Commit e967557e authored by David Geldreich's avatar David Geldreich

Allows structured_light pipeline to be run from Python

SinusoidalPattern::unwrapPhaseMap now takes an InputArray instead of InputArrayOfArrays to correct a Python binding problem
present a scriptable HistogramPhaseUnwrapping::create

replicate C++ structured_light test in Python

PhaseUnwrapping now init unwrappedPhase so pixel outside the mask area are set to 0

python binding for HistogramPhaseUnwrapping::Params to use HistogramPhaseUnwrapping::create
parent 9c0ae273
......@@ -75,20 +75,21 @@ public:
* @param nbrOfSmallBins Number of bins between 0 and "histThresh". Default value is 10.
* @param nbrOfLargeBins Number of bins between "histThresh" and 32*pi*pi (highest edge reliability value). Default value is 5.
*/
struct CV_EXPORTS Params
struct CV_EXPORTS_W_SIMPLE Params
{
Params();
int width;
int height;
float histThresh;
int nbrOfSmallBins;
int nbrOfLargeBins;
CV_WRAP Params();
CV_PROP_RW int width;
CV_PROP_RW int height;
CV_PROP_RW float histThresh;
CV_PROP_RW int nbrOfSmallBins;
CV_PROP_RW int nbrOfLargeBins;
};
/**
* @brief Constructor
* @param parameters HistogramPhaseUnwrapping parameters HistogramPhaseUnwrapping::Params: width,height of the phase map and histogram characteristics.
*/
CV_WRAP
static Ptr<HistogramPhaseUnwrapping> create( const HistogramPhaseUnwrapping::Params &parameters =
HistogramPhaseUnwrapping::Params() );
......
#ifdef HAVE_OPENCV_PHASE_UNWRAPPING
typedef cv::phase_unwrapping::HistogramPhaseUnwrapping::Params HistogramPhaseUnwrapping_Params;
#endif
......@@ -712,7 +712,10 @@ void HistogramPhaseUnwrapping_Impl::addIncrement( OutputArray unwrappedPhaseMap
int rows = params.height;
int cols = params.width;
if( uPhaseMap.empty() )
{
uPhaseMap.create(rows, cols, CV_32FC1);
uPhaseMap = Scalar::all(0);
}
int nbrOfPixels = static_cast<int>(pixels.size());
for( int i = 0; i < nbrOfPixels; ++i )
{
......
......@@ -119,7 +119,7 @@ public:
* @param shadowMask Mask used to discard shadow regions.
*/
CV_WRAP
virtual void unwrapPhaseMap( InputArrayOfArrays wrappedPhaseMap,
virtual void unwrapPhaseMap( InputArray wrappedPhaseMap,
OutputArray unwrappedPhaseMap,
cv::Size camSize,
InputArray shadowMask = noArray() ) = 0;
......
#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import os, numpy
import cv2 as cv
from tests_common import NewOpenCVTests
class structured_light_test(NewOpenCVTests):
def test_unwrap(self):
paramsPsp = cv.structured_light_SinusoidalPattern_Params();
paramsFtp = cv.structured_light_SinusoidalPattern_Params();
paramsFaps = cv.structured_light_SinusoidalPattern_Params();
paramsPsp.methodId = cv.structured_light.PSP;
paramsFtp.methodId = cv.structured_light.FTP;
paramsFaps.methodId = cv.structured_light.FAPS;
sinusPsp = cv.structured_light.SinusoidalPattern_create(paramsPsp)
sinusFtp = cv.structured_light.SinusoidalPattern_create(paramsFtp)
sinusFaps = cv.structured_light.SinusoidalPattern_create(paramsFaps)
captures = []
for i in range(0,3):
capture = self.get_sample('/cv/structured_light/data/capture_sin_%d.jpg'%i, cv.IMREAD_GRAYSCALE)
if capture is None:
raise unittest.SkipTest("Missing files with test data")
captures.append(capture)
rows,cols = captures[0].shape
unwrappedPhaseMapPspRef = self.get_sample('/cv/structured_light/data/unwrappedPspTest.jpg',
cv.IMREAD_GRAYSCALE)
unwrappedPhaseMapFtpRef = self.get_sample('/cv/structured_light/data/unwrappedFtpTest.jpg',
cv.IMREAD_GRAYSCALE)
unwrappedPhaseMapFapsRef = self.get_sample('/cv/structured_light/data/unwrappedFapsTest.jpg',
cv.IMREAD_GRAYSCALE)
wrappedPhaseMap,shadowMask = sinusPsp.computePhaseMap(captures);
unwrappedPhaseMap = sinusPsp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
sumOfDiff = 0
count = 0
for i in range(rows):
for j in range(cols):
ref = int(unwrappedPhaseMapPspRef[i, j])
comp = int(unwrappedPhaseMap8[i, j])
sumOfDiff += (ref - comp)
count += 1
ratio = sumOfDiff/float(count)
self.assertLessEqual(ratio, 0.2)
wrappedPhaseMap,shadowMask = sinusFtp.computePhaseMap(captures);
unwrappedPhaseMap = sinusFtp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
sumOfDiff = 0
count = 0
for i in range(rows):
for j in range(cols):
ref = int(unwrappedPhaseMapFtpRef[i, j])
comp = int(unwrappedPhaseMap8[i, j])
sumOfDiff += (ref - comp)
count += 1
ratio = sumOfDiff/float(count)
self.assertLessEqual(ratio, 0.2)
wrappedPhaseMap,shadowMask2 = sinusFaps.computePhaseMap(captures);
unwrappedPhaseMap = sinusFaps.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
sumOfDiff = 0
count = 0
for i in range(rows):
for j in range(cols):
ref = int(unwrappedPhaseMapFapsRef[i, j])
comp = int(unwrappedPhaseMap8[i, j])
sumOfDiff += (ref - comp)
count += 1
ratio = sumOfDiff/float(count)
self.assertLessEqual(ratio, 0.2)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment