Commit e4137ce8 authored by Oded Green's avatar Oded Green

Adding a fast and parallel function for computing the estimated covariance matrix

parent 2d1fc7a6
...@@ -43,6 +43,7 @@ ...@@ -43,6 +43,7 @@
#include "ximgproc/structured_edge_detection.hpp" #include "ximgproc/structured_edge_detection.hpp"
#include "ximgproc/seeds.hpp" #include "ximgproc/seeds.hpp"
#include "ximgproc/fast_hough_transform.hpp" #include "ximgproc/fast_hough_transform.hpp"
#include "ximgproc/estimated_covariance.hpp"
/** @defgroup ximgproc Extended Image Processing /** @defgroup ximgproc Extended Image Processing
@{ @{
......
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015, OpenCV Foundation, all rights reserved.
Copyright (C) 2015, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
Algorithmic details of this algorithm can be found at:
* O. Green, Y. Birk, "A Computationally Efficient Algorithm for the 2D Covariance Method", ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis, Denver, Colorado, 2013
A previous and less efficient version of the algorithm can be found:
* O. Green, L. David, A. Galperin, Y. Birk, "Efficient parallel computation of the estimated covariance matrix", arXiv, 2013
*/
#ifndef __OPENCV_ESTIMATECOVARIANCE_HPP__
#define __OPENCV_ESTIMATECOVARIANCE_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
namespace cv
{
namespace ximgproc
{
/** @brief Computes the estimated covariance matrix of an image using the sliding
window forumlation.
@param src The source image. Input image must be of a complex type.
@param windowRows The number of rows in the window.
@param windowCols The number of cols in the window.
The window size parameters control the accuracy of the estimation.
The sliding window moves over the entire image from the top-left corner
to the bottom right corner. Each location of the window represents a sample.
If the window is the size of the image, then this gives the exact covariance matrix.
For all other cases, the sizes of the window will impact the number of samples
and the number of elements in the estimated covariance matrix.
*/
CV_EXPORTS_W void covarianceEstimation(InputArray src, OutputArray dst,
int windowRows, int windowCols);
}
}
#endif
#endif
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015, OpenCV Foundation, all rights reserved.
Copyright (C) 2015, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
Algorithmic details of this algorithm can be found at:
* O. Green, Y. Birk, "A Computationally Efficient Algorithm for the 2D Covariance Method", ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis, Denver, Colorado, 2013
A previous and less efficient version of the algorithm can be found:
* O. Green, L. David, A. Galperin, Y. Birk, "Efficient parallel computation of the estimated covariance matrix", arXiv, 2013
*/
#include "precomp.hpp"
//#include <opencv2/opencv.hpp>
#ifdef HAVE_OPENMP
#include <omp.h>
#endif
using namespace cv;
using namespace std;
namespace cv{
namespace ximgproc{
class EstimateCovariance{
public:
EstimateCovariance(int pr_, int pc_);
~EstimateCovariance();
void computeEstimateCovariance(Mat inputData,Mat outputData);
int combinationCount();
private:
typedef struct {
int mult1r;
int mult1c;
int mult2r;
int mult2c;
int type2; // 0 - for the first P*P. 1 - for the next (P-1)(P-1)
int id;
} Combination;
void initInternalDataStructures();
void buildCombinationsTable();
void iterateCombinations(Mat inputData,Mat outputData);
void computeOneCombination(int comb_id, Mat inputData , Mat outputData,
Mat outputVector,int* finalMatPosR, int* finalMatPosC);
inline void complexSubtract(std::complex<float>& src, std::complex<float>& dst){dst-=src;}
inline void complexAdd(std::complex<float>& src, std::complex<float>& dst){dst+=src;}
inline void complexConjMulAndAdd(std::complex<float>& a, std::complex<float>& b,
std::complex<float>& dst){dst += a*b;}
inline void complexConjMul(std::complex<float>& a, std::complex<float>& b,
std::complex<float>& dst){dst = a*b;}
private:
int nr;
int nc;
int pr;
int pc;
int threads;
Combination* combinationsTable;
};
EstimateCovariance::EstimateCovariance(int pr_, int pc_){
pr=pr_; pc=pc_;
#ifdef HAVE_OPENMP
threads=omp_get_num_procs();
omp_set_num_threads(threads);
#else
threads=1;
#endif
}
EstimateCovariance::~EstimateCovariance(){
delete[] combinationsTable;
}
void EstimateCovariance::initInternalDataStructures(){
int combCount = combinationCount();
combinationsTable = new Combination[combCount];
buildCombinationsTable();
}
int EstimateCovariance::combinationCount(){
return (pr*pc+(pr-1)*(pc-1));
}
void EstimateCovariance::buildCombinationsTable()
{
int idx_row,idx_col;
int comb_idx = 0;
Combination comb;
// The first element of the product is [0,0] and the second is to down and to the right of it.
for (idx_col=0; idx_col<pc; ++idx_col) {
for (idx_row=0; idx_row<pr; ++idx_row) {
comb.mult1r=0;
comb.mult1c=0;
comb.mult2r=idx_row;
comb.mult2c=idx_col;
comb.type2 = 0;
comb.id = comb_idx;
memcpy(&combinationsTable[comb_idx++], &comb, sizeof(Combination));
}
}
// The first element is on the top right, and the second element is to the left and down of it.
for (idx_row=1; idx_row<pr; ++idx_row) {
for (idx_col=1; idx_col<pc; ++idx_col) {
comb.mult1r=idx_row;
comb.mult1c=0;
comb.mult2r=0;
comb.mult2c=idx_col;
comb.type2 = 1;
comb.id = comb_idx;
memcpy(&combinationsTable[comb_idx++], &comb, sizeof(Combination));
}
}
}
void EstimateCovariance::computeEstimateCovariance(Mat inputData,Mat outputData){
initInternalDataStructures();
nr=inputData.rows;
nc=inputData.cols;
iterateCombinations(inputData,outputData);
}
void EstimateCovariance::iterateCombinations(Mat inputData,Mat outputData)
{
int combsPerCPU = combinationCount()/threads;
int remainder = combinationCount()%threads;
if(remainder>0)
combsPerCPU++;
#ifdef HAVE_OPENMP
#pragma omp parallel
#endif
{
int idx;
int combs;
#ifdef HAVE_OPENMP
int thread_id= omp_get_thread_num();
#else
int thread_id=0;
#endif
int startComb;
if (remainder > thread_id){
combs=combsPerCPU;
startComb=(thread_id)*combsPerCPU;
}
else{
combs=combsPerCPU-1;
startComb=remainder*combsPerCPU+(thread_id-remainder)*(combsPerCPU-1);
}
// stopComb=startComb+combs;
Mat outputVector(pr*pc,1, DataType<std::complex<float> >::type);
int* finalMatPosR = new int[pr*pc];
int* finalMatPosC = new int[pr*pc];
for (idx=0; idx<combs; idx++){
outputVector.setTo(Scalar(0,0));
memset(finalMatPosR,0,pr*pc*sizeof(int));
memset(finalMatPosC,0,pr*pc*sizeof(int));
computeOneCombination(startComb++, inputData, outputData,
outputVector,finalMatPosR, finalMatPosC);
}
delete[] finalMatPosR;
delete[] finalMatPosC;
}
}
void EstimateCovariance::computeOneCombination(int comb_id,Mat inputData, Mat outputData,
Mat outputVector,int* finalMatPosR, int* finalMatPosC)
{
Combination* comb = &combinationsTable[comb_id];
int type2 = comb->type2;
int deltaR = (int)abs((int)(comb->mult1r-comb->mult2r));
int deltaC = (int)abs((int)(comb->mult1c-comb->mult2c));
int numElementsInBlock = pr-abs(deltaR);
int numBlocks = pc-deltaC;
const int DR= nr-pr;
const int DC= nc-pc;
int elementC=0;
std::complex<float> temp_res = std::complex<float>(0,0);
int i,j,r,c;
if (!type2) {
// Computing the first index of the combination.
// This index is made up
for(i=0; i<=( DR); i++) {
int iPdr=i+deltaR;
for(j=0; j<= (DC); j++) {
int jPdc = j+deltaC;
complexConjMulAndAdd(inputData.at<std::complex<float> >(i,j), inputData.at<std::complex<float> >(iPdr,jPdc), temp_res);
}
}
}else{
// Computing the first index of the combination.
for(i=0; i<=( DR); i++) {
int iPdr=i+deltaR;
for(j=0; j<= (DC); j++) {
int jPdc = j+deltaC;
complexConjMulAndAdd(inputData.at<std::complex<float> >(iPdr,j), inputData.at<std::complex<float> >(i,jPdc), temp_res);
}
}
}
outputVector.at<std::complex<float> >(0,0) = temp_res;
// Checking if the first element belongs to the first set of combinatons.
// The combination that the first element is above the second.
if (!type2) {
finalMatPosR[0]=0;
finalMatPosC[0]=pr*deltaC+deltaR;
elementC++;
}else{
finalMatPosR[0]=deltaR;
finalMatPosC[0]=pr*deltaC;
elementC++;
}
for(r=1;r<(pr-deltaR);r++){
std::complex<float> newRowSum = std::complex<float>(0,0),oldRowSum = std::complex<float>(0,0);
std::complex<float> addRows = std::complex<float>(0,0);
int rM1 = r-1;
int k = DR+1 + rM1;
int kPdr = k+deltaR;
int rM1Pdr = rM1 + deltaR;
int cPdc;
if (!type2) {
for(c=0;c<=(DC); c++){
cPdc = c+deltaC;
complexConjMulAndAdd(inputData.at<std::complex<float> >(k,c),inputData.at<std::complex<float> >(kPdr,cPdc),newRowSum);
complexConjMulAndAdd(inputData.at<std::complex<float> >(rM1,c),inputData.at<std::complex<float> >(rM1Pdr,cPdc),oldRowSum);
}
}else{
for(c=0;c<=(DC); c++){
cPdc = c+deltaC;
complexConjMulAndAdd(inputData.at<std::complex<float> >(kPdr,c),inputData.at<std::complex<float> >(k,cPdc),newRowSum);
complexConjMulAndAdd(inputData.at<std::complex<float> >(rM1Pdr,c),inputData.at<std::complex<float> >(rM1,cPdc),oldRowSum);
}
}
complexAdd(newRowSum,addRows);
complexSubtract(oldRowSum,addRows);
complexAdd(outputVector.at<std::complex<float> >(rM1,0),outputVector.at<std::complex<float> >(r,0));
complexAdd(addRows,outputVector.at<std::complex<float> >(r,0));
finalMatPosR[elementC]=finalMatPosR[elementC-1]+1;;
finalMatPosC[elementC]=finalMatPosC[elementC-1]+1;
elementC++;
}
for(c=1; c<numBlocks; c++) {
std::complex<float> newColSum = std::complex<float>(0,0),oldColSum = std::complex<float>(0,0);
std::complex<float> addCols = std::complex<float>(0,0);
// Index arithmetic
int cM1 = c-1;
int dcPc = DC+c;
int q = DC+1 + cM1;
int cM1PdeltaC = cM1 + deltaC;
int dcPcPdeltaC = dcPc+deltaC;
if (!type2) {
for(r=0;r<=(DR); r++){
int rPdr = r+deltaR;
complexConjMulAndAdd(inputData.at<std::complex<float> >(r,q),inputData.at<std::complex<float> >(rPdr,q+deltaC),newColSum);
complexConjMulAndAdd(inputData.at<std::complex<float> >(r,cM1),inputData.at<std::complex<float> >(rPdr,cM1+deltaC),oldColSum);
}
}else{
for(r=0;r<=(DR); r++){
int rPdr = r+deltaR;
complexConjMulAndAdd(inputData.at<std::complex<float> >(rPdr,q),inputData.at<std::complex<float> >(r,q+deltaC),newColSum);
complexConjMulAndAdd(inputData.at<std::complex<float> >(rPdr,cM1),inputData.at<std::complex<float> >(r,cM1+deltaC),oldColSum);
}
}
complexAdd(newColSum,addCols);
complexSubtract(oldColSum,addCols);
complexAdd(outputVector.at<std::complex<float> >((c-1)*numElementsInBlock,0),outputVector.at<std::complex<float> >(c*numElementsInBlock,0));
complexAdd(addCols,outputVector.at<std::complex<float> >(c*numElementsInBlock,0));
finalMatPosR[elementC]=finalMatPosR[elementC-numElementsInBlock]+pr;
finalMatPosC[elementC]=finalMatPosC[elementC-numElementsInBlock]+pr;
elementC++;
for(r=1; r<numElementsInBlock; r++) {
std::complex<float> w = std::complex<float>(0,0),x = std::complex<float>(0,0),
y = std::complex<float>(0,0),z = std::complex<float>(0,0),deltaRowSum = std::complex<float>(0,0);
std::complex<float> tempRes = std::complex<float>(0,0);
// Index arithmetic
int rM1 = r-1;
int drPr = DR+r;
int rM1PdeltaR = rM1 + deltaR;
int drPrPdeltaR = drPr+deltaR;
if (!type2) {
complexConjMul(inputData.at<std::complex<float> >(rM1,cM1),inputData.at<std::complex<float> >(rM1PdeltaR,cM1PdeltaC),w);
complexConjMul(inputData.at<std::complex<float> >(rM1,dcPc),inputData.at<std::complex<float> >(rM1PdeltaR,dcPcPdeltaC),x);
complexConjMul(inputData.at<std::complex<float> >(drPr,cM1),inputData.at<std::complex<float> >(drPrPdeltaR,cM1PdeltaC),y);
complexConjMul(inputData.at<std::complex<float> >(drPr,dcPc),inputData.at<std::complex<float> >(drPrPdeltaR,dcPcPdeltaC),z);
}else{
complexConjMul(inputData.at<std::complex<float> >(rM1PdeltaR,cM1),inputData.at<std::complex<float> >(rM1,cM1PdeltaC),w);
complexConjMul(inputData.at<std::complex<float> >(rM1PdeltaR,dcPc),inputData.at<std::complex<float> >(rM1,dcPcPdeltaC),x);
complexConjMul(inputData.at<std::complex<float> >(drPrPdeltaR,cM1),inputData.at<std::complex<float> >(drPr,cM1PdeltaC),y);
complexConjMul(inputData.at<std::complex<float> >(drPrPdeltaR,dcPc),inputData.at<std::complex<float> >(drPr,dcPcPdeltaC),z);
}
complexAdd(w,tempRes);
complexSubtract(x,tempRes);
complexSubtract(y,tempRes);
complexAdd(z,tempRes);
complexAdd(outputVector.at<std::complex<float> >((c-1)*numElementsInBlock + r,0),deltaRowSum);
complexSubtract(outputVector.at<std::complex<float> >((c-1)*numElementsInBlock+ rM1,0),deltaRowSum);
complexAdd(deltaRowSum,tempRes);
complexAdd(outputVector.at<std::complex<float> >(c*numElementsInBlock+rM1,0),tempRes);
complexAdd(tempRes,outputVector.at<std::complex<float> >(c*numElementsInBlock+r,0));
finalMatPosR[elementC]=finalMatPosR[elementC-1]+1;
finalMatPosC[elementC]=finalMatPosC[elementC-1]+1;
elementC++;
}
}
for(i=0; i<numElementsInBlock*numBlocks; i++){
outputData.at<std::complex<float> >(finalMatPosR[i],finalMatPosC[i])=outputVector.at<std::complex<float> >(i,0);
}
}
void covarianceEstimation(InputArray input_, OutputArray output_,int windowRows, int windowCols){
CV_Assert( input_.channels() <= 2); // Does not take color images.
Mat input;
Mat temp=input_.getMat();
if(temp.channels() == 1){
temp.convertTo(temp,CV_32FC2);
Mat zmat = Mat::zeros(temp.size(), CV_32F);
Mat twoChannelsbefore[] = {temp,zmat};
cv::merge(twoChannelsbefore,2,input);
}else{
temp.convertTo(input, CV_32FC2);
}
EstimateCovariance estCov(windowRows,windowCols);
//input_.getMat().convertTo(input, CV_32FC2);
output_.create(windowRows*windowCols,windowRows*windowCols, DataType<std::complex<float> >::type);
Mat output = output_.getMat();
estCov.computeEstimateCovariance(input,output);
}
} // namespace ximgproc
} // namespace cv
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment