Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
ea1670b5
Commit
ea1670b5
authored
Jun 19, 2017
by
Aleksandr Rybnikov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added blobFromImage functions which can crop input from the center and subtract mean
parent
aa0d8060
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
75 additions
and
30 deletions
+75
-30
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+31
-3
caffe_googlenet.cpp
modules/dnn/samples/caffe_googlenet.cpp
+3
-2
squeezenet_halide.cpp
modules/dnn/samples/squeezenet_halide.cpp
+1
-1
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+1
-1
dnn.cpp
modules/dnn/src/dnn.cpp
+35
-19
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+2
-2
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+2
-2
No files found.
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
ea1670b5
...
@@ -598,9 +598,37 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
...
@@ -598,9 +598,37 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
* @warning This function has the same limitations as createTorchImporter().
* @warning This function has the same limitations as createTorchImporter().
*/
*/
CV_EXPORTS_W
Mat
readTorchBlob
(
const
String
&
filename
,
bool
isBinary
=
true
);
CV_EXPORTS_W
Mat
readTorchBlob
(
const
String
&
filename
,
bool
isBinary
=
true
);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
CV_EXPORTS
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
=
1.0
,
bool
swapRB
=
true
);
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
CV_EXPORTS
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
image
,
double
scalefactor
=
1.0
,
bool
swapRB
=
true
);
* @param image input image (with 1- or 3-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p image values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @details input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
=
1.0
,
const
Size
&
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
* @param images input images (all with 1- or 3-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p images values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @details input image is resized so one side after resize is equal to corresponing
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* @returns 4-dimansional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images
,
double
scalefactor
=
1.0
,
Size
size
=
Size
(),
const
Scalar
&
mean
=
Scalar
(),
bool
swapRB
=
true
);
//! @}
//! @}
}
}
...
...
modules/dnn/samples/caffe_googlenet.cpp
View file @
ea1670b5
...
@@ -114,8 +114,9 @@ int main(int argc, char **argv)
...
@@ -114,8 +114,9 @@ int main(int argc, char **argv)
exit
(
-
1
);
exit
(
-
1
);
}
}
resize
(
img
,
img
,
Size
(
224
,
224
));
//GoogLeNet accepts only 224x224 RGB-images
//GoogLeNet accepts only 224x224 RGB-images
Mat
inputBlob
=
blobFromImage
(
img
);
//Convert Mat to batch of images
Mat
inputBlob
=
blobFromImage
(
img
,
1
,
Size
(
224
,
224
),
Scalar
(
104
,
117
,
123
));
//Convert Mat to batch of images
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/samples/squeezenet_halide.cpp
View file @
ea1670b5
...
@@ -89,7 +89,7 @@ int main(int argc, char **argv)
...
@@ -89,7 +89,7 @@ int main(int argc, char **argv)
}
}
resize
(
img
,
img
,
Size
(
227
,
227
));
// SqueezeNet v1.1 predict class by 3x227x227 input image.
resize
(
img
,
img
,
Size
(
227
,
227
));
// SqueezeNet v1.1 predict class by 3x227x227 input image.
Mat
inputBlob
=
blobFromImage
(
img
,
1.0
,
false
);
// Convert Mat to 4-dimensional batch.
Mat
inputBlob
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(),
false
);
// Convert Mat to 4-dimensional batch.
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/samples/torch_enet.cpp
View file @
ea1670b5
...
@@ -69,7 +69,7 @@ int main(int argc, char **argv)
...
@@ -69,7 +69,7 @@ int main(int argc, char **argv)
if
(
inputImgSize
!=
origSize
)
if
(
inputImgSize
!=
origSize
)
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
,
true
);
//Convert Mat to image batch
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
);
//Convert Mat to image batch
//! [Prepare blob]
//! [Prepare blob]
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/src/dnn.cpp
View file @
ea1670b5
...
@@ -48,6 +48,7 @@
...
@@ -48,6 +48,7 @@
#include <sstream>
#include <sstream>
#include <iterator>
#include <iterator>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
using
namespace
cv
;
using
namespace
cv
;
using
namespace
cv
::
dnn
;
using
namespace
cv
::
dnn
;
...
@@ -86,14 +87,42 @@ static String toString(const T &v)
...
@@ -86,14 +87,42 @@ static String toString(const T &v)
return
ss
.
str
();
return
ss
.
str
();
}
}
Mat
blobFromImage
(
const
Mat
&
image_
,
double
scalefactor
,
bool
swapRB
)
Mat
blobFromImage
(
const
Mat
&
image
,
double
scalefactor
,
const
Size
&
size
,
const
Scalar
&
mean
,
bool
swapRB
)
{
{
std
::
vector
<
Mat
>
images
(
1
,
image
_
);
std
::
vector
<
Mat
>
images
(
1
,
image
);
return
blobFromImages
(
images
,
scalefactor
,
swapRB
);
return
blobFromImages
(
images
,
scalefactor
,
s
ize
,
mean
,
s
wapRB
);
}
}
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images
,
double
scalefactor
,
bool
swapRB
)
Mat
blobFromImages
(
const
std
::
vector
<
Mat
>&
images_
,
double
scalefactor
,
Size
size
,
const
Scalar
&
mean_
,
bool
swapRB
)
{
{
std
::
vector
<
Mat
>
images
=
images_
;
for
(
int
i
=
0
;
i
<
images
.
size
();
i
++
)
{
Size
imgSize
=
images
[
i
].
size
();
if
(
size
==
Size
())
size
=
imgSize
;
if
(
size
!=
imgSize
)
{
float
resizeFactor
=
std
::
max
(
size
.
width
/
(
float
)
imgSize
.
width
,
size
.
height
/
(
float
)
imgSize
.
height
);
resize
(
images
[
i
],
images
[
i
],
Size
(),
resizeFactor
,
resizeFactor
);
Rect
crop
(
Point
(
0.5
*
(
images
[
i
].
cols
-
size
.
width
),
0.5
*
(
images
[
i
].
rows
-
size
.
height
)),
size
);
images
[
i
]
=
images
[
i
](
crop
);
}
if
(
images
[
i
].
depth
()
==
CV_8U
)
images
[
i
].
convertTo
(
images
[
i
],
CV_32F
);
Scalar
mean
=
mean_
;
if
(
swapRB
)
std
::
swap
(
mean
[
0
],
mean
[
2
]);
images
[
i
]
-=
mean
;
images
[
i
]
*=
scalefactor
;
}
size_t
i
,
nimages
=
images
.
size
();
size_t
i
,
nimages
=
images
.
size
();
if
(
nimages
==
0
)
if
(
nimages
==
0
)
return
Mat
();
return
Mat
();
...
@@ -109,13 +138,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -109,13 +138,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
for
(
i
=
0
;
i
<
nimages
;
i
++
)
for
(
i
=
0
;
i
<
nimages
;
i
++
)
{
{
Mat
image_
=
images
[
i
];
image
=
images
[
i
];
if
(
image_
.
depth
()
==
CV_8U
)
{
image_
.
convertTo
(
image
,
CV_32F
,
scalefactor
);
}
else
image
=
image_
;
CV_Assert
(
image
.
depth
()
==
CV_32F
);
CV_Assert
(
image
.
depth
()
==
CV_32F
);
nch
=
image
.
channels
();
nch
=
image
.
channels
();
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
3
||
nch
==
4
));
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
3
||
nch
==
4
));
...
@@ -136,13 +159,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -136,13 +159,7 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
for
(
i
=
0
;
i
<
nimages
;
i
++
)
for
(
i
=
0
;
i
<
nimages
;
i
++
)
{
{
Mat
image_
=
images
[
i
];
Mat
image
=
images
[
i
];
if
(
image_
.
depth
()
==
CV_8U
)
{
image_
.
convertTo
(
image
,
CV_32F
,
scalefactor
);
}
else
image
=
image_
;
CV_Assert
(
image
.
depth
()
==
CV_32F
);
CV_Assert
(
image
.
depth
()
==
CV_32F
);
nch
=
image
.
channels
();
nch
=
image
.
channels
();
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
1
));
CV_Assert
(
image
.
dims
==
2
&&
(
nch
==
1
));
...
@@ -154,7 +171,6 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
...
@@ -154,7 +171,6 @@ Mat blobFromImages(const std::vector<Mat>& images, double scalefactor, bool swap
return
blob
;
return
blob
;
}
}
struct
LayerPin
struct
LayerPin
{
{
int
lid
;
int
lid
;
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
ea1670b5
...
@@ -94,7 +94,7 @@ TEST(Reproducibility_AlexNet, Accuracy)
...
@@ -94,7 +94,7 @@ TEST(Reproducibility_AlexNet, Accuracy)
if
(
sample
.
size
()
!=
inputSize
)
if
(
sample
.
size
()
!=
inputSize
)
resize
(
sample
,
sample
,
inputSize
);
resize
(
sample
,
sample
,
inputSize
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
net
.
setInput
(
blobFromImage
(
sample
),
"data"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
out
=
net
.
forward
(
"prob"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_alexnet_prob.npy"
));
normAssert
(
ref
,
out
);
normAssert
(
ref
,
out
);
...
@@ -123,7 +123,7 @@ TEST(Reproducibility_FCN, Accuracy)
...
@@ -123,7 +123,7 @@ TEST(Reproducibility_FCN, Accuracy)
std
::
vector
<
size_t
>
weights
,
blobs
;
std
::
vector
<
size_t
>
weights
,
blobs
;
net
.
getMemoryConsumption
(
shape
(
1
,
3
,
227
,
227
),
layerIds
,
weights
,
blobs
);
net
.
getMemoryConsumption
(
shape
(
1
,
3
,
227
,
227
),
layerIds
,
weights
,
blobs
);
net
.
setInput
(
blobFromImage
(
sample
,
1.
),
"data"
);
net
.
setInput
(
blobFromImage
(
sample
),
"data"
);
Mat
out
=
net
.
forward
(
"score"
);
Mat
out
=
net
.
forward
(
"score"
);
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"caffe_fcn8s_prob.npy"
));
normAssert
(
ref
,
out
);
normAssert
(
ref
,
out
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
ea1670b5
...
@@ -40,7 +40,7 @@ TEST(Test_TensorFlow, read_inception)
...
@@ -40,7 +40,7 @@ TEST(Test_TensorFlow, read_inception)
resize
(
sample
,
input
,
Size
(
224
,
224
));
resize
(
sample
,
input
,
Size
(
224
,
224
));
input
-=
128
;
// mean sub
input
-=
128
;
// mean sub
Mat
inputBlob
=
blobFromImage
(
input
,
1.
);
Mat
inputBlob
=
blobFromImage
(
input
);
net
.
setInput
(
inputBlob
,
"input"
);
net
.
setInput
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
...
@@ -61,7 +61,7 @@ TEST(Test_TensorFlow, inception_accuracy)
...
@@ -61,7 +61,7 @@ TEST(Test_TensorFlow, inception_accuracy)
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
Mat
sample
=
imread
(
_tf
(
"grace_hopper_227.png"
));
ASSERT_TRUE
(
!
sample
.
empty
());
ASSERT_TRUE
(
!
sample
.
empty
());
resize
(
sample
,
sample
,
Size
(
224
,
224
));
resize
(
sample
,
sample
,
Size
(
224
,
224
));
Mat
inputBlob
=
blobFromImage
(
sample
,
1.
);
Mat
inputBlob
=
blobFromImage
(
sample
);
net
.
setInput
(
inputBlob
,
"input"
);
net
.
setInput
(
inputBlob
,
"input"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
Mat
out
=
net
.
forward
(
"softmax2"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment