Commit e67653ea authored by si40wiga's avatar si40wiga Committed by Alexander Alekhin

Merge pull request #2296 from si40wiga:fsr-inpaint

* new algorithm Rapid Frequency Selective Reconstruction (FSR) added

* fix compiler warning

* applied changes suggested in alalek's review

* fix trailing whitespace

* xphoto: update inpaint() test

* fix pre-processing of error mask

* xphoto: move inpainting FSR algorithm into a separate file

* xphoto: cleanup inpaining documentation

* xphoto: inpainting fsr - avoid uninitialized values
parent 7d7312a9
...@@ -29,3 +29,49 @@ ...@@ -29,3 +29,49 @@
publisher = {ACM}, publisher = {ACM},
url = {https://www.researchgate.net/profile/Julie_Dorsey/publication/220184746_Fast_Bilateral_Filtering_for_the_Display_of_High_-_dynamic_-_range_Images/links/54566b000cf26d5090a95f96/Fast-Bilateral-Filtering-for-the-Display-of-High-dynamic-range-Images.pdf} url = {https://www.researchgate.net/profile/Julie_Dorsey/publication/220184746_Fast_Bilateral_Filtering_for_the_Display_of_High_-_dynamic_-_range_Images/links/54566b000cf26d5090a95f96/Fast-Bilateral-Filtering-for-the-Display-of-High-dynamic-range-Images.pdf}
} }
@INPROCEEDINGS{GenserPCS2018,
author={N. {Genser} and J. {Seiler} and F. {Schilling} and A. {Kaup}},
booktitle={Proc. Picture Coding Symposium (PCS)},
title={Signal and Loss Geometry Aware Frequency Selective Extrapolation for Error Concealment},
year={2018},
pages={159-163},
keywords={extrapolation;image reconstruction;video coding;loss geometry aware frequency selective extrapolation;error concealment;complex models;moderate computational complexity;Full HD image;error pattern;adjacent samples;undistorted samples;reconstruction parameters;processing order;High Efficiency Video Coding;content based partitioning;signal characteristics;block based frequency selective extrapolation;Image reconstruction;Extrapolation;Geometry;Partitioning algorithms;Task analysis;Computational modeling;Standards},
doi={10.1109/PCS.2018.8456259},
month={June},
}
@ARTICLE{SeilerTIP2015,
author={J. {Seiler} and M. {Jonscher} and M. {Schöberl} and A. {Kaup}},
journal={IEEE Transactions on Image Processing},
title={Resampling Images to a Regular Grid From a Non-Regular Subset of Pixel Positions Using Frequency Selective Reconstruction},
year={2015},
volume={24},
number={11},
pages={4540-4555},
keywords={Fourier transforms;image reconstruction;resampling images;regular grid;nonregular subset;pixel positions;frequency selective reconstruction;displaying image signals;image signal reconstruction algorithm;Fourier domain;optical transfer function;visual quality;peak signal-to-noise ratio;Image reconstruction;Signal processing algorithms;Reconstruction algorithms;Signal processing;Spatial resolution;;Image reconstruction;non-regular sampling;interpolation},
doi={10.1109/TIP.2015.2463084},
month={Nov},
}
@INPROCEEDINGS{GroscheICIP2018,
author={S. {Grosche} and J. {Seiler} and A. {Kaup}},
booktitle={Proc. 25th IEEE International Conference on Image Processing (ICIP)},
title={Iterative Optimization of Quarter Sampling Masks for Non-Regular Sampling Sensors},
year={2018},
pages={26-30},
keywords={extrapolation;image enhancement;image reconstruction;image resolution;image sampling;image sensors;interpolation;iterative methods;optimisation;regression analysis;iterative optimization;nonregular sampling sensors;iterative algorithm;arbitrary quarter sampling mask;reconstruction algorithms;random quarter sampling mask;optimized mask;frequency selective extrapolation;steering kernel regression;nearest neighbor interpolation;linear interpolation;regular imaging sensor;reconstruction quality;noise figure 0.31 dB to 0.68 dB;Image resolution;Image reconstruction;Sensors;Optimization;Energy resolution;Reconstruction algorithms;Image sensors;Non-Regular Sampling;Image reconstruction},
doi={10.1109/ICIP.2018.8451658},
month={Oct},
}
@INPROCEEDINGS{GroscheIST2018,
author={S. {Grosche} and J. {Seiler} and A. {Kaup}},
booktitle={Proc. IEEE International Conference on Imaging Systems and Techniques (IST)},
title={Design Techniques for Incremental Non-Regular Image Sampling Patterns},
year={2018},
pages={1-6},
keywords={image reconstruction;image resolution;image sampling;design techniques;incremental nonregular image sampling patterns;image signals;regular two dimensional grid;nonregular sampling patterns;sampling positions;random patterns;regular patterns;arbitrary sampling densities;incremental sampling patterns;sampling density;Image reconstruction;Scanning electron microscopy;Probability distribution;Atomic force microscopy;Reconstruction algorithms;Measurement by laser beam;Image Reconstruction;non-Regular Sampling},
doi={10.1109/IST.2018.8577090},
month={Oct},
}
...@@ -9,9 +9,14 @@ ...@@ -9,9 +9,14 @@
// //
// License Agreement // License Agreement
// For Open Source Computer Vision Library // For Open Source Computer Vision Library
// (3-clause BSD License)
// //
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2000-2019, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners. // Third party copyrights are property of their respective owners.
// //
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
...@@ -24,8 +29,9 @@ ...@@ -24,8 +29,9 @@
// this list of conditions and the following disclaimer in the documentation // this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution. // and/or other materials provided with the distribution.
// //
// * The name of the copyright holders may not be used to endorse or promote products // * Neither the names of the copyright holders nor the names of the contributors
// derived from this software without specific prior written permission. // may be used to endorse or promote products derived from this software
// without specific prior written permission.
// //
// This software is provided by the copyright holders and contributors "as is" and // This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied // any express or implied warranties, including, but not limited to, the implied
...@@ -58,24 +64,48 @@ namespace xphoto ...@@ -58,24 +64,48 @@ namespace xphoto
//! @addtogroup xphoto //! @addtogroup xphoto
//! @{ //! @{
//! various inpainting algorithms //! @brief Various inpainting algorithms
//! @sa inpaint
enum InpaintTypes enum InpaintTypes
{ {
/** This algorithm searches for dominant correspondences (transformations) of /** This algorithm searches for dominant correspondences (transformations) of
image patches and tries to seamlessly fill-in the area to be inpainted using this image patches and tries to seamlessly fill-in the area to be inpainted using this
transformations */ transformations */
INPAINT_SHIFTMAP = 0 INPAINT_SHIFTMAP = 0,
/** Performs Frequency Selective Reconstruction (FSR).
One of the two quality profiles BEST and FAST can be chosen, depending on the time available for reconstruction.
See @cite GenserPCS2018 and @cite SeilerTIP2015 for details.
The algorithm may be utilized for the following areas of application:
1. %Error Concealment (Inpainting).
The sampling mask indicates the missing pixels of the distorted input
image to be reconstructed.
2. Non-Regular Sampling.
For more information on how to choose a good sampling mask, please review
@cite GroscheICIP2018 and @cite GroscheIST2018.
1-channel grayscale or 3-channel BGR image are accepted.
Conventional accepted ranges:
- 0-255 for CV_8U
- 0-65535 for CV_16U
- 0-1 for CV_32F/CV_64F.
*/
INPAINT_FSR_BEST = 1,
INPAINT_FSR_FAST = 2 //!< See #INPAINT_FSR_BEST
}; };
/** @brief The function implements different single-image inpainting algorithms. /** @brief The function implements different single-image inpainting algorithms.
See the original paper @cite He2012 for details. See the original papers @cite He2012 (Shiftmap) or @cite GenserPCS2018 and @cite SeilerTIP2015 (FSR) for details.
@param src source image, it could be of any type and any number of channels from 1 to 4. In case of @param src source image
- #INPAINT_SHIFTMAP: it could be of any type and any number of channels from 1 to 4. In case of
3- and 4-channels images the function expect them in CIELab colorspace or similar one, where first 3- and 4-channels images the function expect them in CIELab colorspace or similar one, where first
color component shows intensity, while second and third shows colors. Nonetheless you can try any color component shows intensity, while second and third shows colors. Nonetheless you can try any
colorspaces. colorspaces.
@param mask mask (CV_8UC1), where non-zero pixels indicate valid image area, while zero pixels - #INPAINT_FSR_BEST or #INPAINT_FSR_FAST: 1-channel grayscale or 3-channel BGR image.
@param mask mask (#CV_8UC1), where non-zero pixels indicate valid image area, while zero pixels
indicate area to be inpainted indicate area to be inpainted
@param dst destination image @param dst destination image
@param algorithmType see xphoto::InpaintTypes @param algorithmType see xphoto::InpaintTypes
......
...@@ -9,11 +9,19 @@ ...@@ -9,11 +9,19 @@
// //
// License Agreement // License Agreement
// For Open Source Computer Vision Library // For Open Source Computer Vision Library
// (3-clause BSD License)
// //
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2000-2019, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners. // Third party copyrights are property of their respective owners.
// //
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice, // * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. // this list of conditions and the following disclaimer.
// //
...@@ -21,8 +29,9 @@ ...@@ -21,8 +29,9 @@
// this list of conditions and the following disclaimer in the documentation // this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution. // and/or other materials provided with the distribution.
// //
// * The name of Intel Corporation may not be used to endorse or promote products // * Neither the names of the copyright holders nor the names of the contributors
// derived from this software without specific prior written permission. // may be used to endorse or promote products derived from this software
// without specific prior written permission.
// //
// This software is provided by the copyright holders and contributors "as is" and // This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied // any express or implied warranties, including, but not limited to, the implied
...@@ -46,6 +55,8 @@ ...@@ -46,6 +55,8 @@
#include <fstream> #include <fstream>
#include <time.h> #include <time.h>
#include <functional> #include <functional>
#include <string>
#include <tuple>
#include "opencv2/xphoto.hpp" #include "opencv2/xphoto.hpp"
...@@ -62,6 +73,8 @@ ...@@ -62,6 +73,8 @@
#include "annf.hpp" #include "annf.hpp"
#include "advanced_types.hpp" #include "advanced_types.hpp"
#include "inpainting_fsr.impl.hpp"
namespace cv namespace cv
{ {
namespace xphoto namespace xphoto
...@@ -298,17 +311,9 @@ namespace xphoto ...@@ -298,17 +311,9 @@ namespace xphoto
} }
} }
/*! The function reconstructs the selected image area from known area. static
* \param src : source image. void inpaint_shiftmap(const Mat &src, const Mat &mask, Mat &dst, const int algorithmType)
* \param mask : inpainting mask, 8-bit 1-channel image. Zero pixels indicate the area that needs to be inpainted.
* \param dst : destination image.
* \param algorithmType : inpainting method.
*/
void inpaint(const Mat &src, const Mat &mask, Mat &dst, const int algorithmType)
{ {
CV_Assert( mask.channels() == 1 && mask.depth() == CV_8U );
CV_Assert( src.rows == mask.rows && src.cols == mask.cols );
switch ( src.type() ) switch ( src.type() )
{ {
case CV_8SC1: case CV_8SC1:
...@@ -399,8 +404,25 @@ namespace xphoto ...@@ -399,8 +404,25 @@ namespace xphoto
CV_Error_( CV_StsNotImplemented, CV_Error_( CV_StsNotImplemented,
("Unsupported source image format (=%d)", ("Unsupported source image format (=%d)",
src.type()) ); src.type()) );
break;
} }
} }
void inpaint(const Mat &src, const Mat &mask, Mat &dst, const int algorithmType)
{
CV_Assert(!src.empty());
CV_Assert(!mask.empty());
CV_CheckTypeEQ(mask.type(), CV_8UC1, "");
CV_Assert(src.rows == mask.rows && src.cols == mask.cols);
switch (algorithmType)
{
case xphoto::INPAINT_SHIFTMAP:
return inpaint_shiftmap(src, mask, dst, algorithmType);
case xphoto::INPAINT_FSR_BEST:
case xphoto::INPAINT_FSR_FAST:
return inpaint_fsr(src, mask, dst, algorithmType);
}
CV_Error_(Error::StsNotImplemented, ("Unsupported inpainting algorithm type (=%d)", algorithmType));
} }
}
}} // namespace
This diff is collapsed.
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using namespace xphoto;
static void test_inpainting(const Size inputSize, InpaintTypes mode, double expected_psnr, ImreadModes inputMode = IMREAD_COLOR)
{
string original_path = cvtest::findDataFile("cv/shared/lena.png");
string mask_path = cvtest::findDataFile("cv/inpaint/mask.png");
Mat original_ = imread(original_path, inputMode);
ASSERT_FALSE(original_.empty()) << "Could not load input image " << original_path;
Mat mask_ = imread(mask_path, IMREAD_GRAYSCALE);
ASSERT_FALSE(mask_.empty()) << "Could not load error mask " << mask_path;
Mat original, mask;
resize(original_, original, inputSize, 0.0, 0.0, INTER_AREA);
resize(mask_, mask, inputSize, 0.0, 0.0, INTER_NEAREST);
Mat mask_valid = (mask == 0);
Mat im_distorted(inputSize, original.type(), Scalar::all(0));
original.copyTo(im_distorted, mask_valid);
Mat reconstructed;
xphoto::inpaint(im_distorted, mask_valid, reconstructed, mode);
double adiff_psnr = cvtest::PSNR(original, reconstructed);
EXPECT_LE(expected_psnr, adiff_psnr);
#if 0
imshow("original", original);
imshow("im_distorted", im_distorted);
imshow("reconstructed", reconstructed);
std::cout << "adiff_psnr=" << adiff_psnr << std::endl;
waitKey();
#endif
}
TEST(xphoto_inpaint, smoke_FSR_FAST) // fast smoke test, input doesn't fit well for tested algorithm
{
test_inpainting(Size(128, 128), INPAINT_FSR_FAST, 30);
}
TEST(xphoto_inpaint, smoke_FSR_BEST) // fast smoke test, input doesn't fit well for tested algorithm
{
applyTestTag(CV_TEST_TAG_LONG);
test_inpainting(Size(128, 128), INPAINT_FSR_BEST, 30);
}
TEST(xphoto_inpaint, smoke_grayscale_FSR_FAST) // fast smoke test, input doesn't fit well for tested algorithm
{
test_inpainting(Size(128, 128), INPAINT_FSR_FAST, 30, IMREAD_GRAYSCALE);
}
TEST(xphoto_inpaint, smoke_grayscale_FSR_BEST) // fast smoke test, input doesn't fit well for tested algorithm
{
test_inpainting(Size(128, 128), INPAINT_FSR_BEST, 30, IMREAD_GRAYSCALE);
}
TEST(xphoto_inpaint, regression_FSR_FAST)
{
test_inpainting(Size(512, 512), INPAINT_FSR_FAST, 39.5);
}
TEST(xphoto_inpaint, regression_FSR_BEST)
{
applyTestTag(CV_TEST_TAG_VERYLONG); // add --test_tag_enable=verylong to run this test
test_inpainting(Size(512, 512), INPAINT_FSR_BEST, 39.6);
}
}} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment