Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
e56f2870
Commit
e56f2870
authored
Aug 07, 2014
by
jaco
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
background Model initialization problems fixed
parent
c8085a75
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
143 additions
and
70 deletions
+143
-70
saliencySpecializedClasses.hpp
...y/include/opencv2/saliency/saliencySpecializedClasses.hpp
+1
-1
motionSaliencyBinWangApr2014.cpp
modules/saliency/src/motionSaliencyBinWangApr2014.cpp
+142
-69
No files found.
modules/saliency/include/opencv2/saliency/saliencySpecializedClasses.hpp
View file @
e56f2870
...
...
@@ -127,7 +127,7 @@ class CV_EXPORTS_W MotionSaliencyBinWangApr2014 : public MotionSaliency
//bool decisionThresholdAdaptation();
// changing structure
vector
<
Mat
>
backgroundModel
;
// The vector represents the background template T0---TK of reference paper.
vector
<
Ptr
<
Mat
>
>
backgroundModel
;
// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat
potentialBackground
;
// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
...
...
modules/saliency/src/motionSaliencyBinWangApr2014.cpp
View file @
e56f2870
...
...
@@ -63,7 +63,7 @@ MotionSaliencyBinWangApr2014::MotionSaliencyBinWangApr2014()
alpha
=
0.01
;
// Learning rate
L0
=
6000
;
// Upper-bound values for C0 (efficacy of the first template (matrices) of backgroundModel
L1
=
4000
;
// Upper-bound values for C1 (efficacy of the second template (matrices) of backgroundModel
thetaL
=
250
0
;
// T0, T1 swap threshold
thetaL
=
5
0
;
// T0, T1 swap threshold
thetaA
=
200
;
gamma
=
3
;
neighborhoodCheck
=
true
;
...
...
@@ -76,17 +76,22 @@ bool MotionSaliencyBinWangApr2014::init()
epslonPixelsValue
=
Mat
(
imgSize
->
height
,
imgSize
->
width
,
CV_32F
);
potentialBackground
=
Mat
(
imgSize
->
height
,
imgSize
->
width
,
CV_32FC2
);
backgroundModel
=
std
::
vector
<
Mat
>
(
K
+
1
,
Mat
::
zeros
(
imgSize
->
height
,
imgSize
->
width
,
CV_32FC2
)
);
//
backgroundModel = std::vector<Mat>( K + 1, Mat::zeros( imgSize->height, imgSize->width, CV_32FC2 ) );
//TODO set to nan
potentialBackground
.
setTo
(
Scalar
(
NAN
,
0
)
);
potentialBackground
.
setTo
(
0
);
backgroundModel
.
resize
(
K
+
1
);
//TODO set to nan
for
(
size_t
i
=
0
;
i
<
backgroundModel
.
size
()
;
i
++
)
for
(
int
i
=
0
;
i
<
K
+
1
;
i
++
)
{
backgroundModel
[
i
].
setTo
(
Scalar
(
NAN
,
0
)
);
Mat
*
tmpm
=
new
Mat
;
tmpm
->
create
(
imgSize
->
height
,
imgSize
->
width
,
CV_32FC2
);
tmpm
->
setTo
(
0
);
Ptr
<
Mat
>
tmp
=
Ptr
<
Mat
>
(
tmpm
);
backgroundModel
[
i
]
=
tmp
;
}
epslonPixelsValue
.
setTo
(
48.5
);
// Median of range [18, 80] advised in reference paper.
epslonPixelsValue
.
setTo
(
70
);
// Median of range [18, 80] advised in reference paper.
// Since data is even, the median is estimated using two values that occupy
// the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean).
...
...
@@ -107,12 +112,28 @@ MotionSaliencyBinWangApr2014::~MotionSaliencyBinWangApr2014()
bool
MotionSaliencyBinWangApr2014
::
fullResolutionDetection
(
const
Mat
&
image2
,
Mat
&
highResBFMask
)
{
Mat
image
=
image2
.
clone
();
float
*
currentB
;
float
*
currentC
;
float
currentPixelValue
;
float
currentEpslonValue
;
bool
backgFlag
=
false
;
Mat
test
(
image
.
rows
,
image
.
cols
,
CV_8U
);
Mat
test1
(
image
.
rows
,
image
.
cols
,
CV_8U
);
test
.
setTo
(
255
);
for
(
int
i
=
0
;
i
<
test
.
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
test
.
cols
;
j
++
)
{
if
(
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
==
0
)
{
test
.
at
<
uchar
>
(
i
,
j
)
=
0
;
}
test1
.
at
<
uchar
>
(
i
,
j
)
=
(
int
)
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
];
}
}
imshow
(
"test_T0c"
,
test
);
imshow
(
"test_T0b"
,
test1
);
// Initially, all pixels are considered as foreground and then we evaluate with the background model
highResBFMask
.
create
(
image
.
rows
,
image
.
cols
,
CV_32F
);
highResBFMask
.
setTo
(
1
);
...
...
@@ -121,14 +142,18 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
float
*
pEpslon
;
float
*
pMask
;
int
countDec
=
0
;
// Scan all pixels of image
for
(
int
i
=
0
;
i
<
image
.
rows
;
i
++
)
{
pImage
=
image
.
ptr
<
uchar
>
(
i
);
pEpslon
=
epslonPixelsValue
.
ptr
<
float
>
(
i
);
pMask
=
highResBFMask
.
ptr
<
float
>
(
i
);
for
(
int
j
=
0
;
j
<
image
.
cols
;
j
++
)
{
backgFlag
=
false
;
// TODO replace "at" with more efficient matrix access
//currentPixelValue = image.at<uchar>( i, j );
...
...
@@ -136,37 +161,65 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
currentPixelValue
=
pImage
[
j
];
currentEpslonValue
=
pEpslon
[
j
];
if
(
backgroundModel
[
0
].
at
<
Vec2f
>
(
i
,
j
)[
1
]
!=
0
)
//if at least the first template is activated / initialized
if
(
i
==
50
&&
j
==
50
)
cout
<<
"currentPixelValue :"
<<
currentPixelValue
<<
endl
<<
"currentEpslonValue :"
<<
currentEpslonValue
<<
endl
;
int
counter
=
0
;
for
(
size_t
z
=
0
;
z
<
backgroundModel
.
size
();
z
++
)
{
counter
+=
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
];
}
if
(
counter
!=
0
)
//if at least the first template is activated / initialized
{
// scan background model vector
for
(
size_t
z
=
0
;
z
<
backgroundModel
.
size
();
z
++
)
{
float
currentB
;
float
currentC
;
// TODO replace "at" with more efficient matrix access
currentB
=
&
backgroundModel
[
z
].
at
<
Vec2f
>
(
i
,
j
)[
0
]
;
currentC
=
&
backgroundModel
[
z
].
at
<
Vec2f
>
(
i
,
j
)[
1
]
;
currentB
=
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
0
])
;
currentC
=
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
;
if
(
*
currentC
>
0
)
//The current template is active
if
(
i
==
50
&&
j
==
50
)
{
cout
<<
"zeta:"
<<
z
<<
" currentB :"
<<
currentB
<<
endl
<<
"currentC :"
<<
currentC
<<
endl
;
}
//continue;
if
(
currentC
>
0
)
//The current template is active
{
//cout<< "DIFFERENCE: "<<abs( currentPixelValue - ( *currentB ) )<<endl;
// If there is a match with a current background template
if
(
abs
(
currentPixelValue
-
*
(
currentB
)
)
<
currentEpslonValue
&&
!
backgFlag
)
if
(
abs
(
currentPixelValue
-
(
currentB
)
)
<
currentEpslonValue
&&
!
backgFlag
)
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
//highResBFMask.at<uchar>( i, j ) = 0;
pMask
[
j
]
=
0
;
if
(
(
*
currentC
<
L0
&&
z
==
0
)
||
(
*
currentC
<
L1
&&
z
==
1
)
||
(
z
>
1
)
)
*
currentC
+=
1
;
// increment the efficacy of this template
//
if( ( *currentC < L0 && z == 0 ) || ( *currentC < L1 && z == 1 ) || ( z > 1 ) )
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
=
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
+
1
;
// increment the efficacy of this template
*
currentB
=
(
(
1
-
alpha
)
*
*
(
currentB
)
)
+
(
alpha
*
currentPixelValue
);
// Update the template value
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
0
])
=
(
(
1
-
alpha
)
*
(
currentB
)
)
+
(
alpha
*
currentPixelValue
);
// Update the template value
backgFlag
=
true
;
//break;
}
else
{
currentC
-=
1
;
// decrement the efficacy of this template
if
(
z
==
0
)
countDec
++
;
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
=
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
-
1
;
// decrement the efficacy of this template
}
}
if
(
i
==
50
&&
j
==
50
)
{
cout
<<
"DOPO IF: "
<<
endl
;
cout
<<
"zeta:"
<<
z
<<
" currentB_A :"
<<
&
currentB
<<
endl
<<
"currentC_A :"
<<
&
currentC
<<
endl
;
cout
<<
"zeta:"
<<
z
<<
" currentB :"
<<
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
0
])
<<
endl
<<
"currentC :"
<<
(
backgroundModel
.
at
(
z
)
->
at
<
Vec2f
>
(
i
,
j
)[
1
])
<<
endl
<<
endl
;
}
}
// end "for" cicle of template vector
}
...
...
@@ -178,13 +231,15 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
}
}
// end "for" cicle of all image's pixels
//cout<<" STATISTICA :"<<countDec<<"/"<< image.rows*image.cols<< " = "<<(float)countDec/(float)(image.rows*image.cols)*100<<" %"<<endl;
return
true
;
}
bool
MotionSaliencyBinWangApr2014
::
lowResolutionDetection
(
const
Mat
&
image
,
Mat
&
lowResBFMask
)
{
std
::
vector
<
Mat
>
mv
;
split
(
backgroundModel
[
0
],
mv
);
split
(
*
backgroundModel
[
0
],
mv
);
//if at least the first template is activated / initialized for all pixels
if
(
countNonZero
(
mv
.
at
(
1
)
)
>
(
mv
.
at
(
1
).
cols
*
mv
.
at
(
1
).
rows
)
/
2
)
...
...
@@ -226,7 +281,7 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
for
(
int
z
=
0
;
z
<
N_DS
;
z
++
)
{
// Select the current template 2 channel matrix, select ROI and compute the mean for each channel separately
Mat
roiTemplate
=
backgroundModel
[
z
]
(
roi
);
Mat
roiTemplate
=
(
*
(
backgroundModel
[
z
]))
(
roi
);
Scalar
templateMean
=
mean
(
roiTemplate
);
currentB
=
templateMean
[
0
];
currentC
=
templateMean
[
1
];
...
...
@@ -270,7 +325,7 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
else
{
lowResBFMask
.
create
(
image
.
rows
,
image
.
cols
,
CV_32F
);
lowResBFMask
.
setTo
(
NAN
);
lowResBFMask
.
setTo
(
1
);
return
false
;
}
...
...
@@ -290,16 +345,16 @@ bool MotionSaliencyBinWangApr2014::templateOrdering()
float
temp
;
// Scan all pixels of image
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
.
rows
;
i
++
)
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
->
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
.
cols
;
j
++
)
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
->
cols
;
j
++
)
{
// scan background model vector from T1 to Tk
for
(
size_t
z
=
1
;
z
<
backgroundModel
.
size
();
z
++
)
{
// Fill vector of pairs
pixelTemplates
[
z
-
1
].
first
=
backgroundModel
[
z
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
];
// Current B (background value)
pixelTemplates
[
z
-
1
].
second
=
backgroundModel
[
z
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
];
// Current C (efficacy value)
pixelTemplates
[
z
-
1
].
first
=
backgroundModel
[
z
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
];
// Current B (background value)
pixelTemplates
[
z
-
1
].
second
=
backgroundModel
[
z
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
];
// Current C (efficacy value)
}
//SORT template from T1 to Tk
...
...
@@ -308,23 +363,23 @@ bool MotionSaliencyBinWangApr2014::templateOrdering()
//REFILL CURRENT MODEL ( T1...Tk)
for
(
size_t
zz
=
1
;
zz
<
backgroundModel
.
size
();
zz
++
)
{
backgroundModel
[
zz
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
pixelTemplates
[
zz
-
1
].
first
;
// Replace previous B with new ordered B value
backgroundModel
[
zz
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
pixelTemplates
[
zz
-
1
].
second
;
// Replace previous C with new ordered C value
backgroundModel
[
zz
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
pixelTemplates
[
zz
-
1
].
first
;
// Replace previous B with new ordered B value
backgroundModel
[
zz
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
pixelTemplates
[
zz
-
1
].
second
;
// Replace previous C with new ordered C value
}
// SORT Template T0 and T1
if
(
backgroundModel
[
1
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
>
thetaL
&&
backgroundModel
[
0
].
at
<
Vec2f
>
(
i
,
j
)[
1
]
<
thetaL
)
if
(
backgroundModel
[
1
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
>
thetaL
&&
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
<
thetaL
)
{
// swap B value of T0 with B value of T1 (for current model)
temp
=
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
];
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
backgroundModel
[
1
].
at
<
Vec2f
>
(
i
,
j
)[
0
];
backgroundModel
[
1
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
temp
;
temp
=
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
];
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
backgroundModel
[
1
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
];
backgroundModel
[
1
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
temp
;
// set new C0 value for current model)
temp
=
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
];
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
gamma
*
thetaL
;
backgroundModel
[
1
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
temp
;
temp
=
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
];
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
gamma
*
thetaL
;
backgroundModel
[
1
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
temp
;
}
...
...
@@ -335,11 +390,22 @@ bool MotionSaliencyBinWangApr2014::templateOrdering()
}
bool
MotionSaliencyBinWangApr2014
::
templateReplacement
(
const
Mat
&
finalBFMask
,
const
Mat
&
image
)
{
Mat
test
(
image
.
rows
,
image
.
cols
,
CV_8U
);
for
(
int
i
=
0
;
i
<
test
.
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
test
.
cols
;
j
++
)
{
test
.
at
<
uchar
>
(
i
,
j
)
=
(
int
)
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
];
}
}
imshow
(
"test_BA"
,
test
);
std
::
vector
<
Mat
>
temp
;
split
(
backgroundModel
[
0
],
temp
);
split
(
*
backgroundModel
[
0
],
temp
);
//if at least the first template is activated / initialized for all pixels
if
(
countNonZero
(
temp
.
at
(
1
)
)
<=
(
temp
.
at
(
1
).
cols
*
temp
.
at
(
1
).
rows
)
/
2
)
if
(
countNonZero
(
temp
.
at
(
1
)
)
<=
(
temp
.
at
(
1
).
cols
*
temp
.
at
(
1
).
rows
)
/
2
)
{
thetaA
=
2
;
neighborhoodCheck
=
false
;
...
...
@@ -348,11 +414,11 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
else
{
thetaA
=
200
;
neighborhoodCheck
=
tru
e
;
neighborhoodCheck
=
fals
e
;
}
float
roiSize
=
3
;
// FIXED ROI SIZE, not change until you first appropriately adjust the following controls in the EVALUATION section!
int
countNonZeroElements
=
NAN
;
int
countNonZeroElements
=
0
;
std
::
vector
<
Mat
>
mv
;
Mat
replicateCurrentBAMat
(
roiSize
,
roiSize
,
CV_32FC1
);
Mat
backgroundModelROI
(
roiSize
,
roiSize
,
CV_32FC1
);
...
...
@@ -370,13 +436,13 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
* will be loaded into BA and CA will be set to 1*/
if
(
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
==
0
)
{
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
image
.
at
<
uchar
>
(
i
,
j
);
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
(
float
)
image
.
at
<
uchar
>
(
i
,
j
);
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
1
;
}
/*the distance between this pixel value and BA is calculated, and if this distance is smaller than
the decision threshold epslon, then CA is increased by 1, otherwise is decreased by 1*/
else
if
(
abs
(
image
.
at
<
uchar
>
(
i
,
j
)
-
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
)
<
epslonPixelsValue
.
at
<
float
>
(
i
,
j
)
)
else
if
(
abs
(
(
float
)
image
.
at
<
uchar
>
(
i
,
j
)
-
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
)
<
epslonPixelsValue
.
at
<
float
>
(
i
,
j
)
)
{
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
+=
1
;
}
...
...
@@ -401,49 +467,49 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
/*if( ( i - floor( roiSize / 2 ) >= 0 ) && ( j - floor( roiSize / 2 ) >= 0 )
&& ( i + floor( roiSize / 2 ) <= ( backgroundModel[z].rows - 1 ) )
&& ( j + floor( roiSize / 2 ) <= ( backgroundModel[z].cols - 1 ) ) ) */
if
(
i
>
0
&&
j
>
0
&&
i
<
(
backgroundModel
[
z
]
.
rows
-
1
)
&&
j
<
(
backgroundModel
[
z
].
cols
-
1
)
)
if
(
i
>
0
&&
j
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
roiSize
,
roiSize
)
);
}
else
if
(
i
==
0
&&
j
==
0
)
// upper left
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
,
i
,
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
j
==
0
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
]
.
rows
-
1
)
)
// middle left
else
if
(
j
==
0
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
)
// middle left
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
,
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
roiSize
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
.
rows
-
1
)
&&
j
==
0
)
//down left
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
==
0
)
//down left
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
,
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
0
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
]
.
cols
-
1
)
)
// upper - middle
else
if
(
i
==
0
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// upper - middle
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
(
j
-
floor
(
roiSize
/
2
)
),
i
,
roiSize
,
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
.
rows
-
1
)
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
].
cols
-
1
)
)
//down middle
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
//down middle
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
roiSize
,
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
0
&&
j
==
(
backgroundModel
[
z
]
.
cols
-
1
)
)
// upper right
else
if
(
i
==
0
&&
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// upper right
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
-
floor
(
roiSize
/
2
),
i
,
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
j
==
(
backgroundModel
[
z
]
.
cols
-
1
)
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
].
rows
-
1
)
)
// middle - right
else
if
(
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
)
// middle - right
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
roiSize
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
.
rows
-
1
)
&&
j
==
(
backgroundModel
[
z
].
cols
-
1
)
)
// down right
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// down right
{
split
(
backgroundModel
[
z
],
mv
);
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
.
at
(
0
)(
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
...
...
@@ -466,9 +532,9 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
//TODO CHECK BACKGROUND MODEL COUNTER ASSIGNEMENT
//backgroundModel[backgroundModel.size()-1].at<Vec2f>( i, j )[0]=potentialBackground.at<Vec2f>( i, j )[0];
//backgroundModel[backgroundModel.size()-1].at<Vec2f>( i, j )[1]= potentialBackground.at<Vec2f>( i, j )[1];
backgroundModel
[
backgroundModel
.
size
()
-
1
]
.
at
<
Vec2f
>
(
i
,
j
)
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
);
//potentialBackground.at<Vec2f>( i, j )[0]=-255
;
//potentialBackground.at<Vec2f>( i, j )[1]=
0;
backgroundModel
[
backgroundModel
.
size
()
-
1
]
->
at
<
Vec2f
>
(
i
,
j
)
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
);
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
0
;
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
0
;
break
;
}
...
...
@@ -476,7 +542,11 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
}
else
{
backgroundModel
[
backgroundModel
.
size
()
-
1
].
at
<
Vec2f
>
(
i
,
j
)
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
);
((
backgroundModel
.
at
(
backgroundModel
.
size
()
-
1
))
->
at
<
Vec2f
>
(
i
,
j
))[
0
]
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
];
((
backgroundModel
.
at
(
backgroundModel
.
size
()
-
1
))
->
at
<
Vec2f
>
(
i
,
j
))[
1
]
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
];
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
0
;
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
0
;
//((backgroundModel.at(0))->at<Vec2f>( i, j ))[1] = 3;
}
}
// close if of EVALUATION
}
// end of if( finalBFMask.at<uchar>( i, j ) == 1 ) // i.e. the corresponding frame pixel has been market as foreground
...
...
@@ -502,13 +572,13 @@ bool MotionSaliencyBinWangApr2014::computeSaliencyImpl( const InputArray image,
std
::
ofstream
ofs4
;
ofs4
.
open
(
"TEMPLATE_0_B.txt"
,
std
::
ofstream
::
out
);
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
.
rows
;
i
++
)
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
->
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
.
cols
;
j
++
)
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
->
cols
;
j
++
)
{
//highResBFMask.at<int>( i, j ) = i + j;
stringstream
str
;
str
<<
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
<<
" "
;
str
<<
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
0
]
<<
" "
;
ofs4
<<
str
.
str
();
}
stringstream
str2
;
...
...
@@ -520,13 +590,13 @@ bool MotionSaliencyBinWangApr2014::computeSaliencyImpl( const InputArray image,
std
::
ofstream
ofs5
;
ofs5
.
open
(
"TEMPLATE_0_C.txt"
,
std
::
ofstream
::
out
);
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
.
rows
;
i
++
)
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
->
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
.
cols
;
j
++
)
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
->
cols
;
j
++
)
{
//highResBFMask.at<int>( i, j ) = i + j;
stringstream
str
;
str
<<
backgroundModel
[
0
]
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
<<
" "
;
str
<<
backgroundModel
[
0
]
->
at
<
Vec2f
>
(
i
,
j
)[
1
]
<<
" "
;
ofs5
<<
str
.
str
();
}
stringstream
str2
;
...
...
@@ -538,20 +608,23 @@ bool MotionSaliencyBinWangApr2014::computeSaliencyImpl( const InputArray image,
fullResolutionDetection
(
image
.
getMat
(),
highResBFMask
);
lowResolutionDetection
(
image
.
getMat
(),
lowResBFMask
);
imshow
(
"highResBFMask"
,
highResBFMask
*
255
);
imshow
(
"lowResBFMask"
,
lowResBFMask
*
255
);
// Compute the final background-foreground mask. One pixel is marked as foreground if and only if it is
// foreground in both masks (full and low)
bitwise_and
(
highResBFMask
,
lowResBFMask
,
saliencyMap
);
// Detect the noise pixels (i.e. for a given pixel, fullRes(pixel) = foreground and lowRes(pixel)= background)
bitwise_not
(
lowResBFMask
,
not_lowResBFMask
);
bitwise_and
(
highResBFMask
,
not_lowResBFMask
,
noisePixelsMask
);
//
bitwise_not( lowResBFMask, not_lowResBFMask );
//
bitwise_and( highResBFMask, not_lowResBFMask, noisePixelsMask );
templateOrdering
();
templateReplacement
(
saliencyMap
.
getMat
(),
image
.
getMat
()
);
//templateReplacement( highResBFMask, image.getMat() );
templateOrdering
();
//highResBFMask.copyTo(
saliencyMap
);
//highResBFMask.copyTo(
saliencyMap
);
std
::
ofstream
ofs
;
ofs
.
open
(
"highResBFMask.txt"
,
std
::
ofstream
::
out
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment