Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
ebc255b0
Commit
ebc255b0
authored
May 08, 2017
by
atinfinity
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed sample code in tutorial
parent
9a3cb309
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
68 additions
and
67 deletions
+68
-67
aruco_board_detection.markdown
...ials/aruco_board_detection/aruco_board_detection.markdown
+12
-12
aruco_calibration.markdown
...co/tutorials/aruco_calibration/aruco_calibration.markdown
+9
-9
aruco_detection.markdown
.../aruco/tutorials/aruco_detection/aruco_detection.markdown
+16
-15
charuco_detection.markdown
...co/tutorials/charuco_detection/charuco_detection.markdown
+22
-22
charuco_diamond_detection.markdown
...ruco_diamond_detection/charuco_diamond_detection.markdown
+9
-9
No files found.
modules/aruco/tutorials/aruco_board_detection/aruco_board_detection.markdown
View file @
ebc255b0
...
...
@@ -30,7 +30,7 @@ The aruco module allows the use of Boards. The main class is the ```cv::aruco::B
class
Board
{
public
:
std
::
vector
<
std
::
vector
<
cv
::
Point3f
>
>
objPoints
;
cv
::
aruco
::
Dictionary
dictionary
;
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
;
std
::
vector
<
int
>
ids
;
};
```
...
...
@@ -57,10 +57,10 @@ The aruco module provides a specific function, ```estimatePoseBoard()```, to per
cv
::
Mat
cameraMatrix
,
distCoeffs
;
readCameraParameters
(
cameraMatrix
,
distCoeffs
);
// assume we have a function to create the board object
cv
::
aruco
::
Board
board
=
createBoard
();
cv
::
Ptr
<
cv
::
aruco
::
Board
>
board
=
cv
::
aruco
::
Board
::
create
();
...
vector
<
int
>
markerIds
;
vector
<
vector
<
Point2f
>
>
markerCorners
;
std
::
vector
<
int
>
markerIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
markerCorners
;
cv
::
aruco
::
detectMarkers
(
inputImage
,
board
.
dictionary
,
markerCorners
,
markerIds
);
// if at least one marker detected
if
(
markerIds
.
size
()
>
0
)
{
...
...
@@ -137,9 +137,9 @@ After creating a Grid Board, we probably want to print it and use it. A function
of a
```GridBoard```
is provided in
```cv::aruco::GridBoard::draw()```
. For example:
```
c++
cv
::
aruco
::
GridBoard
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
cv
::
Ptr
<
cv
::
aruco
::
GridBoard
>
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
cv
::
Mat
boardImage
;
board
.
draw
(
cv
::
Size
(
600
,
500
),
boardImage
,
10
,
1
);
board
->
draw
(
cv
::
Size
(
600
,
500
),
boardImage
,
10
,
1
);
```
-
The first parameter is the size of the output image in pixels. In this case 600x500 pixels. If this is not proportional
...
...
@@ -170,8 +170,8 @@ Finally, a full example of board detection:
// camera parameters are read from somewhere
readCameraParameters
(
cameraMatrix
,
distCoeffs
);
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
aruco
::
GridBoard
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
GridBoard
>
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
while
(
inputVideo
.
grab
())
{
cv
::
Mat
image
,
imageCopy
;
...
...
@@ -256,10 +256,10 @@ internal bits are not analyzed at all and only the corner distances are evaluate
This is an example of using the
```refineDetectedMarkers()```
function:
```
c++
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
aruco
::
GridBoard
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
vector
<
int
>
markerIds
;
vector
<
vector
<
Point2f
>
>
markerCorners
,
rejectedCandidates
;
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
GridBoard
>
board
=
cv
::
aruco
::
GridBoard
::
create
(
5
,
7
,
0.04
,
0.01
,
dictionary
);
std
::
vector
<
int
>
markerIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
markerCorners
,
rejectedCandidates
;
cv
::
aruco
::
detectMarkers
(
inputImage
,
dictionary
,
markerCorners
,
markerIds
,
cv
::
aruco
::
DetectorParameters
(),
rejectedCandidates
);
cv
::
aruco
::
refineDetectedMarkersinputImage
,
board
,
markerCorners
,
markerIds
,
rejectedCandidates
);
...
...
modules/aruco/tutorials/aruco_calibration/aruco_calibration.markdown
View file @
ebc255b0
...
...
@@ -33,18 +33,18 @@ visible in all the viewpoints.
The function to calibrate is
```calibrateCameraCharuco()```
. Example:
```
c++
aruco
::
CharucoBoard
board
=
...
// create charuco board
cv
::
Ptr
<
aruco
::
CharucoBoard
>
board
=
...
// create charuco board
cv
::
Size
imgSize
=
...
// camera image size
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
allCharucoCorners
;
std
::
vector
<
std
::
vector
<
int
>
>
allCharucoIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
allCharucoCorners
;
std
::
vector
<
std
::
vector
<
int
>
>
allCharucoIds
;
// Detect charuco board from several viewpoints and fill allCharucoCorners and allCharucoIds
...
...
// After capturing in several viewpoints, start calibration
cv
::
Mat
cameraMatrix
,
distCoeffs
;
std
::
vector
<
Mat
>
rvecs
,
tvecs
;
std
::
vector
<
cv
::
Mat
>
rvecs
,
tvecs
;
int
calibrationFlags
=
...
// Set calibration flags (same than in calibrateCamera() function)
double
repError
=
cv
::
aruco
::
calibrateCameraCharuco
(
allCharucoCorners
,
allCharucoIds
,
board
,
imgSize
,
cameraMatrix
,
distCoeffs
,
rvecs
,
tvecs
,
calibrationFlags
);
...
...
@@ -81,19 +81,19 @@ requires the detections of an ArUco board from different viewpoints.
Example of ```calibrateCameraAruco()``` use:
```
c++
aruco::Board
board = ... // create aruco board
cv::Ptr
<aruco::Board>
board = ... // create aruco board
cv::Size imgSize = ... // camera image size
std::vector<
std::vector< cv::Point2f >
> allCornersConcatenated;
std::vector<
int
> allIdsConcatenated;
std::vector<
int
> markerCounterPerFrame;
std::vector<
std::vector<cv::Point2f>
> allCornersConcatenated;
std::vector<
int
> allIdsConcatenated;
std::vector<
int
> markerCounterPerFrame;
// Detect aruco board from several viewpoints and fill allCornersConcatenated, allIdsConcatenated and markerCounterPerFrame
...
...
// After capturing in several viewpoints, start calibration
cv::Mat cameraMatrix, distCoeffs;
std::vector<
Mat
> rvecs, tvecs;
std::vector<
cv::Mat
> rvecs, tvecs;
int calibrationFlags = ... // Set calibration flags (same than in calibrateCamera() function)
double repError = cv::aruco::calibrateCameraAruco(allCornersConcatenated, allIdsConcatenated, markerCounterPerFrame, board, imgSize, cameraMatrix, distCoeffs, rvecs, tvecs, calibrationFlags);
...
...
modules/aruco/tutorials/aruco_detection/aruco_detection.markdown
View file @
ebc255b0
...
...
@@ -71,7 +71,7 @@ For example, lets analyze the following call:
```
c++
cv
::
Mat
markerImage
;
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
aruco
::
drawMarker
(
dictionary
,
23
,
200
,
markerImage
,
1
);
```
...
...
@@ -156,10 +156,10 @@ An example of marker detection:
```
c++
cv
::
Mat
inputImage
;
...
vector
<
int
>
markerIds
;
vector
<
vector
<
Point2f
>
>
markerCorners
,
rejectedCandidates
;
cv
::
aruco
::
DetectorParameters
parameters
;
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
std
::
vector
<
int
>
markerIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
markerCorners
,
rejectedCandidates
;
cv
::
Ptr
<
cv
::
aruco
::
DetectorParameters
>
parameters
;
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
aruco
::
detectMarkers
(
inputImage
,
dictionary
,
markerCorners
,
markerIds
,
parameters
,
rejectedCandidates
);
```
...
...
@@ -204,7 +204,7 @@ camera:
```
c++
cv
::
VideoCapture
inputVideo
;
inputVideo
.
open
(
0
);
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
while
(
inputVideo
.
grab
())
{
cv
::
Mat
image
,
imageCopy
;
inputVideo
.
retrieve
(
image
);
...
...
@@ -263,9 +263,9 @@ information).
The aruco module provides a function to estimate the poses of all the detected markers:
```
c++
Mat
cameraMatrix
,
distCoeffs
;
cv
::
Mat
cameraMatrix
,
distCoeffs
;
...
vector
<
Vec3d
>
rvecs
,
tvecs
;
std
::
vector
<
cv
::
Vec3d
>
rvecs
,
tvecs
;
cv
::
aruco
::
estimatePoseSingleMarkers
(
corners
,
0.05
,
cameraMatrix
,
distCoeffs
,
rvecs
,
tvecs
);
```
...
...
@@ -303,7 +303,7 @@ A basic full example for pose estimation from single markers:
// camera parameters are read from somewhere
readCameraParameters
(
cameraMatrix
,
distCoeffs
);
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
while
(
inputVideo
.
grab
())
{
cv
::
Mat
image
,
imageCopy
;
...
...
@@ -311,14 +311,14 @@ A basic full example for pose estimation from single markers:
image
.
copyTo
(
imageCopy
);
std
::
vector
<
int
>
ids
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
corners
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>>
corners
;
cv
::
aruco
::
detectMarkers
(
image
,
dictionary
,
corners
,
ids
);
// if at least one marker detected
if
(
ids
.
size
()
>
0
)
{
cv
::
aruco
::
drawDetectedMarkers
(
imageCopy
,
corners
,
ids
);
vector
<
Mat
>
rvecs
,
tvecs
;
std
::
vector
<
cv
::
Mat
>
rvecs
,
tvecs
;
cv
::
aruco
::
estimatePoseSingleMarkers
(
corners
,
0.05
,
cameraMatrix
,
distCoeffs
,
rvecs
,
tvecs
);
// draw axis for each marker
for
(
int
i
=
0
;
i
<
ids
.
size
();
i
++
)
...
...
@@ -374,7 +374,7 @@ This is the easiest way to select a dictionary. The aruco module includes a set
of a variety of marker sizes and number of markers. For instance:
```
c++
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
```
DICT_6X6_250 is an example of predefined dictionary of markers with 6x6 bits and a total of 250
...
...
@@ -390,7 +390,7 @@ The dictionary can be generated automatically to adjust to the desired number of
the inter-marker distance is optimized:
```
c++
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
generateCustomDictionary
(
36
,
5
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
generateCustomDictionary
(
36
,
5
);
```
This will generate a customized dictionary composed by 36 markers of 5x5 bits. The process can take several
...
...
@@ -432,7 +432,7 @@ Fortunately, a marker can be easily transformed to this form using the static me
For example:
```
c++
Dictionary dictionary;
cv::aruco::
Dictionary dictionary;
// markers of 6x6 bits
dictionary.markerSize = 6;
// maximum number of bit corrections
...
...
@@ -440,10 +440,11 @@ For example:
// lets create a dictionary of 100 markers
for(int i=0; i<100; i++)
{
// assume generateMarkerBits() generate a new marker in binary format, so that
// markerBits is a 6x6 matrix of CV_8UC1 type, only containing 0s and 1s
cv::Mat markerBits = generateMarkerBits();
cv::Mat markerCompressed = getByteListFromBits(markerBits);
cv::Mat markerCompressed =
cv::aruco::Dictionary::
getByteListFromBits(markerBits);
// add the marker as a new row
dictionary.bytesList.push_back(markerCompressed);
}
...
...
modules/aruco/tutorials/charuco_detection/charuco_detection.markdown
View file @
ebc255b0
...
...
@@ -60,9 +60,9 @@ Once we have our ```CharucoBoard``` object, we can create an image to print it.
```
CharucoBoard::draw()``` method:
```
c++
cv::
aruco::CharucoBoard
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::
Ptr
<cv::aruco::CharucoBoard>
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::Mat boardImage;
board
.
draw( cv::Size(600, 500), boardImage, 10, 1 );
board
->
draw( cv::Size(600, 500), boardImage, 10, 1 );
```
- The first parameter is the size of the output image in pixels. In this case 600x500 pixels. If this is not proportional
...
...
@@ -94,8 +94,8 @@ in the board.
So, a detected ChArUco board consists in:
- ```
vector<
Point2f> charucoCorners``` : list of image positions of the detected corners.
- ```
vector
<int> charucoIds``` : ids for each of the detected corners in ```charucoCorners```.
- ```
std::vector<cv::
Point2f> charucoCorners``` : list of image positions of the detected corners.
- ```
std::vector
<int> charucoIds``` : ids for each of the detected corners in ```charucoCorners```.
The detection of the ChArUco corners is based on the previous detected markers. So that, first markers are detected, and then
ChArUco corners are interpolated from markers.
...
...
@@ -107,11 +107,11 @@ The function that detect the ChArUco corners is ```cv::aruco::interpolateCorners
cv::Mat cameraMatrix, distCoeffs;
// camera parameters are read from somewhere
readCameraParameters(cameraMatrix, distCoeffs);
cv::
aruco::Dictionary
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
aruco::CharucoBoard
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::
Ptr
<cv::aruco::Dictionary>
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
Ptr
<cv::aruco::CharucoBoard>
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
...
vector
<
int
>
markerIds;
vector
<
vector
<
Point2f
>
> markerCorners;
std::vector
<int
>
markerIds;
std::vector
<std::vector
<
cv::Point2f
>
> markerCorners;
cv::aruco::detectMarkers(inputImage, board.dictionary, markerCorners, markerIds);
// if at least one marker detected
...
...
@@ -136,13 +136,13 @@ are optional. A similar example without these parameters would be:
```
c++
cv::Mat inputImage;
cv::
aruco::Dictionary
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
aruco::CharucoBoard
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::
Ptr
<cv::aruco::Dictionary>
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
Ptr
<cv::aruco::CharucoBoard>
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
...
vector
<
int
>
markerIds;
vector
<
vector
<
Point2f
>
> markerCorners;
DetectorParameters
params;
params
.
doCornerRefinement = false;
std::vector
<int
>
markerIds;
std::vector
<std::vector
<
cv::Point2f
>
> markerCorners;
cv::Ptr
<cv::aruco::DetectorParameters>
params;
params
->
doCornerRefinement = false;
cv::aruco::detectMarkers(inputImage, board.dictionary, markerCorners, markerIds, params);
// if at least one marker detected
...
...
@@ -203,11 +203,11 @@ Finally, this is a full example of ChArUco detection (without using calibration
cv::VideoCapture inputVideo;
inputVideo.open(0);
cv::
aruco::Dictionary
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
aruco::CharucoBoard
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::
Ptr<cv::aruco::Dictionary>
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
Ptr<cv::aruco::CharucoBoard>
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
DetectorParameters
params;
params
.
doCornerRefinement = false;
cv::Ptr<cv::aruco::DetectorParameters>
params;
params
->
doCornerRefinement = false;
while (inputVideo.grab()) {
cv::Mat image, imageCopy;
...
...
@@ -215,7 +215,7 @@ Finally, this is a full example of ChArUco detection (without using calibration
image.copyTo(imageCopy);
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>
> corners;
std::vector<std::vector<cv::Point2f>> corners;
cv::aruco::detectMarkers(image, dictionary, corners, ids, params);
// if at least one marker detected
...
...
@@ -286,8 +286,8 @@ A full example of ChArUco detection with pose estimation:
// camera parameters are read from somewhere
readCameraParameters(cameraMatrix, distCoeffs);
cv::
aruco::Dictionary
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
aruco::CharucoBoard
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::
Ptr<cv::aruco::Dictionary>
dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::
Ptr<cv::aruco::CharucoBoard>
board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
while (inputVideo.grab()) {
cv::Mat image, imageCopy;
...
...
@@ -295,7 +295,7 @@ A full example of ChArUco detection with pose estimation:
image.copyTo(imageCopy);
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>
> corners;
std::vector<std::vector<cv::Point2f>> corners;
cv::aruco::detectMarkers(image, dictionary, corners, ids);
// if at least one marker detected
...
...
modules/aruco/tutorials/charuco_diamond_detection/charuco_diamond_detection.markdown
View file @
ebc255b0
...
...
@@ -46,7 +46,7 @@ For instance:
```
c++
cv
::
Mat
diamondImage
;
cv
::
aruco
::
Dictionary
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
Ptr
<
cv
::
aruco
::
Dictionary
>
dictionary
=
cv
::
aruco
::
getPredefinedDictionary
(
cv
::
aruco
::
DICT_6X6_250
);
cv
::
aruco
::
drawCharucoDiamond
(
dictionary
,
cv
::
Vec4i
(
45
,
68
,
28
,
74
),
200
,
120
,
markerImage
);
```
...
...
@@ -78,14 +78,14 @@ After detecting markers, diamond are detected using the ```detectCharucoDiamond(
...
std
::
vector
<
int
>
markerIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
markerCorners
;
std
::
vector
<
int
>
markerIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
markerCorners
;
// detect ArUco markers
cv
::
aruco
::
detectMarkers
(
inputImage
,
dictionary
,
markerCorners
,
markerIds
);
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
// detect diamon diamonds
cv
::
aruco
::
detectCharucoDiamond
(
inputImage
,
markerCorners
,
markerIds
,
squareLength
/
markerLength
,
diamondCorners
,
diamondIds
);
...
...
@@ -107,8 +107,8 @@ corners and ids:
```
c++
...
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
cv
::
aruco
::
detectCharucoDiamond
(
inputImage
,
markerCorners
,
markerIds
,
squareLength
/
markerLength
,
diamondCorners
,
diamondIds
);
cv
::
aruco
::
drawDetectedDiamonds
(
inputImage
,
diamondCorners
,
diamondIds
);
...
...
@@ -134,8 +134,8 @@ i.e. using the ```estimatePoseSingleMarkers()``` function. For instance:
```
c++
...
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
std
::
vector
<
cv
::
Vec4i
>
diamondIds
;
std
::
vector
<
std
::
vector
<
cv
::
Point2f
>
>
diamondCorners
;
// detect diamon diamonds
cv
::
aruco
::
detectCharucoDiamond
(
inputImage
,
markerCorners
,
markerIds
,
squareLength
/
markerLength
,
diamondCorners
,
diamondIds
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment