, range), parallelExpansion );
int minIndex = min_idx(distances);
double minValue = distances[minIndex];
TWeight minValue = distances[minIndex];
std::cerr << optValue << " " <<
*max_element(distances.begin(), distances.end())
<< std::endl;
if (minValue < (1.00 - eps)*optValue)
optValue = distances[num = minIndex];
if (num == -1)
break;
labelings[num].copyTo(x_i);
for (size_t i = 0; i < labelSeq.size(); ++i)
labelSeq[i] = labelings[i][num];
}
}
template <typename Tp> void Photomontage <Tp>::
assignLabeling(cv::Mat &img)
template <typename Tp> Photomontage <Tp>::
Photomontage( const std::vector <std::vector <Tp> > &_pointSeq,
const std::vector <std::vector <uchar> > &_maskSeq,
const std::vector <std::vector <int> > &_linkIdx,
std::vector <labelTp> &_labelSeq )
:
pointSeq(_pointSeq), maskSeq(_maskSeq), linkIdx(_linkIdx),
distances(pointSeq[0].size()), labelSeq(_labelSeq), parallelExpansion(this)
{
x_i.setTo(0);
gradientDescent();
x_i.copyTo(img);
size_t lsize = pointSeq[0].size();
labelings.assign( pointSeq.size(),
std::vector <labelTp>( lsize ) );
}
template <typename Tp> void Photomontage <Tp>::
assignResImage(cv::Mat &img)
{
cv::Mat optimalLabeling;
assignLabeling(optimalLabeling);
img.create( height, width, type );
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
{
cv::Mat M = images[optimalLabeling.template at<int>(i, j)];
img.template at<Tp>(i, j) = M.template at<Tp>(i, j);
}
}
template <typename Tp> Photomontage <Tp>::
Photomontage(const std::vector <cv::Mat> &_images, const std::vector <cv::Mat> &_masks)
:
images(_images), masks(_masks), labelings(images.size()), distances(images.size()),
height(int(images[0].rows)), width(int(images[0].cols)), type(images[0].type()),
channels(images[0].channels()), lsize(int(images.size())), x_i(height, width, CV_32SC1){}
template <typename Tp> static inline
void photomontage( const std::vector <std::vector <Tp> > &pointSeq,
const std::vector <std::vector <uchar> > &maskSeq,
const std::vector <std::vector <int> > &linkIdx,
std::vector <gcoptimization::labelTp> &labelSeq )
{
gcoptimization::Photomontage <Tp>(pointSeq, maskSeq,
linkIdx, labelSeq).gradientDescent();
}
#endif /* __PHOTOMONTAGE_HPP__ */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment