Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
e494efb4
Commit
e494efb4
authored
Jun 23, 2017
by
sghoshcvc
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added comments
parent
fc9c41b8
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
28 additions
and
90 deletions
+28
-90
ocr.hpp
modules/text/include/opencv2/text/ocr.hpp
+14
-0
textDetector.hpp
modules/text/include/opencv2/text/textDetector.hpp
+14
-90
No files found.
modules/text/include/opencv2/text/ocr.hpp
View file @
e494efb4
...
@@ -633,6 +633,16 @@ public:
...
@@ -633,6 +633,16 @@ public:
*/
*/
CV_WRAP
void
preprocess
(
InputArray
input
,
OutputArray
output
,
Size
sz
,
int
outputChannels
);
CV_WRAP
void
preprocess
(
InputArray
input
,
OutputArray
output
,
Size
sz
,
int
outputChannels
);
/** @brief this method in provides public acces to set the mean of the input images
* mean can be a mat either of same size of the image or one value per color channel
* A preprocessor can be created without the mean( the pre processor will calculate mean for every image
* in that case
*
* @param mean which will be subtracted from the images
*
*/
CV_WRAP
void
set_mean
(
Mat
mean
);
CV_WRAP
void
set_mean
(
Mat
mean
);
/** @brief Creates a functor that only resizes and changes the channels of the input
/** @brief Creates a functor that only resizes and changes the channels of the input
...
@@ -655,6 +665,10 @@ public:
...
@@ -655,6 +665,10 @@ public:
* @return shared pointer to generated preprocessor
* @return shared pointer to generated preprocessor
*/
*/
CV_WRAP
static
Ptr
<
ImagePreprocessor
>
createImageMeanSubtractor
(
InputArray
meanImg
);
CV_WRAP
static
Ptr
<
ImagePreprocessor
>
createImageMeanSubtractor
(
InputArray
meanImg
);
/** @brief
* create a functor with the parameters, parameters can be changes by corresponding set functions
* @return shared pointer to generated preprocessor
*/
CV_WRAP
static
Ptr
<
ImagePreprocessor
>
createImageCustomPreprocessor
(
double
rawval
=
1.0
,
String
channel_order
=
"BGR"
);
CV_WRAP
static
Ptr
<
ImagePreprocessor
>
createImageCustomPreprocessor
(
double
rawval
=
1.0
,
String
channel_order
=
"BGR"
);
...
...
modules/text/include/opencv2/text/textDetector.hpp
View file @
e494efb4
...
@@ -62,7 +62,7 @@ namespace text
...
@@ -62,7 +62,7 @@ namespace text
//base class BaseDetector declares a common API that would be used in a typical text
//base class BaseDetector declares a common API that would be used in a typical text
//
recogni
tion scenario
//
detec
tion scenario
class
CV_EXPORTS_W
BaseDetector
class
CV_EXPORTS_W
BaseDetector
{
{
public
:
public
:
...
@@ -78,46 +78,7 @@ class CV_EXPORTS_W BaseDetector
...
@@ -78,46 +78,7 @@ class CV_EXPORTS_W BaseDetector
std
::
vector
<
float
>*
component_confidences
=
NULL
,
std
::
vector
<
float
>*
component_confidences
=
NULL
,
int
component_level
=
0
)
=
0
;
int
component_level
=
0
)
=
0
;
/** @brief Main functionality of the OCR Hierarchy. Subclasses provide
* default parameters for all parameters other than the input image.
*/
// virtual std::vector<Rect>* run(InputArray image){
// //std::string res;
// std::vector<Rect> component_rects;
// std::vector<float> component_confidences;
// //std::vector<std::string> component_texts;
// Mat inputImage=image.getMat();
// this->run(inputImage,&component_rects,
// &component_confidences,OCR_LEVEL_WORD);
// return *component_rects;
// }
};
//Classifiers should provide diferent backends
//For the moment only caffe is implemeted
//enum{
// OCR_HOLISTIC_BACKEND_NONE,
// OCR_HOLISTIC_BACKEND_CAFFE
//};
/** @brief OCRHolisticWordRecognizer class provides the functionallity of segmented wordspotting.
* Given a predefined vocabulary , a TextImageClassifier is employed to select the most probable
* word given an input image.
*
* This class implements the logic of providing transcriptions given a vocabulary and and an image
* classifer. The classifier has to be any TextImageClassifier but the classifier for which this
* class was built is the DictNet. In order to load it the following files should be downloaded:
* <http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_deploy.prototxt>
* <http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg.caffemodel>
* <http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_labels.txt>
*/
class
CV_EXPORTS_W
textDetector
:
public
BaseDetector
class
CV_EXPORTS_W
textDetector
:
public
BaseDetector
{
{
public
:
public
:
...
@@ -125,7 +86,7 @@ public:
...
@@ -125,7 +86,7 @@ public:
std
::
vector
<
float
>*
component_confidences
=
NULL
,
std
::
vector
<
float
>*
component_confidences
=
NULL
,
int
component_level
=
OCR_LEVEL_WORD
)
=
0
;
int
component_level
=
OCR_LEVEL_WORD
)
=
0
;
/** @brief
Recognize text using a segmentation based word-spotting/classifier cnn
.
/** @brief
detect text with a cnn, input is one image with (multiple) ocuurance of text
.
Takes image on input and returns recognized text in the output_text parameter. Optionally
Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
provides also the Rects for individual text elements found (e.g. words), and the list of those
...
@@ -135,16 +96,12 @@ public:
...
@@ -135,16 +96,12 @@ public:
@param mask is totally ignored and is only available for compatibillity reasons
@param mask is totally ignored and is only available for compatibillity reasons
@param output_text Output text of the the word spoting, always one that exists in the dictionary.
@param component_rects Not applicable for word spotting can be be NULL if not, a single elemnt will
@param component_rects a vector of Rects, each rect is one text bounding box.
be put in the vector.
@param component_texts Not applicable for word spotting can be be NULL if not, a single elemnt will
be put in the vector.
@param component_confidences Not applicable for word spotting can be be NULL if not, a single elemnt will
be put in the vector.
@param component_confidences A vector of float returns confidence of text bounding boxes
@param component_level must be OCR_LEVEL_WORD.
@param component_level must be OCR_LEVEL_WORD.
*/
*/
...
@@ -155,76 +112,43 @@ public:
...
@@ -155,76 +112,43 @@ public:
/**
/**
@brief Method that provides a quick and simple interface to
a single word image classifcation
@brief Method that provides a quick and simple interface to
detect text inside an image
@param inputImage an image expected to be a CV_U8C
1 or CV_U8C
3 of any size
@param inputImage an image expected to be a CV_U8C3 of any size
@param
transcription an opencv string that will store the detected word transcription
@param
Bbox a vector of Rect that will store the detected word bounding box
@param confidence a
double that will be updated with the confidence the classifier has for the selected word
@param confidence a
vector of float that will be updated with the confidence the classifier has for the selected bounding box
*/
*/
CV_WRAP
virtual
void
textDetectInImage
(
InputArray
inputImage
,
CV_OUT
std
::
vector
<
Rect
>&
Bbox
,
CV_OUT
std
::
vector
<
float
>&
confidence
)
=
0
;
CV_WRAP
virtual
void
textDetectInImage
(
InputArray
inputImage
,
CV_OUT
std
::
vector
<
Rect
>&
Bbox
,
CV_OUT
std
::
vector
<
float
>&
confidence
)
=
0
;
/**
@brief Method that provides a quick and simple interface to a multiple word image classifcation taking advantage
the classifiers parallel capabilities.
@param inputImageList an list of images expected to be a CV_U8C1 or CV_U8C3 each image can be of any size and is assumed
to contain a single word.
@param transcriptions a vector of opencv strings that will store the detected word transcriptions, one for each
input image
@param confidences a vector of double that will be updated with the confidence the classifier has for each of the
selected words.
*/
//CV_WRAP virtual void recogniseImageBatch(InputArrayOfArrays inputImageList,CV_OUT std::vector<String>& transcriptions,CV_OUT std::vector<double>& confidences)=0;
/** @brief simple getter for the preprocessing functor
/** @brief simple getter for the preprocessing functor
*/
*/
CV_WRAP
virtual
Ptr
<
TextImageClassifier
>
getClassifier
()
=
0
;
CV_WRAP
virtual
Ptr
<
TextImageClassifier
>
getClassifier
()
=
0
;
/** @brief Creates an instance of the
OCRHolisticWordRecognize
r class.
/** @brief Creates an instance of the
textDetecto
r class.
@param classifierPtr an instance of TextImageClassifier, normaly a DeepCNN instance
@param classifierPtr an instance of TextImageClassifier, normaly a DeepCNN instance
@param vocabularyFilename the relative or absolute path to the file containing all words in the vocabulary. Each text line
in the file is assumed to be a single word. The number of words in the vocabulary must be exactly the same as the outputSize
of the classifier.
*/
*/
CV_WRAP
static
Ptr
<
textDetector
>
create
(
Ptr
<
TextImageClassifier
>
classifierPtr
);
CV_WRAP
static
Ptr
<
textDetector
>
create
(
Ptr
<
TextImageClassifier
>
classifierPtr
);
/** @brief Creates an instance of the
OCRHolisticWordRecognize
r class and implicitly also a DeepCNN classifier.
/** @brief Creates an instance of the
textDetecto
r class and implicitly also a DeepCNN classifier.
@param modelArchFilename the relative or absolute path to the prototxt file describing the classifiers architecture.
@param modelArchFilename the relative or absolute path to the prototxt file describing the classifiers architecture.
@param modelWeightsFilename the relative or absolute path to the file containing the pretrained weights of the model in caffe-binary form.
@param modelWeightsFilename the relative or absolute path to the file containing the pretrained weights of the model in caffe-binary form.
@param vocabularyFilename the relative or absolute path to the file containing all words in the vocabulary. Each text line
in the file is assumed to be a single word. The number of words in the vocabulary must be exactly the same as the outputSize
of the classifier.
*/
*/
CV_WRAP
static
Ptr
<
textDetector
>
create
(
String
modelArchFilename
,
String
modelWeightsFilename
);
CV_WRAP
static
Ptr
<
textDetector
>
create
(
String
modelArchFilename
,
String
modelWeightsFilename
);
/** @brief
*
* @param classifierPtr
*
* @param vocabulary
*/
// CV_WRAP static Ptr<textDetectImage> create(Ptr<TextImageClassifier> classifierPtr,const std::vector<String>& vocabulary);
/** @brief
*
* @param modelArchFilename
*
* @param modelWeightsFilename
*
* @param vocabulary
*/
// CV_WRAP static Ptr<textDetectImage> create (String modelArchFilename, String modelWeightsFilename, const std::vector<String>& vocabulary);
};
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment