Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
ea6f3d19
Commit
ea6f3d19
authored
Oct 24, 2017
by
berak
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
tracking: adding a mosse tracker
parent
26fd198e
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
295 additions
and
1 deletion
+295
-1
tracking.bib
modules/tracking/doc/tracking.bib
+7
-0
tracker.hpp
modules/tracking/include/opencv2/tracking/tracker.hpp
+16
-0
samples_utility.hpp
modules/tracking/samples/samples_utility.hpp
+2
-0
tracker.cpp
modules/tracking/samples/tracker.cpp
+1
-1
mosseTracker.cpp
modules/tracking/src/mosseTracker.cpp
+249
-0
test_trackers.cpp
modules/tracking/test/test_trackers.cpp
+20
-0
No files found.
modules/tracking/doc/tracking.bib
View file @
ea6f3d19
...
@@ -100,3 +100,10 @@ author={Held, David and Thrun, Sebastian and Savarese, Silvio},
...
@@ -100,3 +100,10 @@ author={Held, David and Thrun, Sebastian and Savarese, Silvio},
booktitle = {European Conference Computer Vision (ECCV)},
booktitle = {European Conference Computer Vision (ECCV)},
year = {2016}
year = {2016}
}
}
@inproceedings{MOSSE,
title={Visual Object Tracking using Adaptive Correlation Filters},
author={Bolme, David S. and Beveridge, J. Ross and Draper, Bruce A. and Lui Yui, Man},
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2010}
}
modules/tracking/include/opencv2/tracking/tracker.hpp
View file @
ea6f3d19
...
@@ -1297,6 +1297,22 @@ public:
...
@@ -1297,6 +1297,22 @@ public:
virtual
~
TrackerGOTURN
()
{}
virtual
~
TrackerGOTURN
()
{}
};
};
/** @brief the MOSSE tracker
note, that this tracker works with grayscale images, if passed bgr ones, they will get converted internally.
@cite MOSSE Visual Object Tracking using Adaptive Correlation Filters
*/
class
CV_EXPORTS_W
TrackerMOSSE
:
public
Tracker
{
public
:
/** @brief Constructor
*/
CV_WRAP
static
Ptr
<
TrackerMOSSE
>
create
();
virtual
~
TrackerMOSSE
()
{}
};
/************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
/************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
/** @brief This class is used to track multiple objects using the specified tracker algorithm.
/** @brief This class is used to track multiple objects using the specified tracker algorithm.
* The MultiTracker is naive implementation of multiple object tracking.
* The MultiTracker is naive implementation of multiple object tracking.
...
...
modules/tracking/samples/samples_utility.hpp
View file @
ea6f3d19
...
@@ -19,6 +19,8 @@ inline cv::Ptr<cv::Tracker> createTrackerByName(cv::String name)
...
@@ -19,6 +19,8 @@ inline cv::Ptr<cv::Tracker> createTrackerByName(cv::String name)
tracker
=
cv
::
TrackerMIL
::
create
();
tracker
=
cv
::
TrackerMIL
::
create
();
else
if
(
name
==
"GOTURN"
)
else
if
(
name
==
"GOTURN"
)
tracker
=
cv
::
TrackerGOTURN
::
create
();
tracker
=
cv
::
TrackerGOTURN
::
create
();
else
if
(
name
==
"MOSSE"
)
tracker
=
cv
::
TrackerMOSSE
::
create
();
else
else
CV_Error
(
cv
::
Error
::
StsBadArg
,
"Invalid tracking algorithm name
\n
"
);
CV_Error
(
cv
::
Error
::
StsBadArg
,
"Invalid tracking algorithm name
\n
"
);
...
...
modules/tracking/samples/tracker.cpp
View file @
ea6f3d19
...
@@ -22,7 +22,7 @@ static void help()
...
@@ -22,7 +22,7 @@ static void help()
"Example of <video_name> is in opencv_extra/testdata/cv/tracking/
\n
"
"Example of <video_name> is in opencv_extra/testdata/cv/tracking/
\n
"
"Call:
\n
"
"Call:
\n
"
"./tracker <tracker_algorithm> <video_name> <start_frame> [<bounding_frame>]
\n
"
"./tracker <tracker_algorithm> <video_name> <start_frame> [<bounding_frame>]
\n
"
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD
\n
"
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD
, KCF, GOTURN, MOSSE.
\n
"
<<
endl
;
<<
endl
;
cout
<<
"
\n\n
Hot keys:
\n
"
cout
<<
"
\n\n
Hot keys:
\n
"
...
...
modules/tracking/src/mosseTracker.cpp
0 → 100644
View file @
ea6f3d19
// This file is part of the OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
//[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
// http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
//
//
// credits:
// Kun-Hsin Chen: for initial c++ code
// Cracki: for the idea of only converting the used patch to gray
//
#include "opencv2/tracking.hpp"
namespace
cv
{
namespace
tracking
{
struct
DummyModel
:
TrackerModel
{
virtual
void
modelUpdateImpl
(){}
virtual
void
modelEstimationImpl
(
const
std
::
vector
<
Mat
>&
){}
};
const
double
eps
=
0.00001
;
// for normalization
const
double
rate
=
0.2
;
// learning rate
const
double
psrThreshold
=
5.7
;
// no detection, if PSR is smaller than this
struct
MosseImpl
:
TrackerMOSSE
{
protected
:
Point2d
center
;
//center of the bounding box
Size
size
;
//size of the bounding box
Mat
hanWin
;
Mat
G
;
//goal
Mat
H
,
A
,
B
;
//state
// Element-wise division of complex numbers in src1 and src2
Mat
divDFTs
(
const
Mat
&
src1
,
const
Mat
&
src2
)
const
{
Mat
c1
[
2
],
c2
[
2
],
a1
,
a2
,
s1
,
s2
,
denom
,
re
,
im
;
// split into re and im per src
cv
::
split
(
src1
,
c1
);
cv
::
split
(
src2
,
c2
);
// (Re2*Re2 + Im2*Im2) = denom
// denom is same for both channels
cv
::
multiply
(
c2
[
0
],
c2
[
0
],
s1
);
cv
::
multiply
(
c2
[
1
],
c2
[
1
],
s2
);
cv
::
add
(
s1
,
s2
,
denom
);
// (Re1*Re2 + Im1*Im1)/(Re2*Re2 + Im2*Im2) = Re
cv
::
multiply
(
c1
[
0
],
c2
[
0
],
a1
);
cv
::
multiply
(
c1
[
1
],
c2
[
1
],
a2
);
cv
::
divide
(
a1
+
a2
,
denom
,
re
,
1.0
);
// (Im1*Re2 - Re1*Im2)/(Re2*Re2 + Im2*Im2) = Im
cv
::
multiply
(
c1
[
1
],
c2
[
0
],
a1
);
cv
::
multiply
(
c1
[
0
],
c2
[
1
],
a2
);
cv
::
divide
(
a1
+
a2
,
denom
,
im
,
-
1.0
);
// Merge Re and Im back into a complex matrix
Mat
dst
,
chn
[]
=
{
re
,
im
};
cv
::
merge
(
chn
,
2
,
dst
);
return
dst
;
}
void
preProcess
(
Mat
&
window
)
const
{
window
.
convertTo
(
window
,
CV_32F
);
log
(
window
+
1.0
f
,
window
);
//normalize
Scalar
mean
,
StdDev
;
meanStdDev
(
window
,
mean
,
StdDev
);
window
=
(
window
-
mean
[
0
])
/
(
StdDev
[
0
]
+
eps
);
//Gaussain weighting
window
=
window
.
mul
(
hanWin
);
}
double
correlate
(
const
Mat
&
image_sub
,
Point
&
delta_xy
)
const
{
Mat
IMAGE_SUB
,
RESPONSE
,
response
;
// filter in dft space
dft
(
image_sub
,
IMAGE_SUB
,
DFT_COMPLEX_OUTPUT
);
mulSpectrums
(
IMAGE_SUB
,
H
,
RESPONSE
,
0
,
true
);
idft
(
RESPONSE
,
response
,
DFT_SCALE
|
DFT_REAL_OUTPUT
);
// update center position
double
maxVal
;
Point
maxLoc
;
minMaxLoc
(
response
,
0
,
&
maxVal
,
0
,
&
maxLoc
);
delta_xy
.
x
=
maxLoc
.
x
-
int
(
response
.
size
().
width
/
2
);
delta_xy
.
y
=
maxLoc
.
y
-
int
(
response
.
size
().
height
/
2
);
// normalize response
Scalar
mean
,
std
;
meanStdDev
(
response
,
mean
,
std
);
return
(
maxVal
-
mean
[
0
])
/
(
std
[
0
]
+
eps
);
// PSR
}
Mat
randWarp
(
const
Mat
&
a
)
const
{
cv
::
RNG
rng
(
8031965
);
// random rotation
double
C
=
0.1
;
double
ang
=
rng
.
uniform
(
-
C
,
C
);
double
c
=
cos
(
ang
),
s
=
sin
(
ang
);
// affine warp matrix
Mat_
<
float
>
W
(
2
,
3
);
W
<<
c
+
rng
.
uniform
(
-
C
,
C
),
-
s
+
rng
.
uniform
(
-
C
,
C
),
0
,
s
+
rng
.
uniform
(
-
C
,
C
),
c
+
rng
.
uniform
(
-
C
,
C
),
0
;
// random translation
Mat_
<
float
>
center_warp
(
2
,
1
);
center_warp
<<
a
.
cols
/
2
,
a
.
rows
/
2
;
W
.
col
(
2
)
=
center_warp
-
(
W
.
colRange
(
0
,
2
))
*
center_warp
;
Mat
warped
;
warpAffine
(
a
,
warped
,
W
,
a
.
size
(),
BORDER_REFLECT
);
return
warped
;
}
virtual
bool
initImpl
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
)
{
model
=
makePtr
<
DummyModel
>
();
Mat
img
;
if
(
image
.
channels
()
==
1
)
img
=
image
;
else
cvtColor
(
image
,
img
,
COLOR_BGR2GRAY
);
int
w
=
getOptimalDFTSize
(
int
(
boundingBox
.
width
));
int
h
=
getOptimalDFTSize
(
int
(
boundingBox
.
height
));
//Get the center position
int
x1
=
int
(
floor
((
2
*
boundingBox
.
x
+
boundingBox
.
width
-
w
)
/
2
));
int
y1
=
int
(
floor
((
2
*
boundingBox
.
y
+
boundingBox
.
height
-
h
)
/
2
));
center
.
x
=
x1
+
(
w
)
/
2
;
center
.
y
=
y1
+
(
h
)
/
2
;
size
.
width
=
w
;
size
.
height
=
h
;
Mat
window
;
getRectSubPix
(
img
,
size
,
center
,
window
);
createHanningWindow
(
hanWin
,
size
,
CV_32F
);
// goal
Mat
g
=
Mat
::
zeros
(
size
,
CV_32F
);
g
.
at
<
float
>
(
h
/
2
,
w
/
2
)
=
1
;
GaussianBlur
(
g
,
g
,
Size
(
-
1
,
-
1
),
2.0
);
double
maxVal
;
minMaxLoc
(
g
,
0
,
&
maxVal
);
g
=
g
/
maxVal
;
dft
(
g
,
G
,
DFT_COMPLEX_OUTPUT
);
// initial A,B and H
A
=
Mat
::
zeros
(
G
.
size
(),
G
.
type
());
B
=
Mat
::
zeros
(
G
.
size
(),
G
.
type
());
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
Mat
window_warp
=
randWarp
(
window
);
preProcess
(
window_warp
);
Mat
WINDOW_WARP
,
A_i
,
B_i
;
dft
(
window_warp
,
WINDOW_WARP
,
DFT_COMPLEX_OUTPUT
);
mulSpectrums
(
G
,
WINDOW_WARP
,
A_i
,
0
,
true
);
mulSpectrums
(
WINDOW_WARP
,
WINDOW_WARP
,
B_i
,
0
,
true
);
A
+=
A_i
;
B
+=
B_i
;
}
H
=
divDFTs
(
A
,
B
);
return
true
;
}
virtual
bool
updateImpl
(
const
Mat
&
image
,
Rect2d
&
boundingBox
)
{
if
(
H
.
empty
())
// not initialized
return
false
;
Mat
image_sub
;
getRectSubPix
(
image
,
size
,
center
,
image_sub
);
if
(
image_sub
.
channels
()
!=
1
)
cvtColor
(
image_sub
,
image_sub
,
COLOR_BGR2GRAY
);
preProcess
(
image_sub
);
Point
delta_xy
;
double
PSR
=
correlate
(
image_sub
,
delta_xy
);
if
(
PSR
<
psrThreshold
)
return
false
;
//update location
center
.
x
+=
delta_xy
.
x
;
center
.
y
+=
delta_xy
.
y
;
Mat
img_sub_new
;
getRectSubPix
(
image
,
size
,
center
,
img_sub_new
);
if
(
img_sub_new
.
channels
()
!=
1
)
cvtColor
(
img_sub_new
,
img_sub_new
,
COLOR_BGR2GRAY
);
preProcess
(
img_sub_new
);
// new state for A and B
Mat
F
,
A_new
,
B_new
;
dft
(
img_sub_new
,
F
,
DFT_COMPLEX_OUTPUT
);
mulSpectrums
(
G
,
F
,
A_new
,
0
,
true
);
mulSpectrums
(
F
,
F
,
B_new
,
0
,
true
);
// update A ,B, and H
A
=
A
*
(
1
-
rate
)
+
A_new
*
rate
;
B
=
B
*
(
1
-
rate
)
+
B_new
*
rate
;
H
=
divDFTs
(
A
,
B
);
// return tracked rect
double
x
=
center
.
x
,
y
=
center
.
y
;
int
w
=
size
.
width
,
h
=
size
.
height
;
boundingBox
=
Rect2d
(
Point2d
(
x
-
0.5
*
w
,
y
-
0.5
*
h
),
Point2d
(
x
+
0.5
*
w
,
y
+
0.5
*
h
));
return
true
;
}
public
:
MosseImpl
()
{
isInit
=
0
;
}
// dummy implementation.
virtual
void
read
(
const
FileNode
&
){}
virtual
void
write
(
FileStorage
&
)
const
{}
};
// MosseImpl
}
// tracking
Ptr
<
TrackerMOSSE
>
TrackerMOSSE
::
create
()
{
return
makePtr
<
tracking
::
MosseImpl
>
();
}
}
// cv
modules/tracking/test/test_trackers.cpp
View file @
ea6f3d19
...
@@ -464,6 +464,13 @@ TEST_P(DistanceAndOverlap, DISABLED_TLD)
...
@@ -464,6 +464,13 @@ TEST_P(DistanceAndOverlap, DISABLED_TLD)
TrackerTest
test
(
TrackerTLD
::
create
(),
dataset
,
60
,
.4
f
,
NoTransform
);
TrackerTest
test
(
TrackerTLD
::
create
(),
dataset
,
60
,
.4
f
,
NoTransform
);
test
.
run
();
test
.
run
();
}
}
TEST_P
(
DistanceAndOverlap
,
MOSSE
)
{
TrackerTest
test
(
TrackerMOSSE
::
create
(),
dataset
,
22
,
.7
f
,
NoTransform
);
test
.
run
();
}
/***************************************************************************************/
/***************************************************************************************/
//Tests with shifted initial window
//Tests with shifted initial window
TEST_P
(
DistanceAndOverlap
,
Shifted_Data_MedianFlow
)
TEST_P
(
DistanceAndOverlap
,
Shifted_Data_MedianFlow
)
...
@@ -495,6 +502,12 @@ TEST_P(DistanceAndOverlap, DISABLED_Shifted_Data_TLD)
...
@@ -495,6 +502,12 @@ TEST_P(DistanceAndOverlap, DISABLED_Shifted_Data_TLD)
TrackerTest
test
(
TrackerTLD
::
create
(),
dataset
,
120
,
.2
f
,
CenterShiftLeft
);
TrackerTest
test
(
TrackerTLD
::
create
(),
dataset
,
120
,
.2
f
,
CenterShiftLeft
);
test
.
run
();
test
.
run
();
}
}
TEST_P
(
DistanceAndOverlap
,
Shifted_Data_MOSSE
)
{
TrackerTest
test
(
TrackerMOSSE
::
create
(),
dataset
,
13
,
.69
f
,
CenterShiftLeft
);
test
.
run
();
}
/***************************************************************************************/
/***************************************************************************************/
//Tests with scaled initial window
//Tests with scaled initial window
TEST_P
(
DistanceAndOverlap
,
Scaled_Data_MedianFlow
)
TEST_P
(
DistanceAndOverlap
,
Scaled_Data_MedianFlow
)
...
@@ -534,6 +547,13 @@ TEST_P(DistanceAndOverlap, DISABLED_GOTURN)
...
@@ -534,6 +547,13 @@ TEST_P(DistanceAndOverlap, DISABLED_GOTURN)
test
.
run
();
test
.
run
();
}
}
TEST_P
(
DistanceAndOverlap
,
Scaled_Data_MOSSE
)
{
TrackerTest
test
(
TrackerMOSSE
::
create
(),
dataset
,
22
,
0.69
f
,
Scale_1_1
,
1
);
test
.
run
();
}
INSTANTIATE_TEST_CASE_P
(
Tracking
,
DistanceAndOverlap
,
TESTSET_NAMES
);
INSTANTIATE_TEST_CASE_P
(
Tracking
,
DistanceAndOverlap
,
TESTSET_NAMES
);
/* End of file. */
/* End of file. */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment