Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
e784f137
Commit
e784f137
authored
Dec 23, 2016
by
arrybn
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added Torch ENet support
parent
c7cc1b3f
Show whitespace changes
Inline
Side-by-side
Showing
26 changed files
with
1103 additions
and
170 deletions
+1103
-170
CMakeLists.txt
modules/dnn/CMakeLists.txt
+5
-1
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+20
-2
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+3
-0
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+176
-0
layer_loaders.cpp
modules/dnn/src/caffe/layer_loaders.cpp
+44
-1
dnn.cpp
modules/dnn/src/dnn.cpp
+18
-0
init.cpp
modules/dnn/src/init.cpp
+5
-0
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+69
-0
batch_norm_layer.hpp
modules/dnn/src/layers/batch_norm_layer.hpp
+37
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+88
-72
convolution_layer.hpp
modules/dnn/src/layers/convolution_layer.hpp
+17
-10
elementwise_layers.cpp
modules/dnn/src/layers/elementwise_layers.cpp
+41
-0
elementwise_layers.hpp
modules/dnn/src/layers/elementwise_layers.hpp
+10
-0
eltwise_layer.cpp
modules/dnn/src/layers/eltwise_layer.cpp
+2
-1
max_unpooling_layer.cpp
modules/dnn/src/layers/max_unpooling_layer.cpp
+69
-0
max_unpooling_layer.hpp
modules/dnn/src/layers/max_unpooling_layer.hpp
+37
-0
padding_layer.cpp
modules/dnn/src/layers/padding_layer.cpp
+86
-0
padding_layer.hpp
modules/dnn/src/layers/padding_layer.hpp
+37
-0
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+27
-10
pooling_layer.hpp
modules/dnn/src/layers/pooling_layer.hpp
+3
-3
shift_layer.cpp
modules/dnn/src/layers/shift_layer.cpp
+0
-0
shift_layer.hpp
modules/dnn/src/layers/shift_layer.hpp
+4
-2
pooling.cl
modules/dnn/src/opencl/pooling.cl
+2
-8
torch_importer.cpp
modules/dnn/src/torch/torch_importer.cpp
+299
-56
test_layers.cpp
modules/dnn/test/test_layers.cpp
+1
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+3
-4
No files found.
modules/dnn/CMakeLists.txt
View file @
e784f137
...
...
@@ -29,6 +29,10 @@ else()
)
endif
()
if
(
ANDROID
)
add_definitions
(
-DDISABLE_POSIX_MEMALIGN -DTH_DISABLE_HEAP_TRACKING
)
endif
()
# ----------------------------------------------------------------------------
# Resolve libprotobuf dependency
# ----------------------------------------------------------------------------
...
...
@@ -55,7 +59,7 @@ endif()
# ----------------------------------------------------------------------------
# Torch7 importer of blobs and models, produced by Torch.nn module
# ----------------------------------------------------------------------------
OCV_OPTION
(
${
the_module
}
_BUILD_TORCH_IMPORTER
"Build Torch model importer
(experimental functionality!)"
OFF
)
OCV_OPTION
(
${
the_module
}
_BUILD_TORCH_IMPORTER
"Build Torch model importer
"
ON
)
if
(
${
the_module
}
_BUILD_TORCH_IMPORTER
)
add_definitions
(
-DENABLE_TORCH_IMPORTER=1
)
ocv_warnings_disable
(
CMAKE_CXX_FLAGS /wd4702 /wd4127 /wd4267
)
#supress warnings in original torch files
...
...
modules/dnn/include/opencv2/dnn/all_layers.hpp
View file @
e784f137
...
...
@@ -209,7 +209,7 @@ namespace dnn
{
public
:
CV_PROP_RW
Size
kernel
,
stride
,
pad
,
dilation
;
CV_PROP_RW
Size
kernel
,
stride
,
pad
,
dilation
,
adjustPad
;
CV_PROP_RW
String
padMode
;
};
...
...
@@ -224,7 +224,7 @@ namespace dnn
{
public
:
static
CV_WRAP
Ptr
<
BaseConvolutionLayer
>
create
(
Size
kernel
=
Size
(
3
,
3
),
Size
stride
=
Size
(
1
,
1
),
Size
pad
=
Size
(
0
,
0
),
Size
dilation
=
Size
(
1
,
1
));
static
CV_WRAP
Ptr
<
BaseConvolutionLayer
>
create
(
Size
kernel
=
Size
(
3
,
3
),
Size
stride
=
Size
(
1
,
1
),
Size
pad
=
Size
(
0
,
0
),
Size
dilation
=
Size
(
1
,
1
)
,
Size
adjustPad
=
Size
()
);
};
class
CV_EXPORTS_W
LRNLayer
:
public
Layer
...
...
@@ -341,6 +341,12 @@ namespace dnn
static
CV_WRAP
Ptr
<
ReLULayer
>
create
(
double
negativeSlope
=
0
);
};
class
CV_EXPORTS_W
ChannelsPReLULayer
:
public
Layer
{
public
:
static
CV_WRAP
Ptr
<
ChannelsPReLULayer
>
create
();
};
class
CV_EXPORTS_W
TanHLayer
:
public
Layer
{
public
:
...
...
@@ -397,6 +403,18 @@ namespace dnn
static
Ptr
<
EltwiseLayer
>
create
(
EltwiseOp
op
,
const
std
::
vector
<
int
>
&
coeffs
);
};
class
CV_EXPORTS_W
BatchNormLayer
:
public
Layer
{
public
:
static
CV_WRAP
Ptr
<
BatchNormLayer
>
create
(
float
eps
,
bool
has_weights
,
bool
has_bias
);
};
class
CV_EXPORTS_W
MaxUnpoolLayer
:
public
Layer
{
public
:
static
CV_WRAP
Ptr
<
MaxUnpoolLayer
>
create
(
Size
unpoolSize
);
};
//! @}
//! @}
...
...
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
e784f137
...
...
@@ -270,6 +270,9 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
*/
CV_WRAP
Blob
getParam
(
LayerId
layer
,
int
numParam
=
0
);
/** @brief Returns indexes of layers with unconnected outputs.
*/
CV_WRAP
std
::
vector
<
int
>
getUnconnectedOutLayers
()
const
;
private
:
struct
Impl
;
...
...
modules/dnn/samples/torch_enet.cpp
0 → 100644
View file @
e784f137
/*
Sample of using OpenCV dnn module with Torch ENet model.
*/
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using
namespace
cv
;
using
namespace
cv
::
dnn
;
#include <fstream>
#include <iostream>
#include <cstdlib>
#include <sstream>
using
namespace
std
;
const
String
keys
=
"{help h || Sample app for loading ENet Torch model. "
"The model and class names list can be downloaded here: "
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
"{model m || path to Torch .net model file (model_best.net) }"
"{image i || path to image file }"
"{i_blob | .0 | input blob name) }"
"{o_blob || output blob name) }"
"{c_names c || path to file with classnames for channels (categories.txt) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
;
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
int
main
(
int
argc
,
char
**
argv
)
{
cv
::
CommandLineParser
parser
(
argc
,
argv
,
keys
);
if
(
parser
.
has
(
"help"
))
{
parser
.
printMessage
();
return
0
;
}
String
modelFile
=
parser
.
get
<
String
>
(
"model"
);
String
imageFile
=
parser
.
get
<
String
>
(
"image"
);
String
inBlobName
=
parser
.
get
<
String
>
(
"i_blob"
);
String
outBlobName
=
parser
.
get
<
String
>
(
"o_blob"
);
if
(
!
parser
.
check
())
{
parser
.
printErrors
();
return
0
;
}
String
classNamesFile
=
parser
.
get
<
String
>
(
"c_names"
);
String
resultFile
=
parser
.
get
<
String
>
(
"result"
);
//! [Create the importer of TensorFlow model]
Ptr
<
dnn
::
Importer
>
importer
;
try
//Try to import TensorFlow AlexNet model
{
importer
=
dnn
::
createTorchImporter
(
modelFile
);
}
catch
(
const
cv
::
Exception
&
err
)
//Importer can throw errors, we will catch them
{
std
::
cerr
<<
err
.
msg
<<
std
::
endl
;
}
//! [Create the importer of Caffe model]
if
(
!
importer
)
{
std
::
cerr
<<
"Can't load network by using the mode file: "
<<
std
::
endl
;
std
::
cerr
<<
modelFile
<<
std
::
endl
;
exit
(
-
1
);
}
//! [Initialize network]
dnn
::
Net
net
;
importer
->
populateNet
(
net
);
importer
.
release
();
//We don't need importer anymore
//! [Initialize network]
//! [Prepare blob]
Mat
img
=
imread
(
imageFile
);
if
(
img
.
empty
())
{
std
::
cerr
<<
"Can't read image from the file: "
<<
imageFile
<<
std
::
endl
;
exit
(
-
1
);
}
cv
::
Size
inputImgSize
=
cv
::
Size
(
512
,
512
);
if
(
inputImgSize
!=
img
.
size
())
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
if
(
img
.
channels
()
==
3
)
cv
::
cvtColor
(
img
,
img
,
cv
::
COLOR_BGR2RGB
);
img
.
convertTo
(
img
,
CV_32F
,
1
/
255.0
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
img
);
//Convert Mat to dnn::Blob image batch
//! [Prepare blob]
//! [Set input blob]
net
.
setBlob
(
inBlobName
,
inputBlob
);
//set the network input
//! [Set input blob]
cv
::
TickMeter
tm
;
tm
.
start
();
//! [Make forward pass]
net
.
forward
();
//compute output
//! [Make forward pass]
tm
.
stop
();
//! [Gather output]
dnn
::
Blob
prob
=
net
.
getBlob
(
outBlobName
);
//gather output of "prob" layer
Mat
&
result
=
prob
.
matRef
();
BlobShape
shape
=
prob
.
shape
();
if
(
!
resultFile
.
empty
())
{
CV_Assert
(
result
.
isContinuous
());
ofstream
fout
(
resultFile
.
c_str
(),
ios
::
out
|
ios
::
binary
);
fout
.
write
((
char
*
)
result
.
data
,
result
.
total
()
*
sizeof
(
float
));
fout
.
close
();
}
std
::
cout
<<
"Output blob shape "
<<
shape
<<
std
::
endl
;
std
::
cout
<<
"Inference time, ms: "
<<
tm
.
getTimeMilli
()
<<
std
::
endl
;
std
::
vector
<
String
>
classNames
;
if
(
!
classNamesFile
.
empty
())
{
classNames
=
readClassNames
(
classNamesFile
.
c_str
());
if
(
classNames
.
size
()
>
prob
.
channels
())
classNames
=
std
::
vector
<
String
>
(
classNames
.
begin
()
+
classNames
.
size
()
-
prob
.
channels
(),
classNames
.
end
());
}
for
(
int
i_c
=
0
;
i_c
<
prob
.
channels
();
i_c
++
)
{
ostringstream
convert
;
convert
<<
"Channel #"
<<
i_c
;
if
(
classNames
.
size
()
==
prob
.
channels
())
convert
<<
": "
<<
classNames
[
i_c
];
imshow
(
convert
.
str
().
c_str
(),
prob
.
getPlane
(
0
,
i_c
));
}
waitKey
();
return
0
;
}
//main
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
)
{
std
::
vector
<
String
>
classNames
;
std
::
ifstream
fp
(
filename
);
if
(
!
fp
.
is_open
())
{
std
::
cerr
<<
"File with classes labels not found: "
<<
filename
<<
std
::
endl
;
exit
(
-
1
);
}
std
::
string
name
;
while
(
!
fp
.
eof
())
{
std
::
getline
(
fp
,
name
);
if
(
name
.
length
())
classNames
.
push_back
(
name
);
}
fp
.
close
();
return
classNames
;
}
modules/dnn/src/caffe/layer_loaders.cpp
View file @
e784f137
...
...
@@ -23,6 +23,9 @@ static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, LayerParam
int
numOutput
=
params
.
get
<
int
>
(
"num_output"
);
int
group
=
params
.
get
<
int
>
(
"group"
,
1
);
l
->
adjustPad
.
height
=
params
.
get
<
int
>
(
"adj_h"
,
0
);
l
->
adjustPad
.
width
=
params
.
get
<
int
>
(
"adj_w"
,
0
);
CV_Assert
(
numOutput
%
group
==
0
);
CV_Assert
((
bias
&&
l
->
blobs
.
size
()
==
2
)
||
(
!
bias
&&
l
->
blobs
.
size
()
==
1
));
}
...
...
@@ -40,6 +43,7 @@ Ptr<Layer> createLayerFromCaffe<DeconvolutionLayer>(LayerParams ¶ms)
{
Ptr
<
BaseConvolutionLayer
>
l
=
DeconvolutionLayer
::
create
();
initConvDeconvLayerFromCaffe
(
l
,
params
);
return
Ptr
<
Layer
>
(
l
);
}
...
...
@@ -248,7 +252,7 @@ Ptr<Layer> createLayerFromCaffe<CropLayer>(LayerParams& params)
return
Ptr
<
Layer
>
(
CropLayer
::
create
(
start_axis
,
offset
));
}
template
<>
//
Power
specialization
template
<>
//
Eltwise
specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
EltwiseLayer
>
(
LayerParams
&
params
)
{
EltwiseLayer
::
EltwiseOp
op
=
EltwiseLayer
::
SUM
;
...
...
@@ -278,6 +282,42 @@ Ptr<Layer> createLayerFromCaffe<EltwiseLayer>(LayerParams& params)
return
Ptr
<
Layer
>
(
EltwiseLayer
::
create
(
op
,
coeffs
));
}
template
<>
//BatchNormLayer specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
BatchNormLayer
>
(
LayerParams
&
params
)
{
const
std
::
vector
<
Blob
>
&
blobs
=
params
.
blobs
;
CV_Assert
(
blobs
.
size
()
==
4
);
float
eps
=
params
.
get
<
float
>
(
"eps"
);
bool
hasWeights
=
params
.
get
<
bool
>
(
"has_weight"
,
false
);
bool
hasBias
=
params
.
get
<
bool
>
(
"has_bias"
,
false
);
Ptr
<
BatchNormLayer
>
l
=
BatchNormLayer
::
create
(
eps
,
hasWeights
,
hasBias
);
l
->
setParamsFrom
(
params
);
return
Ptr
<
Layer
>
(
l
);
}
template
<>
//ChannelsPReLULayer specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
ChannelsPReLULayer
>
(
LayerParams
&
params
)
{
CV_Assert
(
params
.
blobs
.
size
()
==
1
);
Ptr
<
ChannelsPReLULayer
>
l
=
ChannelsPReLULayer
::
create
();
l
->
setParamsFrom
(
params
);
return
Ptr
<
Layer
>
(
l
);
}
template
<>
//MaxUnpoolLayer specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
MaxUnpoolLayer
>
(
LayerParams
&
params
)
{
Size
outSize
(
params
.
get
<
int
>
(
"out_w"
),
params
.
get
<
int
>
(
"out_h"
));
Ptr
<
MaxUnpoolLayer
>
l
=
MaxUnpoolLayer
::
create
(
outSize
);
return
Ptr
<
Layer
>
(
l
);
}
//Explicit instantiation
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ConvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
DeconvolutionLayer
>
(
LayerParams
&
);
...
...
@@ -299,6 +339,9 @@ template Ptr<Layer> createLayerFromCaffe<PowerLayer>(LayerParams&);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
CropLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
EltwiseLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
BatchNormLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ChannelsPReLULayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
MaxUnpoolLayer
>
(
LayerParams
&
);
}
}
modules/dnn/src/dnn.cpp
View file @
e784f137
...
...
@@ -592,6 +592,24 @@ bool Net::empty() const
return
impl
->
layers
.
size
()
<=
1
;
//first layer is default Data layer
}
std
::
vector
<
int
>
Net
::
getUnconnectedOutLayers
()
const
{
std
::
vector
<
int
>
layersIds
;
Impl
::
MapIdToLayerData
::
iterator
it
;
for
(
it
=
impl
->
layers
.
begin
();
it
!=
impl
->
layers
.
end
();
it
++
)
{
int
lid
=
it
->
first
;
LayerData
&
ld
=
it
->
second
;
if
(
ld
.
requiredOutputs
.
size
()
==
0
)
layersIds
.
push_back
(
lid
);
}
return
layersIds
;
}
//////////////////////////////////////////////////////////////////////////
Importer
::~
Importer
()
{}
...
...
modules/dnn/src/init.cpp
View file @
e784f137
...
...
@@ -51,6 +51,7 @@
#include "layers/detection_output_layer.hpp"
#include "layers/normalize_bbox_layer.hpp"
#include "layers/shift_layer.hpp"
#include "layers/padding_layer.hpp"
namespace
cv
{
...
...
@@ -89,11 +90,14 @@ void initModule()
REG_RUNTIME_LAYER_FUNC
(
MVN
,
createLayerFromCaffe
<
MVNLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
ReLU
,
createLayerFromCaffe
<
ReLULayer
>
);
REG_RUNTIME_LAYER_FUNC
(
ChannelsPReLU
,
createLayerFromCaffe
<
ChannelsPReLULayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Sigmoid
,
createLayerFromCaffe
<
SigmoidLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
TanH
,
createLayerFromCaffe
<
TanHLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createLayerFromCaffe
<
BNLLLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createLayerFromCaffe
<
AbsLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Power
,
createLayerFromCaffe
<
PowerLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
BatchNorm
,
createLayerFromCaffe
<
BatchNormLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
MaxUnpool
,
createLayerFromCaffe
<
MaxUnpoolLayer
>
);
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
);
REG_RUNTIME_LAYER_CLASS
(
Identity
,
BlankLayer
);
...
...
@@ -104,6 +108,7 @@ void initModule()
REG_RUNTIME_LAYER_CLASS
(
DetectionOutput
,
DetectionOutputLayer
);
REG_RUNTIME_LAYER_CLASS
(
NormalizeBBox
,
NormalizeBBoxLayer
);
REG_RUNTIME_LAYER_CLASS
(
Shift
,
ShiftLayer
);
REG_RUNTIME_LAYER_CLASS
(
Padding
,
PaddingLayer
);
init
.
status
=
true
;
}
...
...
modules/dnn/src/layers/batch_norm_layer.cpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Batch Normalization layer.
*/
#include "batch_norm_layer.hpp"
namespace
cv
{
namespace
dnn
{
BatchNormLayerImpl
::
BatchNormLayerImpl
(
float
eps_
,
bool
hasWeights_
,
bool
hasBias_
)
:
eps
(
eps_
),
hasWeights
(
hasWeights_
),
hasBias
(
hasBias_
)
{}
void
BatchNormLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
blobs
.
size
()
==
4
);
outputs
.
resize
(
inputs
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
outputs
[
i
].
create
(
inputs
[
i
]
->
shape
());
}
}
void
BatchNormLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
1
);
Blob
&
inpBlob
=
*
inputs
[
0
];
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
Blob
&
outBlob
=
outputs
[
ii
];
if
(
hasWeights
)
CV_Assert
(
inpBlob
.
channels
()
==
blobs
[
2
].
total
());
if
(
hasBias
)
CV_Assert
(
inpBlob
.
channels
()
==
blobs
[
3
].
total
());
for
(
int
n
=
0
;
n
<
inpBlob
.
channels
();
n
++
)
{
float
mean
=
blobs
[
0
].
matRefConst
().
at
<
float
>
(
n
);
float
invstd
=
1
/
sqrt
(
blobs
[
1
].
matRefConst
().
at
<
float
>
(
n
)
+
eps
);
float
w
=
hasWeights
?
blobs
[
2
].
matRefConst
().
at
<
float
>
(
n
)
:
1
;
float
b
=
hasBias
?
blobs
[
3
].
matRefConst
().
at
<
float
>
(
n
)
:
0
;
outBlob
.
getPlane
(
0
,
n
)
=
(
inpBlob
.
getPlane
(
0
,
n
)
-
mean
)
*
(
w
*
invstd
)
+
b
;
}
}
}
Ptr
<
BatchNormLayer
>
BatchNormLayer
::
create
(
float
eps
,
bool
has_weights
,
bool
has_bias
)
{
return
Ptr
<
BatchNormLayer
>
(
new
BatchNormLayerImpl
(
eps
,
has_weights
,
has_bias
));
}
}
// namespace dnn
}
// namespace cv
modules/dnn/src/layers/batch_norm_layer.hpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Declaration of Batch Normalization layer.
*/
#ifndef __OPENCV_DNN_LAYERS_BATCH_NORM_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_BATCH_NORM_LAYER_HPP__
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
BatchNormLayerImpl
:
public
BatchNormLayer
{
public
:
BatchNormLayerImpl
(
float
eps_
,
bool
hasWeights_
,
bool
hasBias_
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
float
eps
;
bool
hasWeights
,
hasBias
;
};
}
}
#endif // BATCH_NORM_LAYER_HPP
modules/dnn/src/layers/convolution_layer.cpp
View file @
e784f137
...
...
@@ -53,12 +53,14 @@ namespace cv
namespace
dnn
{
ConvolutionLayerImpl
::
ConvolutionLayerImpl
()
BaseConvolutionLayerImpl
::
BaseConvolutionLayerImpl
()
:
numOutput
(
-
1
),
group
(
-
1
),
inpH
(
0
),
inpW
(
0
),
inpCn
(
0
),
outH
(
0
),
outW
(
0
),
outCn
(
0
),
inpGroupCn
(
0
),
outGroupCn
(
0
),
ksize
(
0
),
colBlobCols
(
0
),
bias
(
false
),
tryUseOpenCL
(
false
)
{
tryUseOpenCL
=
false
;
//true;
numOutput
=
-
1
;
group
=
-
1
;
#if HAVE_CBLAS
if
(
getBlasThreads
()
!=
cv
::
getThreadNum
())
{
...
...
@@ -67,37 +69,23 @@ ConvolutionLayerImpl::ConvolutionLayerImpl()
#endif
}
void
ConvolutionLayerImpl
::
init
()
void
Base
ConvolutionLayerImpl
::
init
()
{
CV_Assert
(
1
<=
blobs
.
size
()
&&
blobs
.
size
()
<=
2
);
bias
=
(
blobs
.
size
()
>=
2
);
numOutput
=
blobs
[
0
].
num
();
CV_Assert
(
blobs
.
size
()
>=
1
&&
blobs
.
size
()
<=
2
);
CV_Assert
(
blobs
[
0
].
dims
()
==
4
&&
blobs
[
0
].
cols
()
==
kernel
.
width
&&
blobs
[
0
].
rows
()
==
kernel
.
height
);
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
blobs
[
0
].
num
());
//TODO: dilation in OCL mode
bias
=
(
blobs
.
size
()
>=
2
);
useOpenCL
=
ocl
::
useOpenCL
()
&&
tryUseOpenCL
&&
dilation
==
Size
(
1
,
1
);
}
void
ConvolutionLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
void
Base
ConvolutionLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
>
0
);
init
();
CV_Assert
(
inputs
.
size
()
>
0
);
const
Blob
&
input
=
*
inputs
[
0
];
CV_Assert
(
input
.
dims
()
==
4
&&
(
input
.
type
()
==
CV_32F
||
input
.
type
()
==
CV_64F
));
computeInpOutShape
(
input
);
group
=
inpCn
/
blobs
[
0
].
channels
();
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
blobs
[
0
].
num
()
==
outCn
&&
blobs
[
0
].
channels
()
==
inpCn
/
group
);
outGroupCn
=
outCn
/
group
;
inpGroupCn
=
inpCn
/
group
;
ksize
=
inpGroupCn
*
kernel
.
height
*
kernel
.
width
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
CV_Assert
(
inputs
[
i
]
->
type
()
==
input
.
type
());
...
...
@@ -105,36 +93,73 @@ void ConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vecto
CV_Assert
(
inputs
[
i
]
->
rows
()
==
input
.
rows
()
&&
inputs
[
i
]
->
cols
()
==
input
.
cols
());
}
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_MAT
;
computeInpOutShape
(
input
)
;
if
(
!
is1x1
())
{
colBlob
.
create
(
Shape
(
ksize
,
outH
*
outW
),
input
.
type
(),
allocFlags
);
}
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_UMAT
:
Blob
::
ALLOC_MAT
;
if
(
bias
)
{
biasOnesBlob
.
create
(
Shape
(
1
,
topH
*
top
W
),
input
.
type
(),
allocFlags
);
biasOnesBlob
.
create
(
Shape
(
1
,
outH
*
out
W
),
input
.
type
(),
allocFlags
);
biasOnesBlob
.
setTo
(
1
);
}
outputs
.
resize
(
inputs
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
outputs
[
i
].
create
(
Shape
(
inputs
[
i
]
->
num
(),
topCn
,
topH
,
topW
),
input
.
type
(),
allocFlags
);
outputs
[
i
].
create
(
Shape
(
inputs
[
i
]
->
num
(),
outCn
,
outH
,
outW
),
input
.
type
(),
allocFlags
);
}
if
(
!
is1x1
())
{
colBlob
.
create
(
Shape
(
ksize
,
colBlobCols
),
input
.
type
(),
allocFlags
);
}
}
bool
ConvolutionLayerImpl
::
is1x1
()
const
bool
Base
ConvolutionLayerImpl
::
is1x1
()
const
{
return
(
kernel
.
height
==
1
&&
kernel
.
width
==
1
)
&&
(
stride
.
height
==
1
&&
stride
.
width
==
1
)
&&
(
dilation
.
height
==
1
&&
dilation
.
width
==
1
);
}
void
ConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
input
)
{
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
blobs
[
0
].
num
());
numOutput
=
blobs
[
0
].
num
();
inpH
=
input
.
rows
();
inpW
=
input
.
cols
();
inpCn
=
input
.
channels
();
outCn
=
numOutput
;
if
(
padMode
.
empty
())
{
outH
=
(
inpH
+
2
*
pad
.
height
-
(
dilation
.
height
*
(
kernel
.
height
-
1
)
+
1
))
/
stride
.
height
+
1
;
outW
=
(
inpW
+
2
*
pad
.
width
-
(
dilation
.
width
*
(
kernel
.
width
-
1
)
+
1
))
/
stride
.
width
+
1
;
}
else
{
getConvPoolOutParams
(
inpH
,
inpW
,
kernel
,
stride
,
pad
,
padMode
,
outH
,
outW
);
}
group
=
inpCn
/
blobs
[
0
].
channels
();
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
blobs
[
0
].
num
()
==
outCn
&&
blobs
[
0
].
channels
()
==
inpCn
/
group
);
outGroupCn
=
outCn
/
group
;
inpGroupCn
=
inpCn
/
group
;
ksize
=
inpGroupCn
*
kernel
.
height
*
kernel
.
width
;
colBlobCols
=
outH
*
outW
;
}
template
<
typename
XMat
>
void
ConvolutionLayerImpl
::
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
>
0
);
XMat
weightsMat
=
reshaped
(
blobs
[
0
].
getRefConst
<
XMat
>
(),
Shape
(
outCn
,
ksize
));
XMat
biasesMat
=
(
bias
)
?
reshaped
(
blobs
[
1
].
getRefConst
<
XMat
>
(),
Shape
(
outCn
,
1
))
:
XMat
();
...
...
@@ -213,44 +238,33 @@ void ConvolutionLayerImpl::im2col(const Mat &srcImg, Mat &dstCol)
dstCol
=
colMat
;
}
void
ConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
input
)
{
inpH
=
input
.
rows
();
inpW
=
input
.
cols
();
inpCn
=
input
.
channels
();
outCn
=
numOutput
;
if
(
padMode
.
empty
())
{
outH
=
(
inpH
+
2
*
pad
.
height
-
(
dilation
.
height
*
(
kernel
.
height
-
1
)
+
1
))
/
stride
.
height
+
1
;
outW
=
(
inpW
+
2
*
pad
.
width
-
(
dilation
.
width
*
(
kernel
.
width
-
1
)
+
1
))
/
stride
.
width
+
1
;
}
else
{
getConvPoolOutParams
(
inpH
,
inpW
,
kernel
,
stride
,
pad
,
padMode
,
outH
,
outW
);
}
topH
=
outH
;
topW
=
outW
;
topCn
=
outCn
;
}
//Deconvolution
DeConvolutionLayerImpl
::
DeConvolutionLayerImpl
(
)
void
DeConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
{
BlobShape
bs0
=
blobs
[
0
].
shape
();
BlobShape
bs1
=
blobs
[
1
].
shape
();
CV_Assert
(
!
bias
||
blobs
[
1
].
total
()
==
(
size_t
)
blobs
[
0
].
channels
());
}
numOutput
=
blobs
[
0
].
channels
();
void
DeConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
{
outH
=
inpBlob
.
rows
();
outW
=
inpBlob
.
cols
();
outCn
=
inpBlob
.
channels
();
inpH
=
inpBlob
.
rows
();
inpW
=
inpBlob
.
cols
();
inpCn
=
inpBlob
.
channels
();
inpH
=
stride
.
height
*
(
outH
-
1
)
+
kernel
.
height
-
2
*
p
ad
.
height
;
inpW
=
stride
.
width
*
(
outW
-
1
)
+
kernel
.
width
-
2
*
p
ad
.
width
;
inp
Cn
=
numOutput
;
outH
=
stride
.
height
*
(
inpH
-
1
)
+
kernel
.
height
-
2
*
pad
.
height
+
adjustP
ad
.
height
;
outW
=
stride
.
width
*
(
inpW
-
1
)
+
kernel
.
width
-
2
*
pad
.
width
+
adjustP
ad
.
width
;
out
Cn
=
numOutput
;
topH
=
inpH
;
topW
=
inpW
;
topCn
=
inpCn
;
group
=
inpCn
/
blobs
[
0
].
num
();
outGroupCn
=
outCn
/
group
;
inpGroupCn
=
inpCn
/
group
;
ksize
=
outGroupCn
*
kernel
.
height
*
kernel
.
width
;
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
blobs
[
0
].
channels
()
==
outCn
&&
blobs
[
0
].
num
()
==
inpCn
/
group
);
colBlobCols
=
inpH
*
inpW
;
}
void
DeConvolutionLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
...
...
@@ -264,24 +278,24 @@ void DeConvolutionLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blo
template
<
typename
XMat
>
void
DeConvolutionLayerImpl
::
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
XMat
weightsMat
=
reshaped
(
blobs
[
0
].
getRefConst
<
XMat
>
(),
Shape
(
out
Cn
,
ksize
));
XMat
weightsMat
=
reshaped
(
blobs
[
0
].
getRefConst
<
XMat
>
(),
Shape
(
inp
Cn
,
ksize
));
XMat
biasesMat
=
(
bias
)
?
reshaped
(
blobs
[
1
].
getRefConst
<
XMat
>
(),
Shape
(
outCn
,
1
))
:
XMat
();
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
int
numImg
=
inputs
[
ii
]
->
size
(
0
);
XMat
convBlob
=
reshaped
(
inputs
[
ii
]
->
getRefConst
<
XMat
>
(),
Shape
(
numImg
*
outCn
,
outH
*
out
W
));
XMat
decnBlob
=
reshaped
(
outputs
[
ii
].
getRef
<
XMat
>
(),
Shape
(
numImg
*
inpCn
,
inpH
*
inp
W
));
XMat
convBlob
=
reshaped
(
inputs
[
ii
]
->
getRefConst
<
XMat
>
(),
Shape
(
numImg
*
inpCn
,
inpH
*
inp
W
));
XMat
decnBlob
=
reshaped
(
outputs
[
ii
].
getRef
<
XMat
>
(),
Shape
(
numImg
*
outCn
,
outH
*
out
W
));
for
(
int
n
=
0
;
n
<
numImg
;
n
++
)
{
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
XMat
dstMat
=
decnBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
inpGroupCn
,
inp
GroupCn
));
XMat
dstMat
=
decnBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
outGroupCn
,
out
GroupCn
));
XMat
&
colMat
=
(
is1x1
())
?
dstMat
:
colBlob
.
getRef
<
XMat
>
();
XMat
convMat
=
convBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
outGroupCn
,
out
GroupCn
));
XMat
wghtMat
=
weightsMat
.
rowRange
(
_Range
(
g
*
outGroupCn
,
out
GroupCn
));
XMat
convMat
=
convBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
inpGroupCn
,
inp
GroupCn
));
XMat
wghtMat
=
weightsMat
.
rowRange
(
_Range
(
g
*
inpGroupCn
,
inp
GroupCn
));
dnn
::
gemm
(
wghtMat
,
convMat
,
1
,
colMat
,
0
,
GEMM_1_T
);
...
...
@@ -306,7 +320,7 @@ void DeConvolutionLayerImpl::col2im(const Mat &colMat, Mat &dstImg)
return
;
}
if
(
dstImg
.
type
()
==
CV_32F
)
col2im_CpuPBody
<
float
>::
run
(
colMat
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inp
W
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dstImg
.
ptr
<
float
>
());
col2im_CpuPBody
<
float
>::
run
(
colMat
.
ptr
<
float
>
(),
outGroupCn
,
outH
,
out
W
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dstImg
.
ptr
<
float
>
());
if
(
dstImg
.
type
()
==
CV_64F
)
col2im_CpuPBody
<
double
>::
run
(
colMat
.
ptr
<
double
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dstImg
.
ptr
<
double
>
());
}
...
...
@@ -338,13 +352,15 @@ Ptr<BaseConvolutionLayer> ConvolutionLayer::create(Size kernel, Size stride, Siz
return
Ptr
<
BaseConvolutionLayer
>
(
l
);
}
Ptr
<
BaseConvolutionLayer
>
DeconvolutionLayer
::
create
(
Size
kernel
,
Size
stride
,
Size
pad
,
Size
dilation
)
Ptr
<
BaseConvolutionLayer
>
DeconvolutionLayer
::
create
(
Size
kernel
,
Size
stride
,
Size
pad
,
Size
dilation
,
Size
adjustPad
)
{
DeConvolutionLayerImpl
*
l
=
new
DeConvolutionLayerImpl
();
l
->
kernel
=
kernel
;
l
->
pad
=
pad
;
l
->
stride
=
stride
;
l
->
dilation
=
dilation
;
l
->
adjustPad
=
adjustPad
;
return
Ptr
<
BaseConvolutionLayer
>
(
l
);
}
...
...
modules/dnn/src/layers/convolution_layer.hpp
View file @
e784f137
...
...
@@ -49,30 +49,38 @@ namespace cv
namespace
dnn
{
//TODO: simultaneously convolution and bias addition for cache optimization
class
ConvolutionLayerImpl
:
public
ConvolutionLayer
class
BaseConvolutionLayerImpl
:
public
ConvolutionLayer
{
public
:
ConvolutionLayerImpl
();
BaseConvolutionLayerImpl
();
virtual
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
virtual
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
virtual
void
init
();
protected
:
void
init
();
virtual
void
computeInpOutShape
(
const
Blob
&
inpBlob
)
=
0
;
bool
is1x1
()
const
;
int
numOutput
,
group
;
int
inpH
,
inpW
,
inpCn
;
int
outH
,
outW
,
outCn
;
int
topH
,
topW
,
topCn
;
//switched between inp/out on deconv/conv
int
inpGroupCn
,
outGroupCn
;
int
ksize
;
int
colBlobCols
;
bool
bias
;
bool
tryUseOpenCL
,
useOpenCL
;
Blob
colBlob
,
biasOnesBlob
;
bool
is1x1
()
const
;
};
//TODO: simultaneously convolution and bias addition for cache optimization
class
ConvolutionLayerImpl
:
public
BaseConvolutionLayerImpl
{
public
:
virtual
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
protected
:
virtual
void
computeInpOutShape
(
const
Blob
&
inpBlob
);
template
<
typename
XMat
>
...
...
@@ -81,10 +89,9 @@ protected:
void
im2col
(
const
UMat
&
srcImg
,
UMat
&
dstCol
);
};
class
DeConvolutionLayerImpl
:
public
ConvolutionLayerImpl
class
DeConvolutionLayerImpl
:
public
Base
ConvolutionLayerImpl
{
public
:
DeConvolutionLayerImpl
();
virtual
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
protected
:
...
...
modules/dnn/src/layers/elementwise_layers.cpp
View file @
e784f137
#include "../precomp.hpp"
#include "elementwise_layers.hpp"
#include "opencv2/imgproc.hpp"
namespace
cv
{
...
...
@@ -42,5 +43,45 @@ Ptr<PowerLayer> PowerLayer::create(double power /*= 1*/, double scale /*= 1*/, d
return
Ptr
<
PowerLayer
>
(
new
ElementWiseLayer
<
PowerFunctor
>
(
f
));
}
////////////////////////////////////////////////////////////////////////////
void
ChannelsPReLULayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
blobs
.
size
()
==
1
);
outputs
.
resize
(
inputs
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
outputs
[
i
].
create
(
inputs
[
i
]
->
shape
());
}
}
void
ChannelsPReLULayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
1
);
Blob
&
inpBlob
=
*
inputs
[
0
];
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
Blob
&
outBlob
=
outputs
[
ii
];
CV_Assert
(
blobs
[
0
].
total
()
==
inpBlob
.
channels
());
for
(
int
n
=
0
;
n
<
inpBlob
.
channels
();
n
++
)
{
float
slopeWeight
=
blobs
[
0
].
matRefConst
().
at
<
float
>
(
n
);
cv
::
threshold
(
inpBlob
.
getPlane
(
0
,
n
),
outBlob
.
getPlane
(
0
,
n
),
0
,
0
,
cv
::
THRESH_TOZERO_INV
);
outBlob
.
getPlane
(
0
,
n
)
=
inpBlob
.
getPlane
(
0
,
n
)
+
(
slopeWeight
-
1
)
*
outBlob
.
getPlane
(
0
,
n
);
}
}
}
Ptr
<
ChannelsPReLULayer
>
ChannelsPReLULayer
::
create
()
{
return
Ptr
<
ChannelsPReLULayer
>
(
new
ChannelsPReLULayerImpl
());
}
}
}
modules/dnn/src/layers/elementwise_layers.hpp
View file @
e784f137
...
...
@@ -313,6 +313,16 @@ struct PowerFunctor
#endif
};
class
ChannelsPReLULayerImpl
:
public
ChannelsPReLULayer
{
public
:
ChannelsPReLULayerImpl
()
{}
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
}
}
#endif
modules/dnn/src/layers/eltwise_layer.cpp
View file @
e784f137
...
...
@@ -62,7 +62,8 @@ namespace dnn
const
BlobShape
&
shape0
=
inputs
[
0
]
->
shape
();
for
(
size_t
i
=
1
;
i
<
inputs
.
size
();
++
i
)
{
CV_Assert
(
shape0
==
inputs
[
i
]
->
shape
());
BlobShape
iShape
=
inputs
[
i
]
->
shape
();
CV_Assert
(
shape0
==
iShape
);
}
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
shape0
);
...
...
modules/dnn/src/layers/max_unpooling_layer.cpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Batch Normalization layer.
*/
#include "max_unpooling_layer.hpp"
namespace
cv
{
namespace
dnn
{
MaxUnpoolLayerImpl
::
MaxUnpoolLayerImpl
(
Size
outSize_
)
:
outSize
(
outSize_
)
{}
void
MaxUnpoolLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
2
);
BlobShape
outShape
=
inputs
[
0
]
->
shape
();
outShape
[
2
]
=
outSize
.
height
;
outShape
[
3
]
=
outSize
.
width
;
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
outShape
);
}
void
MaxUnpoolLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
==
2
);
Blob
&
input
=
*
inputs
[
0
];
Blob
&
indices
=
*
inputs
[
1
];
CV_Assert
(
input
.
total
()
==
indices
.
total
());
CV_Assert
(
input
.
num
()
==
1
);
for
(
int
i_n
=
0
;
i_n
<
outputs
.
size
();
i_n
++
)
{
Blob
&
outBlob
=
outputs
[
i_n
];
CV_Assert
(
input
.
channels
()
==
outBlob
.
channels
());
for
(
int
i_c
=
0
;
i_c
<
input
.
channels
();
i_c
++
)
{
Mat
outPlane
=
outBlob
.
getPlane
(
0
,
i_c
);
for
(
int
i_wh
=
0
;
i_wh
<
input
.
size2
().
area
();
i_wh
++
)
{
int
index
=
indices
.
getPlane
(
0
,
i_c
).
at
<
float
>
(
i_wh
);
CV_Assert
(
index
<
outPlane
.
total
());
outPlane
.
at
<
float
>
(
index
)
=
input
.
getPlane
(
0
,
i_c
).
at
<
float
>
(
i_wh
);
}
}
}
}
Ptr
<
MaxUnpoolLayer
>
MaxUnpoolLayer
::
create
(
Size
unpoolSize
)
{
return
Ptr
<
MaxUnpoolLayer
>
(
new
MaxUnpoolLayerImpl
(
unpoolSize
));
}
}
}
modules/dnn/src/layers/max_unpooling_layer.hpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Declaration of MaxUnpooling layer.
*/
#ifndef __OPENCV_DNN_LAYERS_MAX_UNPOOLING_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_MAX_UNPOOLING_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
MaxUnpoolLayerImpl
:
public
MaxUnpoolLayer
{
public
:
MaxUnpoolLayerImpl
(
Size
outSize_
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
Size
outSize
;
};
}
}
#endif // __OPENCV_DNN_LAYERS_MAX_UNPOOLING_LAYER_HPP__
modules/dnn/src/layers/padding_layer.cpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of padding layer, which adds paddings to input blob.
*/
#include "padding_layer.hpp"
#include <vector>
namespace
cv
{
namespace
dnn
{
PaddingLayer
::
PaddingLayer
(
LayerParams
&
params
)
{
paddingDim
=
params
.
get
<
int
>
(
"padding_dim"
);
padding
=
abs
(
params
.
get
<
int
>
(
"padding"
));
inputDims
=
params
.
get
<
int
>
(
"input_dims"
,
0
);
index
=
params
.
get
<
int
>
(
"index"
,
0
);
paddingValue
=
params
.
get
<
double
>
(
"value"
,
0
);
if
(
paddingDim
<
0
||
padding
<
0
)
CV_Error
(
cv
::
Error
::
StsNotImplemented
,
"Negative padding and dim aren't supported"
);
}
void
PaddingLayer
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
outputs
.
resize
(
inputs
.
size
());
for
(
int
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
BlobShape
shape
=
inputs
[
i
]
->
shape
();
int
dim
=
getPadDim
(
shape
);
CV_Assert
(
dim
<
shape
.
dims
());
shape
[
dim
]
+=
padding
;
outputs
[
i
].
create
(
shape
);
}
}
void
PaddingLayer
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
for
(
int
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
outputs
[
i
].
matRef
()
=
paddingValue
;
BlobShape
inShape
=
inputs
[
i
]
->
shape
();
BlobShape
outShape
=
outputs
[
i
].
shape
();
int
dim
=
getPadDim
(
inShape
);
int
actualIndex
=
index
;
if
(
index
==
0
)
actualIndex
=
inShape
[
dim
];
std
::
vector
<
std
::
pair
<
Range
,
Range
>
>
srcDstRanges
;
srcDstRanges
.
push_back
(
std
::
make_pair
(
Range
(
0
,
actualIndex
),
Range
(
0
,
actualIndex
)));
srcDstRanges
.
push_back
(
std
::
make_pair
(
Range
(
actualIndex
,
inShape
[
dim
]),
Range
(
actualIndex
+
padding
,
outShape
[
dim
])));
std
::
vector
<
Range
>
srcRanges
(
inShape
.
dims
(),
Range
::
all
()),
dstRanges
=
srcRanges
;
for
(
int
i
=
0
;
i
<
srcDstRanges
.
size
();
i
++
)
{
if
(
!
srcDstRanges
[
i
].
first
.
empty
())
{
srcRanges
[
dim
]
=
srcDstRanges
[
i
].
first
;
dstRanges
[
dim
]
=
srcDstRanges
[
i
].
second
;
Mat
dst
=
outputs
[
i
].
matRef
()(
&
dstRanges
[
0
]);
Mat
src
=
inputs
[
i
]
->
matRef
()(
&
srcRanges
[
0
]).
clone
();
src
.
copyTo
(
dst
);
}
}
}
}
int
PaddingLayer
::
getPadDim
(
const
BlobShape
&
shape
)
const
{
return
inputDims
>
0
&&
shape
.
dims
()
>
inputDims
?
paddingDim
+
1
:
paddingDim
;
}
}
}
modules/dnn/src/layers/padding_layer.hpp
0 → 100644
View file @
e784f137
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Declaration of padding layer, which adds paddings to input blob.
*/
#ifndef __OPENCV_DNN_LAYERS_PADDING_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_PADDING_LAYER_HPP__
#include "../precomp.hpp"
namespace
cv
{
namespace
dnn
{
class
PaddingLayer
:
public
Layer
{
public
:
PaddingLayer
()
{}
PaddingLayer
(
LayerParams
&
params
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
int
getPadDim
(
const
BlobShape
&
shape
)
const
;
int
paddingDim
,
padding
,
inputDims
,
index
;
float
paddingValue
;
};
}
}
#endif
modules/dnn/src/layers/pooling_layer.cpp
View file @
e784f137
...
...
@@ -72,7 +72,7 @@ PoolingLayerImpl::PoolingLayerImpl(int type_, Size kernel_, Size stride_, Size p
void
PoolingLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
inputs
.
size
()
>
0
);
CV_Assert
(
inputs
.
size
()
==
1
);
inp
=
inputs
[
0
]
->
size2
();
...
...
@@ -85,12 +85,20 @@ void PoolingLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vector<Bl
useOpenCL
=
ocl
::
useOpenCL
();
outputs
.
resize
(
inputs
.
size
());
outputs
.
resize
(
type
==
MAX
?
2
*
inputs
.
size
()
:
inputs
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
CV_Assert
(
inputs
[
i
]
->
rows
()
==
inp
.
height
&&
inputs
[
i
]
->
cols
()
==
inp
.
width
);
if
(
type
==
MAX
)
{
outputs
[
2
*
i
].
create
(
BlobShape
(
inputs
[
i
]
->
num
(),
inputs
[
i
]
->
channels
(),
out
.
height
,
out
.
width
));
outputs
[
2
*
i
+
1
].
create
(
BlobShape
(
inputs
[
i
]
->
num
(),
inputs
[
i
]
->
channels
(),
out
.
height
,
out
.
width
));
}
else
{
outputs
[
i
].
create
(
BlobShape
(
inputs
[
i
]
->
num
(),
inputs
[
i
]
->
channels
(),
out
.
height
,
out
.
width
));
}
}
}
void
PoolingLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
...
...
@@ -100,7 +108,7 @@ void PoolingLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
switch
(
type
)
{
case
MAX
:
maxPooling
(
*
inputs
[
ii
],
outputs
[
ii
]);
maxPooling
(
*
inputs
[
ii
],
outputs
[
2
*
ii
],
outputs
[
2
*
ii
+
1
]);
break
;
case
AVE
:
avePooling
(
*
inputs
[
ii
],
outputs
[
ii
]);
...
...
@@ -112,17 +120,17 @@ void PoolingLayerImpl::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
}
}
void
PoolingLayerImpl
::
maxPooling
(
Blob
&
src
,
Blob
&
dst
)
void
PoolingLayerImpl
::
maxPooling
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
)
{
if
(
!
useOpenCL
)
maxPooling_cpu
(
src
,
dst
);
maxPooling_cpu
(
src
,
dst
,
mask
);
else
{
CV_Assert
(
maxPooling_ocl
(
src
,
dst
));
CV_Assert
(
maxPooling_ocl
(
src
,
dst
,
mask
));
}
}
bool
PoolingLayerImpl
::
maxPooling_ocl
(
Blob
&
src
,
Blob
&
dst
)
bool
PoolingLayerImpl
::
maxPooling_ocl
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
)
{
return
pooling_ocl
(
"MaxPoolForward"
,
src
,
dst
);
}
...
...
@@ -142,7 +150,7 @@ bool PoolingLayerImpl::avePooling_ocl(Blob &src, Blob &dst)
return
pooling_ocl
(
"AvePoolForward"
,
src
,
dst
);
}
void
PoolingLayerImpl
::
maxPooling_cpu
(
Blob
&
src
,
Blob
&
dst
)
void
PoolingLayerImpl
::
maxPooling_cpu
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
)
{
CV_DbgAssert
(
dst
.
rows
()
==
out
.
height
&&
dst
.
cols
()
==
out
.
width
);
...
...
@@ -152,6 +160,7 @@ void PoolingLayerImpl::maxPooling_cpu(Blob &src, Blob &dst)
{
const
float
*
srcData
=
src
.
ptrf
(
n
,
c
);
float
*
dstData
=
dst
.
ptrf
(
n
,
c
);
float
*
dstMaskData
=
mask
.
ptrf
(
n
,
c
);
for
(
int
ph
=
0
;
ph
<
out
.
height
;
++
ph
)
{
...
...
@@ -165,16 +174,21 @@ void PoolingLayerImpl::maxPooling_cpu(Blob &src, Blob &dst)
wstart
=
max
(
wstart
,
0
);
const
int
poolIndex
=
ph
*
out
.
width
+
pw
;
float
max_val
=
-
FLT_MAX
;
int
max_index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
const
int
index
=
h
*
inp
.
width
+
w
;
if
(
srcData
[
index
]
>
max_val
)
{
max_val
=
srcData
[
index
];
max_index
=
index
;
}
}
dstData
[
poolIndex
]
=
max_val
;
dstMaskData
[
poolIndex
]
=
max_index
;
}
}
}
...
...
@@ -187,7 +201,9 @@ bool PoolingLayerImpl::pooling_ocl(const char *kname, const Blob &src, Blob &dst
{
const
UMat
&
srcMat
=
src
.
umatRefConst
();
UMat
&
dstMat
=
dst
.
umatRef
();
CV_Assert
(
mask
==
NULL
&&
srcMat
.
offset
==
0
&&
dstMat
.
offset
==
0
);
UMat
*
indexesMat
=
mask
==
NULL
?
NULL
:
&
dst
.
umatRef
();
CV_Assert
(
srcMat
.
offset
==
0
&&
dstMat
.
offset
==
0
);
ocl
::
Kernel
ker
(
kname
,
ocl
::
dnn
::
pooling_oclsrc
,
String
(
"-DT="
)
+
ocl
::
typeToStr
(
src
.
type
()));
if
(
ker
.
empty
())
...
...
@@ -199,7 +215,8 @@ bool PoolingLayerImpl::pooling_ocl(const char *kname, const Blob &src, Blob &dst
ocl
::
KernelArg
::
PtrReadOnly
(
srcMat
),
s
[
0
],
s
[
1
],
s
[
2
],
s
[
3
],
out
.
height
,
out
.
width
,
kernel
.
height
,
kernel
.
width
,
stride
.
height
,
stride
.
width
,
pad
.
height
,
pad
.
width
,
ocl
::
KernelArg
::
PtrWriteOnly
(
dstMat
));
ocl
::
KernelArg
::
PtrWriteOnly
(
dstMat
),
ocl
::
KernelArg
(
ocl
::
KernelArg
::
PTR_ONLY
+
ocl
::
KernelArg
::
WRITE_ONLY
,
indexesMat
));
size_t
wgSize
=
ocl
::
Device
::
getDefault
().
maxWorkGroupSize
();
if
(
!
ker
.
run
(
1
,
&
nthreads
,
&
wgSize
,
true
))
...
...
modules/dnn/src/layers/pooling_layer.hpp
View file @
e784f137
...
...
@@ -58,9 +58,9 @@ class PoolingLayerImpl : public PoolingLayer
bool
pooling_ocl
(
const
char
*
kname
,
const
Blob
&
src
,
Blob
&
dst
,
Blob
*
mask
=
NULL
);
void
maxPooling
(
Blob
&
src
,
Blob
&
dst
);
void
maxPooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
bool
maxPooling_ocl
(
Blob
&
src
,
Blob
&
dst
);
void
maxPooling
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
);
void
maxPooling_cpu
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
);
bool
maxPooling_ocl
(
Blob
&
src
,
Blob
&
dst
,
Blob
&
mask
);
void
avePooling
(
Blob
&
src
,
Blob
&
dst
);
void
avePooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
...
...
modules/dnn/src/layers/shift_layer.cpp
View file @
e784f137
modules/dnn/src/layers/shift_layer.hpp
View file @
e784f137
...
...
@@ -22,13 +22,15 @@ class ShiftLayerImpl;
class
ShiftLayer
:
public
Layer
{
cv
::
Ptr
<
ShiftLayerImpl
>
impl
;
public
:
ShiftLayer
()
{}
ShiftLayer
(
LayerParams
&
params
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
private
:
cv
::
Ptr
<
ShiftLayerImpl
>
impl
;
};
}
...
...
modules/dnn/src/opencl/pooling.cl
View file @
e784f137
...
...
@@ -24,10 +24,7 @@
*
POSSIBILITY
OF
SUCH
DAMAGE.
**************************************************************************************
/
__kernel
void
MaxPoolForward
(
const
int
nthreads,
__global
T*
bottom_data,
const
int
num,
const
int
channels,
const
int
height,
const
int
width,
const
int
pooled_height,
const
int
pooled_width,
const
int
kernel_h,
const
int
kernel_w,
const
int
stride_h,
const
int
stride_w,
const
int
pad_h,
const
int
pad_w,
__global
T*
top_data
#
ifdef
MASK
,
__global
int*
mask,
__global
T*
top_mask
#
endif
__kernel
void
MaxPoolForward
(
const
int
nthreads,
__global
T*
bottom_data,
const
int
num,
const
int
channels,
const
int
height,
const
int
width,
const
int
pooled_height,
const
int
pooled_width,
const
int
kernel_h,
const
int
kernel_w,
const
int
stride_h,
const
int
stride_w,
const
int
pad_h,
const
int
pad_w,
__global
T*
top_data,
__global
int*
mask
)
{
int
index
=
get_global_id
(
0
)
;
int
tmp
=
get_global_size
(
0
)
;
...
...
@@ -55,13 +52,10 @@ __kernel void MaxPoolForward(const int nthreads, __global T* bottom_data, const
}
}
top_data[index]
=
maxval
;
#
ifdef
MASK
if
(
mask
)
{
mask[index]
=
maxidx
;
}
else
{
top_mask[index]
=
maxidx
;
}
#
endif
}
}
...
...
modules/dnn/src/torch/torch_importer.cpp
View file @
e784f137
...
...
@@ -45,11 +45,11 @@
#include <map>
#include <algorithm>
#include <iostream>
#include <fstream>
namespace
cv
{
namespace
dnn
{
#if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER
#include "THDiskFile.h"
#ifdef NDEBUG
...
...
@@ -91,6 +91,7 @@ static inline bool endsWith(const String &str, const char *substr)
struct
TorchImporter
:
public
::
cv
::
dnn
::
Importer
{
typedef
std
::
map
<
String
,
std
::
pair
<
int
,
Blob
>
>
TensorsMap
;
Net
net
;
THFile
*
file
;
...
...
@@ -102,16 +103,10 @@ struct TorchImporter : public ::cv::dnn::Importer
{
String
thName
,
apiType
;
dnn
::
LayerParams
params
;
std
::
vector
<
Module
*
>
modules
;
std
::
vector
<
cv
::
Ptr
<
Module
>
>
modules
;
Module
(
const
String
&
_thName
,
const
String
&
_apiType
=
String
())
:
thName
(
_thName
),
apiType
(
_apiType
)
{}
~
Module
()
{
for
(
size_t
i
=
0
;
i
<
modules
.
size
();
i
++
)
delete
modules
[
i
];
}
};
Module
*
rootModule
;
...
...
@@ -184,6 +179,7 @@ struct TorchImporter : public ::cv::dnn::Importer
readedIndexes
.
insert
(
index
);
int
size
=
readInt
();
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
readObject
();
//key
...
...
@@ -271,7 +267,7 @@ struct TorchImporter : public ::cv::dnn::Importer
storages
.
insert
(
std
::
make_pair
(
index
,
storageMat
));
}
void
readTorchTable
(
Dict
&
scalarParams
,
std
::
map
<
String
,
Blob
>
&
tensorParams
)
void
readTorchTable
(
Dict
&
scalarParams
,
TensorsMap
&
tensorParams
)
{
int
luaType
=
readInt
();
int
index
=
readInt
();
...
...
@@ -309,7 +305,7 @@ struct TorchImporter : public ::cv::dnn::Importer
if
(
tensors
.
count
(
index
))
//tensor was readed
{
tensorParams
.
insert
(
std
::
make_pair
(
key
,
tensors
[
index
]
));
tensorParams
.
insert
(
std
::
make_pair
(
key
,
std
::
make_pair
(
index
,
tensors
[
index
])
));
}
else
if
(
storages
.
count
(
index
))
//storage was readed
{
...
...
@@ -347,9 +343,9 @@ struct TorchImporter : public ::cv::dnn::Importer
std
::
cout
<<
scalarParams
;
std
::
cout
<<
"#"
<<
tensorParams
.
size
()
<<
" tensorParams:
\n
"
;
std
::
map
<
String
,
Blob
>::
const_iterator
it
;
std
::
map
<
String
,
std
::
pair
<
int
,
Blob
>
>::
const_iterator
it
;
for
(
it
=
tensorParams
.
begin
();
it
!=
tensorParams
.
end
();
it
++
)
std
::
cout
<<
it
->
first
<<
": Tensor "
<<
it
->
second
.
shape
()
<<
"
\n
"
;
std
::
cout
<<
it
->
first
<<
": Tensor "
<<
it
->
second
.
s
econd
.
s
hape
()
<<
"
\n
"
;
}
}
...
...
@@ -375,9 +371,11 @@ struct TorchImporter : public ::cv::dnn::Importer
int
indexStorage
=
readInt
();
if
(
readedIndexes
.
count
(
indexStorage
)
==
0
)
{
int
typeStorage
=
parseStorageType
(
readTorchClassName
());
String
className
=
readTorchClassName
();
int
typeStorage
=
parseStorageType
(
className
);
CV_Assert
(
typeStorage
>=
0
&&
typeTensor
==
typeStorage
);
readTorchStorage
(
indexStorage
,
typeStorage
);
readedIndexes
.
insert
(
indexStorage
);
}
//small check
...
...
@@ -396,8 +394,7 @@ struct TorchImporter : public ::cv::dnn::Importer
}
//allocate Blob
Mat
srcMat
(
ndims
,
(
int
*
)
isizes
,
typeTensor
,
storages
[
indexStorage
].
ptr
()
+
offset
,
(
size_t
*
)
ssteps
);
//int dstType = (typeTensor == CV_64F) ? CV_64F : CV_32F;
Mat
srcMat
(
ndims
,
(
int
*
)
isizes
,
typeTensor
,
storages
[
indexStorage
].
ptr
()
+
offset
*
CV_ELEM_SIZE
(
typeTensor
),
(
size_t
*
)
ssteps
);
int
dstType
=
CV_32F
;
Blob
blob
;
...
...
@@ -436,12 +433,7 @@ struct TorchImporter : public ::cv::dnn::Importer
void
readTorchObject
(
int
index
)
{
if
(
readedIndexes
.
count
(
index
))
{
if
(
!
storages
.
count
(
index
)
&&
!
tensors
.
count
(
index
))
CV_Error
(
Error
::
StsNotImplemented
,
"Objects which have multiple references are not supported"
);
else
return
;
}
String
className
=
readTorchClassName
();
String
nnName
;
...
...
@@ -461,12 +453,15 @@ struct TorchImporter : public ::cv::dnn::Importer
else
if
(
isNNClass
(
className
,
nnName
))
{
Dict
scalarParams
;
std
::
map
<
String
,
Blob
>
tensorParams
;
TensorsMap
tensorParams
;
Module
*
newModule
=
new
Module
(
nnName
);
cv
::
Ptr
<
Module
>
newModule
(
new
Module
(
nnName
)
);
cv
::
dnn
::
LayerParams
&
layerParams
=
newModule
->
params
;
if
(
nnName
==
"Sequential"
||
nnName
==
"Parallel"
||
nnName
==
"Concat"
)
layerParams
.
set
(
"torch_index"
,
index
);
if
(
nnName
==
"Sequential"
||
nnName
==
"Parallel"
||
nnName
==
"Concat"
||
nnName
==
"ConcatTable"
||
nnName
==
"JoinTable"
)
{
Module
*
parentModule
=
curModule
;
curModule
->
modules
.
push_back
(
newModule
);
...
...
@@ -483,6 +478,10 @@ struct TorchImporter : public ::cv::dnn::Importer
{
layerParams
.
set
(
"dimension"
,
scalarParams
.
get
<
int
>
(
"dimension"
));
}
if
(
nnName
==
"JoinTable"
)
{
layerParams
.
set
(
"dimension"
,
scalarParams
.
get
<
int
>
(
"dimension"
));
}
}
else
if
(
nnName
==
"SpatialConvolution"
)
{
...
...
@@ -490,12 +489,12 @@ struct TorchImporter : public ::cv::dnn::Importer
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
tensorParams
.
count
(
"weight"
));
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
]);
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
]
.
second
);
bool
bias
=
tensorParams
.
count
(
"bias"
)
!=
0
;
layerParams
.
set
(
"bias_term"
,
bias
);
if
(
bias
)
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
]);
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
]
.
second
);
layerParams
.
set
(
"num_output"
,
scalarParams
.
get
<
int
>
(
"nOutputPlane"
));
convertTorchKernelsParams
(
scalarParams
,
layerParams
);
...
...
@@ -507,8 +506,10 @@ struct TorchImporter : public ::cv::dnn::Importer
newModule
->
apiType
=
"Pooling"
;
readTorchTable
(
scalarParams
,
tensorParams
);
if
(
nnName
==
"SpatialMaxPooling"
)
if
(
nnName
==
"SpatialMaxPooling"
)
{
layerParams
.
set
(
"pool"
,
"MAX"
);
layerParams
.
set
(
"indices_blob_id"
,
tensorParams
[
"indices"
].
first
);
}
if
(
nnName
==
"SpatialAveragePooling"
)
layerParams
.
set
(
"pool"
,
"AVE"
);
convertTorchKernelsParams
(
scalarParams
,
layerParams
);
...
...
@@ -521,12 +522,12 @@ struct TorchImporter : public ::cv::dnn::Importer
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
tensorParams
.
count
(
"weight"
));
Blob
weightBlob
=
tensorParams
[
"weight"
];
Blob
weightBlob
=
tensorParams
[
"weight"
]
.
second
;
layerParams
.
blobs
.
push_back
(
weightBlob
);
bool
bias
=
tensorParams
.
count
(
"bias"
)
!=
0
;
if
(
bias
)
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
]);
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
]
.
second
);
layerParams
.
set
(
"bias_term"
,
bias
);
layerParams
.
set
(
"num_output"
,
weightBlob
.
size
(
0
));
...
...
@@ -549,24 +550,205 @@ struct TorchImporter : public ::cv::dnn::Importer
}
else
if
(
nnName
==
"ReLU"
)
{
curModule
->
modules
.
push_back
(
new
Module
(
nnName
,
"ReLU"
));
curModule
->
modules
.
push_back
(
cv
::
Ptr
<
Module
>
(
new
Module
(
nnName
,
"ReLU"
)
));
readObject
();
}
else
if
(
nnName
==
"Tanh"
)
{
curModule
->
modules
.
push_back
(
new
Module
(
nnName
,
"TanH"
));
curModule
->
modules
.
push_back
(
cv
::
Ptr
<
Module
>
(
new
Module
(
nnName
,
"TanH"
)
));
readObject
();
}
else
if
(
nnName
==
"Sigmoid"
)
{
curModule
->
modules
.
push_back
(
new
Module
(
nnName
,
"Sigmoid"
));
curModule
->
modules
.
push_back
(
cv
::
Ptr
<
Module
>
(
new
Module
(
nnName
,
"Sigmoid"
)));
readObject
();
}
else
if
(
nnName
==
"SpatialBatchNormalization"
)
{
newModule
->
apiType
=
"BatchNorm"
;
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
tensorParams
.
count
(
"running_var"
)
&&
tensorParams
.
count
(
"running_mean"
));
layerParams
.
blobs
.
push_back
(
tensorParams
[
"running_mean"
].
second
);
layerParams
.
blobs
.
push_back
(
tensorParams
[
"running_var"
].
second
);
CV_Assert
(
scalarParams
.
has
(
"eps"
));
layerParams
.
set
(
"eps"
,
float
(
scalarParams
.
get
<
double
>
(
"eps"
)));
layerParams
.
blobs
.
push_back
(
Blob
());
layerParams
.
blobs
.
push_back
(
Blob
());
if
(
tensorParams
.
count
(
"weight"
))
{
layerParams
.
set
(
"has_weight"
,
true
);
layerParams
.
blobs
[
2
]
=
tensorParams
[
"weight"
].
second
;
}
if
(
tensorParams
.
count
(
"bias"
))
{
layerParams
.
set
(
"has_bias"
,
true
);
layerParams
.
blobs
[
3
]
=
tensorParams
[
"bias"
].
second
;
}
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"PReLU"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
tensorParams
.
count
(
"weight"
));
size_t
outputChannels
=
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nOutputPlane"
));
if
(
outputChannels
)
{
CV_Assert
(
tensorParams
[
"weight"
].
second
.
total
()
==
outputChannels
);
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
].
second
);
newModule
->
apiType
=
"ChannelsPReLU"
;
}
else
{
CV_Assert
(
tensorParams
[
"weight"
].
second
.
total
()
==
1
);
float
negative_slope
=
*
tensorParams
[
"weight"
].
second
.
ptrf
();
layerParams
.
set
(
"negative_slope"
,
negative_slope
);
newModule
->
apiType
=
"ReLU"
;
}
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"SpatialDropout"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
scalarParams
.
has
(
"p"
));
float
scale
=
1
-
scalarParams
.
get
<
double
>
(
"p"
);
CV_Assert
(
scale
>
0
);
newModule
->
apiType
=
"Power"
;
layerParams
.
set
(
"scale"
,
scale
);
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"Identity"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
newModule
->
apiType
=
"Identity"
;
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"Padding"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
newModule
->
apiType
=
"Padding"
;
CV_Assert
(
scalarParams
.
has
(
"pad"
)
&&
scalarParams
.
has
(
"dim"
));
layerParams
.
set
(
"padding_dim"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dim"
)
-
1
));
layerParams
.
set
(
"padding"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"pad"
)));
if
(
scalarParams
.
has
(
"nInputDim"
))
layerParams
.
set
(
"input_dims"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nInputDim"
)));
if
(
scalarParams
.
has
(
"value"
))
layerParams
.
set
(
"value"
,
scalarParams
.
get
<
double
>
(
"value"
));
if
(
scalarParams
.
has
(
"index"
))
layerParams
.
set
(
"index"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"index"
)
-
1
));
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"CAddTable"
)
{
curModule
->
modules
.
push_back
(
newModule
);
readObject
();
}
else
if
(
nnName
==
"SpatialDilatedConvolution"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
newModule
->
apiType
=
"Convolution"
;
CV_Assert
(
scalarParams
.
has
(
"padW"
)
&&
scalarParams
.
has
(
"padH"
)
&&
scalarParams
.
has
(
"dW"
)
&&
scalarParams
.
has
(
"dH"
)
&&
scalarParams
.
has
(
"dilationW"
)
&&
scalarParams
.
has
(
"dilationH"
)
&&
scalarParams
.
has
(
"kW"
)
&&
scalarParams
.
has
(
"kH"
)
&&
scalarParams
.
has
(
"nOutputPlane"
));
layerParams
.
set
(
"kernel_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"kW"
)));
layerParams
.
set
(
"kernel_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"kH"
)));
layerParams
.
set
(
"pad_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"padW"
)));
layerParams
.
set
(
"pad_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"padH"
)));
layerParams
.
set
(
"stride_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dW"
)));
layerParams
.
set
(
"stride_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dH"
)));
layerParams
.
set
(
"dilation_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dilationW"
)));
layerParams
.
set
(
"dilation_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dilationH"
)));
layerParams
.
set
(
"num_output"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nOutputPlane"
)));
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
].
second
);
bool
bias
=
tensorParams
.
count
(
"bias"
);
layerParams
.
set
(
"bias_term"
,
bias
);
if
(
bias
)
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
].
second
);
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"SpatialFullConvolution"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
newModule
->
apiType
=
"Deconvolution"
;
CV_Assert
(
scalarParams
.
has
(
"padW"
)
&&
scalarParams
.
has
(
"padH"
)
&&
scalarParams
.
has
(
"dW"
)
&&
scalarParams
.
has
(
"dH"
)
&&
scalarParams
.
has
(
"adjW"
)
&&
scalarParams
.
has
(
"adjH"
)
&&
scalarParams
.
has
(
"kW"
)
&&
scalarParams
.
has
(
"kH"
)
&&
scalarParams
.
has
(
"nOutputPlane"
));
layerParams
.
set
(
"kernel_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"kW"
)));
layerParams
.
set
(
"kernel_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"kH"
)));
layerParams
.
set
(
"pad_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"padW"
)));
layerParams
.
set
(
"pad_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"padH"
)));
layerParams
.
set
(
"stride_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dW"
)));
layerParams
.
set
(
"stride_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"dH"
)));
layerParams
.
set
(
"adj_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"adjW"
)));
layerParams
.
set
(
"adj_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"adjH"
)));
layerParams
.
set
(
"num_output"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"nOutputPlane"
)));
layerParams
.
blobs
.
push_back
(
tensorParams
[
"weight"
].
second
);
bool
bias
=
tensorParams
.
count
(
"bias"
);
layerParams
.
set
(
"bias_term"
,
bias
);
if
(
bias
)
layerParams
.
blobs
.
push_back
(
tensorParams
[
"bias"
].
second
);
curModule
->
modules
.
push_back
(
newModule
);
}
else
if
(
nnName
==
"SpatialMaxUnpooling"
)
{
readTorchTable
(
scalarParams
,
tensorParams
);
CV_Assert
(
scalarParams
.
has
(
"oheight"
)
&&
scalarParams
.
has
(
"owidth"
));
CV_Assert
(
tensorParams
.
count
(
"indices"
));
layerParams
.
set
(
"out_h"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"oheight"
)));
layerParams
.
set
(
"out_w"
,
static_cast
<
int
>
(
scalarParams
.
get
<
double
>
(
"owidth"
))
/
2
);
layerParams
.
set
(
"indices_blob_id"
,
tensorParams
[
"indices"
].
first
);
curModule
->
modules
.
push_back
(
newModule
);
}
else
{
delete
newModule
;
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown nn class
\"
"
+
className
+
"
\"
"
);
readObject
();
}
}
else
...
...
@@ -606,15 +788,16 @@ struct TorchImporter : public ::cv::dnn::Importer
return
"l"
+
toString
(
++
this
->
moduleCounter
)
+
"_"
+
label
;
}
int
fill
(
Module
*
module
,
int
prevLayerId
=
0
,
int
prevOutNum
=
0
)
int
fill
(
Module
*
module
,
std
::
vector
<
std
::
pair
<
int
,
Module
*>
>&
addedModules
,
int
prevLayerId
=
0
,
int
prevOutNum
=
0
)
{
if
(
module
==
NULL
)
return
prevLayerId
;
if
(
module
->
apiType
.
length
())
{
int
newLayerId
=
this
->
net
.
addLayer
(
generateLayerName
(
module
->
apiType
),
module
->
apiType
,
module
->
params
);
int
newLayerId
=
net
.
addLayer
(
generateLayerName
(
module
->
apiType
),
module
->
apiType
,
module
->
params
);
net
.
connect
(
prevLayerId
,
prevOutNum
,
newLayerId
,
0
);
addedModules
.
push_back
(
std
::
make_pair
(
newLayerId
,
module
));
return
newLayerId
;
}
else
...
...
@@ -623,7 +806,7 @@ struct TorchImporter : public ::cv::dnn::Importer
{
for
(
size_t
i
=
0
;
i
<
module
->
modules
.
size
();
i
++
)
{
prevLayerId
=
fill
(
module
->
modules
[
i
],
prevLayerId
,
prevOutNum
);
prevLayerId
=
fill
(
module
->
modules
[
i
],
addedModules
,
prevLayerId
,
prevOutNum
);
prevOutNum
=
0
;
}
return
prevLayerId
;
...
...
@@ -640,10 +823,11 @@ struct TorchImporter : public ::cv::dnn::Importer
for
(
int
i
=
0
;
i
<
(
int
)
module
->
modules
.
size
();
i
++
)
{
newId
=
fill
(
module
->
modules
[
i
],
splitId
,
i
);
newId
=
fill
(
module
->
modules
[
i
],
addedModules
,
splitId
,
i
);
net
.
connect
(
newId
,
0
,
mergeId
,
i
);
}
addedModules
.
push_back
(
std
::
make_pair
(
mergeId
,
module
));
return
mergeId
;
}
else
if
(
module
->
thName
==
"Parallel"
)
...
...
@@ -664,19 +848,92 @@ struct TorchImporter : public ::cv::dnn::Importer
for
(
int
i
=
0
;
i
<
(
int
)
module
->
modules
.
size
();
i
++
)
{
net
.
connect
(
splitId
,
i
,
reshapeId
,
i
);
newId
=
fill
(
module
->
modules
[
i
],
reshapeId
,
i
);
newId
=
fill
(
module
->
modules
[
i
],
addedModules
,
reshapeId
,
i
);
net
.
connect
(
newId
,
0
,
mergeId
,
i
);
}
addedModules
.
push_back
(
std
::
make_pair
(
mergeId
,
module
));
return
mergeId
;
}
else
if
(
module
->
thName
==
"ConcatTable"
)
{
int
newId
,
splitId
;
LayerParams
splitParams
;
splitId
=
net
.
addLayer
(
generateLayerName
(
"torchSplit"
),
"Split"
,
splitParams
);
net
.
connect
(
prevLayerId
,
prevOutNum
,
splitId
,
0
);
addedModules
.
push_back
(
std
::
make_pair
(
splitId
,
module
));
for
(
int
i
=
0
;
i
<
(
int
)
module
->
modules
.
size
();
i
++
)
{
newId
=
fill
(
module
->
modules
[
i
],
addedModules
,
splitId
,
i
);
}
return
newId
;
}
else
if
(
module
->
thName
==
"JoinTable"
)
{
std
::
vector
<
int
>
ids
=
net
.
getUnconnectedOutLayers
();
int
mergeId
;
LayerParams
mergeParams
;
mergeParams
.
set
(
"axis"
,
module
->
params
.
get
<
int
>
(
"dimension"
)
-
1
);
mergeId
=
net
.
addLayer
(
generateLayerName
(
"torchMerge"
),
"Concat"
,
mergeParams
);
addedModules
.
push_back
(
std
::
make_pair
(
mergeId
,
module
));
for
(
int
i
=
0
;
i
<
ids
.
size
();
i
++
)
{
net
.
connect
(
ids
[
i
],
0
,
mergeId
,
i
);
}
return
mergeId
;
}
else
if
(
module
->
thName
==
"CAddTable"
)
{
String
name
=
generateLayerName
(
"torchCAddTable"
);
std
::
vector
<
int
>
ids
=
net
.
getUnconnectedOutLayers
();
LayerParams
params
;
params
.
set
(
"operation"
,
"sum"
);
int
id
=
net
.
addLayer
(
name
,
"Eltwise"
,
params
);
for
(
int
i
=
0
;
i
<
ids
.
size
();
i
++
)
{
net
.
connect
(
ids
[
i
],
0
,
id
,
i
);
}
addedModules
.
push_back
(
std
::
make_pair
(
id
,
module
));
return
id
;
}
else
if
(
module
->
thName
==
"SpatialMaxUnpooling"
)
{
String
name
=
generateLayerName
(
"torchMaxUnpooling"
);
int
id
=
net
.
addLayer
(
name
,
"MaxUnpool"
,
module
->
params
);
net
.
connect
(
prevLayerId
,
0
,
id
,
0
);
CV_Assert
(
module
->
params
.
has
(
"indices_blob_id"
));
int
indicesBlobId
=
module
->
params
.
get
<
int
>
(
"indices_blob_id"
);
for
(
int
i
=
0
;
i
<
addedModules
.
size
();
i
++
)
{
if
(
addedModules
[
i
].
second
->
apiType
==
"Pooling"
&&
addedModules
[
i
].
second
->
params
.
has
(
"indices_blob_id"
)
&&
addedModules
[
i
].
second
->
params
.
get
<
int
>
(
"indices_blob_id"
)
==
indicesBlobId
)
{
net
.
connect
(
addedModules
[
i
].
first
,
1
,
id
,
1
);
break
;
}
}
return
id
;
}
}
CV_Error
(
Error
::
StsInternal
,
"Unexpected torch container: "
+
module
->
thName
);
return
-
1
;
}
void
populateNet
(
Net
net
)
void
populateNet
(
Net
net
_
)
{
if
(
rootModule
==
NULL
)
{
...
...
@@ -687,8 +944,9 @@ struct TorchImporter : public ::cv::dnn::Importer
readObject
();
}
this
->
net
=
net
;
fill
(
rootModule
);
net
=
net_
;
std
::
vector
<
std
::
pair
<
int
,
Module
*>
>
addedModules
;
fill
(
rootModule
,
addedModules
);
}
};
...
...
@@ -707,20 +965,5 @@ Blob readTorchBlob(const String &filename, bool isBinary)
return
importer
->
tensors
.
begin
()
->
second
;
}
#else //ENABLE_TORCH_IMPORTER
Ptr
<
Importer
>
createTorchImporter
(
const
String
&
,
bool
)
{
CV_Error
(
Error
::
StsNotImplemented
,
"Module was build without Torch importer"
);
return
Ptr
<
Importer
>
();
}
Blob
readTorchBlob
(
const
String
&
,
bool
)
{
CV_Error
(
Error
::
StsNotImplemented
,
"Module was build without Torch importer"
);
return
Blob
();
}
#endif //ENABLE_TORCH_IMPORTER
}
}
modules/dnn/test/test_layers.cpp
View file @
e784f137
...
...
@@ -154,6 +154,7 @@ TEST(Layer_Test_DeConvolution, Accuracy)
{
OCL_OFF
(
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
true
,
false
));
}
OCL_TEST
(
Layer_Test_DeConvolution
,
Accuracy
)
{
OCL_ON
(
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
true
,
false
););
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
e784f137
...
...
@@ -38,13 +38,12 @@ TEST(Test_TensorFlow, read_inception)
resize
(
sample
,
input
,
Size
(
224
,
224
));
input
-=
128
;
// mean sub
std
::
vector
<
Mat
>
inpMats
;
inpMats
.
push_back
(
input
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
input
);
net
.
setBlob
(
"_input.input"
,
Blob
(
inpMats
)
);
net
.
setBlob
(
"_input.input"
,
inputBlob
);
net
.
forward
();
Blob
out
=
net
.
getBlob
(
"
output
"
);
Blob
out
=
net
.
getBlob
(
"
softmax2
"
);
std
::
cout
<<
out
.
dims
()
<<
std
::
endl
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment