Commit e18103e2 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #221 from xolodilnik:fast_hough_transform

parents 172fdb31 7a586538
...@@ -41,6 +41,7 @@ ...@@ -41,6 +41,7 @@
#include "ximgproc/disparity_filter.hpp" #include "ximgproc/disparity_filter.hpp"
#include "ximgproc/structured_edge_detection.hpp" #include "ximgproc/structured_edge_detection.hpp"
#include "ximgproc/seeds.hpp" #include "ximgproc/seeds.hpp"
#include "ximgproc/fast_hough_transform.hpp"
/** @defgroup ximgproc Extended Image Processing /** @defgroup ximgproc Extended Image Processing
@{ @{
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FAST_HOUGH_TRANSFORM_HPP__
#define __OPENCV_FAST_HOUGH_TRANSFORM_HPP__
#ifdef __cplusplus
#include "opencv2/core.hpp"
namespace cv { namespace ximgproc {
/**
* @brief Specifies the part of Hough space to calculate
* @details The enum specifies the part of Hough space to calculate. Each
* member specifies primarily direction of lines (horizontal or vertical)
* and the direction of angle changes.
* Direction of angle changes is from multiples of 90 to odd multiples of 45.
* The image considered to be written top-down and left-to-right.
* Angles are started from vertical line and go clockwise.
* Separate quarters and halves are written in orientation they should be in
* full Hough space.
*/
enum AngleRangeOption
{
ARO_0_45 = 0, //< Vertical primarily direction and clockwise angle changes
ARO_45_90 = 1, //< Horizontal primarily direction and counterclockwise angle changes
ARO_90_135 = 2, //< Horizontal primarily direction and clockwise angle changes
ARO_315_0 = 3, //< Vertical primarily direction and counterclockwise angle changes
ARO_315_45 = 4, //< Vertical primarily direction
ARO_45_135 = 5, //< Horizontal primarily direction
ARO_315_135 = 6, //< Full set of directions
ARO_CTR_HOR = 7, //< 90 +/- atan(0.5), interval approximately from 64.5 to 116.5 degrees.
//< It is used for calculating Fast Hough Transform for images skewed by atan(0.5).
ARO_CTR_VER = 8 //< +/- atan(0.5), interval approximately from 333.5(-26.5) to 26.5 degrees
//< It is used for calculating Fast Hough Transform for images skewed by atan(0.5).
};
/**
* @brief Specifies binary operations.
* @details The enum specifies binary operations, that is such ones which involve
* two operands. Formally, a binary operation @f$ f @f$ on a set @f$ S @f$
* is a binary relation that maps elements of the Cartesian product
* @f$ S \times S @f$ to @f$ S @f$:
* @f[ f: S \times S \to S @f]
* @ingroup MinUtils_MathOper
*/
enum HoughOp
{
FHT_MIN = 0, //< Binary minimum operation. The constant specifies the binary minimum operation
//< @f$ f @f$ that is defined as follows: @f[ f(x, y) = \min(x, y) @f]
FHT_MAX = 1, //< Binary maximum operation. The constant specifies the binary maximum operation
//< @f$ f @f$ that is defined as follows: @f[ f(x, y) = \max(x, y) @f]
FHT_ADD = 2, //< Binary addition operation. The constant specifies the binary addition operation
//< @f$ f @f$ that is defined as follows: @f[ f(x, y) = x + y @f]
FHT_AVE = 3 //< Binary average operation. The constant specifies the binary average operation
//< @f$ f @f$ that is defined as follows: @f[ f(x, y) = \frac{x + y}{2} @f]
};
/**
* @brief Specifies to do or not to do skewing of Hough transform image
* @details The enum specifies to do or not to do skewing of Hough transform image
* so it would be no cycling in Hough transform image through borders of image.
*/
enum HoughDeskewOption
{
HDO_RAW = 0, //< Use raw cyclic image
HDO_DESKEW = 1 //< Prepare deskewed image
};
/**
* @brief Specifies the degree of rules validation.
* @details The enum specifies the degree of rules validation. This can be used,
* for example, to choose a proper way of input arguments validation.
*/
typedef enum {
RO_STRICT = 0x00, ///< Validate each rule in a proper way.
RO_IGNORE_BORDERS = 0x01, ///< Skip validations of image borders.
} RulesOption;
/**
* @brief Calculates 2D Fast Hough transform of an image.
* @param dst The destination image, result of transformation.
* @param src The source (input) image.
* @param dstMatDepth The depth of destination image
* @param op The operation to be applied, see cv::HoughOp
* @param angleRange The part of Hough space to calculate, see cv::AngleRangeOption
* @param makeSkew Specifies to do or not to do image skewing, see cv::HoughDeskewOption
*
* The function calculates the fast Hough transform for full, half or quarter
* range of angles.
*/
CV_EXPORTS void FastHoughTransform( InputArray src,
OutputArray dst,
int dstMatDepth,
int angleRange = ARO_315_135,
int op = FHT_ADD,
int makeSkew = HDO_DESKEW );
/**
* @brief Calculates coordinates of line segment corresponded by point in Hough space.
* @param houghPoint Point in Hough space.
* @param srcImgInfo The source (input) image of Hough transform.
* @param angleRange The part of Hough space where point is situated, see cv::AngleRangeOption
* @param makeSkew Specifies to do or not to do image skewing, see cv::HoughDeskewOption
* @param rules Specifies strictness of line segment calculating, see cv::RulesOption
* @retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
* @remarks If rules parameter set to RO_STRICT
then returned line cut along the border of source image.
* @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
the incorrect part of Hough image, returned line will not intersect source image.
*
* The function calculates coordinates of line segment corresponded by point in Hough space.
*/
CV_EXPORTS Vec4i HoughPoint2Line(const Point &houghPoint,
InputArray srcImgInfo,
int angleRange = ARO_315_135,
int makeSkew = HDO_DESKEW,
int rules = RO_IGNORE_BORDERS );
} }// namespace cv::ximgproc
#endif //__cplusplus
#endif //__OPENCV_FAST_HOUGH_TRANSFORM_HPP__
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
namespace cvtest {
using namespace std;
using namespace cv;
using namespace cv::ximgproc;
using namespace perf;
using namespace testing;
using std::tr1::make_tuple;
using std::tr1::get;
typedef std::tr1::tuple<Size, MatType, MatDepth> srcSize_srcType_dstDepth_t;
typedef perf::TestBaseWithParam<srcSize_srcType_dstDepth_t>
srcSize_srcType_dstDepth;
#define ALL_MAT_DEPHTS CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F
PERF_TEST_P(srcSize_srcType_dstDepth, FastHoughTransform,
testing::Combine(
testing::Values(TYPICAL_MAT_SIZES),
testing::Values(TYPICAL_MAT_TYPES),
testing::Values(ALL_MAT_DEPHTS)
)
)
{
Size srcSize = get<0>(GetParam());
int srcType = get<1>(GetParam());
int dstDepth = get<2>(GetParam());
Mat src(srcSize, srcType);
Mat fht;
declare.in(src, WARMUP_RNG);
TEST_CYCLE_N(3)
{
FastHoughTransform(src, fht, dstDepth);
}
SANITY_CHECK_NOTHING();
}
#undef ALL_MAT_DEPHTS
} // namespace cvtest
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/ximgproc.hpp>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <ctime>
#include <vector>
using namespace cv;
using namespace cv::ximgproc;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates line finding with the Fast Hough transform.\n"
"Usage:\n"
"./fasthoughtransform\n"
"<image_name>, default is '../../../samples/data/building.jpg'\n"
"<fht_image_depth>, default is " << CV_32S << "\n"
"<fht_angle_range>, default is " << 6 << " (@see cv::AngleRangeOption)\n"
"<fht_operator>, default is " << 2 << " (@see cv::HoughOp)\n"
"<fht_makeskew>, default is " << 1 << "(@see cv::HoughDeskewOption)" << endl;
}
static bool parseArgs(int argc, const char **argv,
Mat &img,
int &houghDepth,
int &houghAngleRange,
int &houghOperator,
int &houghSkew)
{
if (argc > 6)
{
cout << "Too many arguments" << endl;
return false;
}
const char *filename = argc >= 2 ? argv[1]
: "../../../samples/data/building.jpg";
img = imread(filename, 0);
if (img.empty())
{
cout << "Failed to load image from '" << filename << "'" << endl;
return false;
}
houghDepth = argc >= 3 ? atoi(argv[2]) : CV_32S;
houghAngleRange = argc >= 4 ? atoi(argv[3]) : 6;//ARO_315_135
houghOperator = argc >= 5 ? atoi(argv[4]) : 2;//FHT_ADD
houghSkew = argc >= 6 ? atoi(argv[5]) : 1;//HDO_DESKEW
return true;
}
static bool getEdges(const Mat &src, Mat &dst)
{
Mat ucharSingleSrc;
src.convertTo(ucharSingleSrc, CV_8UC1);
Canny(ucharSingleSrc, dst, 50, 200, 3);
return true;
}
static bool fht(const Mat &src, Mat &dst,
int dstDepth, int angleRange, int op, int skew)
{
clock_t clocks = clock();
FastHoughTransform(src, dst, dstDepth, angleRange, op, skew);
clocks = clock() - clocks;
double secs = (double)clocks / CLOCKS_PER_SEC;
cout << std::setprecision(2) << "FastHoughTransform finished in " << secs
<< " seconds" << endl;
return true;
}
template<typename T>
bool rel(pair<T, Point> const &a, pair<T, Point> const &b)
{
return a.first > b.first;
}
template<typename T>
bool incIfGreater(const T& a, const T& b, int *value)
{
if (!value || a < b)
return false;
if (a > b)
++(*value);
return true;
}
static const int MAX_LEN = 10000;
template<typename T>
bool getLocalExtr(vector<Vec4i> &lines,
const Mat &src,
const Mat &fht,
float minWeight,
int maxCount)
{
vector<pair<T, Point> > weightedPoints;
for (int y = 0; y < fht.rows; ++y)
{
if (weightedPoints.size() > MAX_LEN)
break;
T const *pLine = (T *)fht.ptr(max(y - 1, 0));
T const *cLine = (T *)fht.ptr(y);
T const *nLine = (T *)fht.ptr(min(y + 1, fht.rows - 1));
for (int x = 0; x < fht.cols; ++x)
{
if (weightedPoints.size() > MAX_LEN)
break;
T const value = cLine[x];
if (value >= minWeight)
{
int isLocalMax = 0;
for (int xx = max(x - 1, 0);
xx <= min(x + 1, fht.cols - 1);
++xx)
{
if (!incIfGreater(value, pLine[xx], &isLocalMax) ||
!incIfGreater(value, cLine[xx], &isLocalMax) ||
!incIfGreater(value, nLine[xx], &isLocalMax))
{
isLocalMax = 0;
break;
}
}
if (isLocalMax > 0)
weightedPoints.push_back(make_pair(value, Point(x, y)));
}
}
}
if (weightedPoints.empty())
return true;
sort(weightedPoints.begin(), weightedPoints.end(), &rel<T>);
weightedPoints.resize(min(static_cast<int>(weightedPoints.size()),
maxCount));
for (size_t i = 0; i < weightedPoints.size(); ++i)
{
lines.push_back(HoughPoint2Line(weightedPoints[i].second, src));
}
return true;
}
static bool getLocalExtr(vector<Vec4i> &lines,
const Mat &src,
const Mat &fht,
float minWeight,
int maxCount)
{
int const depth = CV_MAT_DEPTH(fht.type());
switch (depth)
{
case 0:
return getLocalExtr<uchar>(lines, src, fht, minWeight, maxCount);
case 1:
return getLocalExtr<schar>(lines, src, fht, minWeight, maxCount);
case 2:
return getLocalExtr<ushort>(lines, src, fht, minWeight, maxCount);
case 3:
return getLocalExtr<short>(lines, src, fht, minWeight, maxCount);
case 4:
return getLocalExtr<int>(lines, src, fht, minWeight, maxCount);
case 5:
return getLocalExtr<float>(lines, src, fht, minWeight, maxCount);
case 6:
return getLocalExtr<double>(lines, src, fht, minWeight, maxCount);
default:
return false;
}
}
static void rescale(Mat const &src, Mat &dst,
int const maxHeight=500,
int const maxWidth = 1000)
{
double scale = min(min(static_cast<double>(maxWidth) / src.cols,
static_cast<double>(maxHeight) / src.rows), 1.0);
resize(src, dst, Size(), scale, scale, INTER_LINEAR);
}
static void showHumanReadableImg(string const &name, Mat const &img)
{
Mat ucharImg;
img.convertTo(ucharImg, CV_MAKETYPE(CV_8U, img.channels()));
rescale(ucharImg, ucharImg);
imshow(name, ucharImg);
}
static void showFht(Mat const &fht)
{
double minv(0), maxv(0);
minMaxLoc(fht, &minv, &maxv);
Mat ucharFht;
fht.convertTo(ucharFht, CV_MAKETYPE(CV_8U, fht.channels()),
255.0 / (maxv + minv), minv / (maxv + minv));
rescale(ucharFht, ucharFht);
imshow("fast hough transform", ucharFht);
}
static void showLines(Mat const &src, vector<Vec4i> const &lines)
{
Mat bgrSrc;
cvtColor(src, bgrSrc, COLOR_GRAY2BGR);
for (size_t i = 0; i < lines.size(); ++i)
{
Vec4i const &l = lines[i];
line(bgrSrc, Point(l[0], l[1]), Point(l[2], l[3]),
Scalar(0, 0, 255), 1, LINE_AA);
}
rescale(bgrSrc, bgrSrc);
imshow("lines", bgrSrc);
}
int main(int argc, const char **argv)
{
Mat src;
int depth(0);
int angleRange(0);
int op(0);
int skew(0);
if (!parseArgs(argc, argv, src, depth, angleRange, op, skew))
{
help();
return -1;
}
showHumanReadableImg("src", src);
Mat canny;
if (!getEdges(src, canny))
{
cout << "Failed to select canny edges";
return -2;
}
showHumanReadableImg("canny", canny);
Mat hough;
if (!fht(canny, hough, depth, angleRange, op, skew))
{
cout << "Failed to compute Fast Hough Transform";
return -2;
}
showFht(hough);
vector<Vec4i> lines;
if (!getLocalExtr(lines, canny, hough,
static_cast<float>(255 * 0.3 * min(src.rows, src.cols)),
50))
{
cout << "Failed to find local maximums on FHT image";
return -2;
}
showLines(canny, lines);
waitKey();
return 0;
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv { namespace ximgproc {
#if defined(_WIN32) && !defined(int32_t)
typedef __int32 int32_t;
#endif
template<typename T, int D, HoughOp Op>
struct HoughOperator { };
#define SPECIALIZE_HOUGHOP(TOp, body) \
template<typename T, int D> \
struct HoughOperator<T, D, TOp> { \
static void operate(T *pDst, T *pSrc0, T* pSrc1, int len) { \
Mat dst (Size(1, len), D, pDst); \
Mat src0(Size(1, len), D, pSrc0); \
Mat src1(Size(1, len), D, pSrc1); \
body; \
} \
};
SPECIALIZE_HOUGHOP(FHT_ADD, add(src0, src1, dst));
SPECIALIZE_HOUGHOP(FHT_MIN, min(src0, src1, dst));
SPECIALIZE_HOUGHOP(FHT_MAX, max(src0, src1, dst));
SPECIALIZE_HOUGHOP(FHT_AVE, addWeighted(src0, 0.5, src1, 0.5, 0.0, dst));
#undef SPECIALIZE_HOUGHOP
//----------------------fht----------------------------------------------------
template <typename T, int D, HoughOp OP>
void fhtCore(Mat &img0,
Mat &img1,
int32_t y0,
int32_t h,
bool isPositiveShift,
int level,
double aspl)
{
if (level <= 0)
return;
CV_Assert(h > 0);
if (h == 1)
{
if ((aspl != 0.0) && (level == 1))
{
int w = img0.cols;
uchar* pLine0 = img0.data + img0.step * y0;
uchar* pLine1 = img1.data + img1.step * y0;
int dLine = cvRound(y0 * aspl);
dLine = dLine % w;
dLine = dLine * (int)(img1.elemSize());
int wLine = img0.cols * (int)(img0.elemSize());
memcpy(pLine0, pLine1 + wLine - dLine, dLine);
memcpy(pLine0 + dLine, pLine1, wLine - dLine);
}
else
{
memcpy(img0.data + img0.step * y0,
img1.data + img1.step * y0,
img0.cols * (int)(img0.elemSize()));
}
return;
}
const int32_t k = h >> 1;
fhtCore<T, D, OP>(img1, img0, y0, k,
isPositiveShift, level - 1, aspl);
fhtCore<T, D, OP>(img1, img0, y0 + k, h - k,
isPositiveShift, level - 1, aspl);
int au = 2 * k - 2;
int ad = 2 * h - 2 * k - 2;
int b = h - 1;
int d = 2 * h - 2;
int w = img0.cols;
int wm = (h / w + 1) * w;
for (int32_t s = 0; s < h; s++)
{
int su = (s * au + b) / d;
int sd = (s * ad + b) / d;
int rd = isPositiveShift ? sd - s : s - sd;
rd = (rd + wm) % w;
uchar *pLine0 = img0.data + img0.step * (y0 + s);
uchar *pLineU = img1.data + img1.step * (y0 + su);
uchar *pLineD = img1.data + img1.step * (y0 + k + sd);
int w0 = img0.channels() * rd;
int w1 = img0.channels() * (w - rd);
if ((aspl != 0.0) && (level == 1))
{
int dU = cvRound((y0 + su) * aspl);
dU = dU % w;
dU *= img0.channels();
int dD = cvRound((y0 + k + sd) * aspl);
dD = dD % w;
dD *= img0.channels();
int wB = w * img0.channels();
int dX = dD - dU;
if (w0 >= dX)
{
if (w0 >= dD)
{
HoughOperator<T, D, OP>::operate((T *)pLine0 + dU,
(T *)pLineU,
(T *)pLineD + (w0 - dX),
w1 + dX);
HoughOperator<T, D, OP>::operate((T *)pLine0 + (w1 + dD),
(T *)pLineU + (w1 + dX),
(T *)pLineD,
w0 - dD);
HoughOperator<T, D, OP>::operate((T *)pLine0,
(T *)pLineU + (wB - dU),
(T *)pLineD + (w0 - dD),
dU);
}
else
{
HoughOperator<T, D, OP>::operate((T *)pLine0 + dU,
(T *)pLineU,
(T *)pLineD + (w0 - dX),
wB - dU);
HoughOperator<T, D, OP>::operate((T *)pLine0,
(T *)pLineU + (wB - dU),
(T *)pLineD + (w0 + wB - dD),
dD - w0);
HoughOperator<T, D, OP>::operate((T *)pLine0 + (dD - w0),
(T *)pLineU + (w1 + dX),
(T *)pLineD,
w0 - dX);
}
}
else
{
HoughOperator<T, D, OP>::operate((T *)pLine0 + dU,
(T *)pLineU,
(T *)pLineD + (wB - (dX - w0)),
dX - w0);
HoughOperator<T, D, OP>::operate((T *)pLine0 + (dD - w0),
(T *)pLineU + (dX - w0),
(T *)pLineD,
wB - (dX - w0) - dU);
HoughOperator<T, D, OP>::operate((T *)pLine0,
(T *)pLineU + (wB - dU),
(T *)pLineD + (wB - (dX - w0) - dU),
dU);
}
}
else
{
HoughOperator<T, D, OP>::operate((T *)pLine0,
(T *)pLineU,
(T *)pLineD + w0,
w1);
HoughOperator<T, D, OP>::operate((T *)pLine0 + w1,
(T *)pLineU + w1,
(T *)pLineD,
w0);
}
}
}
template <typename T, int D, HoughOp Op>
void fhtVoT(Mat &img0,
Mat &img1,
bool isPositiveShift,
double aspl)
{
int level = 0;
for (int thres = 1; img0.rows > thres; thres <<= 1)
level++;
fhtCore<T, D, Op>(img0, img1, 0, img0.rows, isPositiveShift, level, aspl);
}
template <typename T, int D>
void fhtVo(Mat &img0,
Mat &img1,
bool isPositiveShift,
int operation,
double aspl)
{
switch (operation)
{
case FHT_ADD:
fhtVoT<T, D, FHT_ADD>(img0, img1, isPositiveShift, aspl);
break;
case FHT_AVE:
fhtVoT<T, D, FHT_AVE>(img0, img1, isPositiveShift, aspl);
break;
case FHT_MAX:
fhtVoT<T, D, FHT_MAX>(img0, img1, isPositiveShift, aspl);
break;
case FHT_MIN:
fhtVoT<T, D, FHT_MIN>(img0, img1, isPositiveShift, aspl);
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown operation %d", operation));
break;
}
}
static void fhtVo(Mat &img0,
Mat &img1,
bool isPositiveShift,
int operation,
double aspl)
{
int const depth = img0.depth();
switch (depth)
{
case CV_8U:
fhtVo<uchar, CV_8UC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_8S:
fhtVo<schar, CV_8SC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_16U:
fhtVo<ushort, CV_16UC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_16S:
fhtVo<short, CV_16SC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_32S:
fhtVo<int, CV_32SC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_32F:
fhtVo<float, CV_32FC1>(img0, img1, isPositiveShift, operation, aspl);
break;
case CV_64F:
fhtVo<double, CV_64FC1>(img0, img1, isPositiveShift, operation, aspl);
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown depth %d", depth));
break;
}
}
static void FHT(Mat &dst,
const Mat &src,
int operation,
bool isVertical,
bool isClockwise,
double aspl)
{
CV_Assert(dst.cols > 0 && dst.rows > 0);
CV_Assert(src.channels() == dst.channels());
if (isVertical)
CV_Assert(src.cols == dst.cols && src.rows == dst.rows);
else
CV_Assert(src.cols == dst.rows && src.rows == dst.cols);
int level = 0;
for (int thres = 1; dst.rows > thres; thres <<= 1)
level++;
Mat tmp;
src.convertTo(tmp, dst.type());
if (!isVertical)
transpose(tmp, tmp);
tmp.copyTo(dst);
fhtVo(dst, tmp,
isVertical ? isClockwise : !isClockwise,
operation, aspl);
}
static void calculateFHTQuadrant(Mat &dst,
const Mat &src,
int operation,
int quadrant)
{
bool bVert = true;
bool bClock = true;
double aspl = 0.0;
switch (quadrant)
{
case ARO_315_0:
bVert = true;
bClock = false;
break;
case ARO_0_45:
bVert = true;
bClock = true;
break;
case ARO_45_90:
bVert = false;
bClock = false;
break;
case ARO_90_135:
bVert = false;
bClock = true;
break;
case ARO_CTR_VER:
bVert = true;
bClock = false;
aspl = 0.5;
break;
case ARO_CTR_HOR:
bVert = false;
bClock = true;
aspl = 0.5;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown quadrant %d", quadrant));
}
FHT(dst, src, operation, bVert, bClock, aspl);
}
static void createDstFhtMat(OutputArray dst,
InputArray src,
int depth,
int angleRange)
{
int const rows = src.size().height;
int const cols = src.size().width;
int const channels = src.channels();
int wd = cols + rows;
int ht = 0;
switch (angleRange)
{
case ARO_315_0:
case ARO_0_45:
case ARO_CTR_VER:
ht = rows;
break;
case ARO_45_90:
case ARO_90_135:
case ARO_CTR_HOR:
ht = cols;
break;
case ARO_315_45:
ht = 2 * rows - 1;
break;
case ARO_45_135:
ht = 2 * cols - 1;
break;
case ARO_315_135:
ht = 2 * (cols + rows) - 3;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown angleRange %d", angleRange));
}
dst.create(ht, wd, CV_MAKETYPE(depth, channels));
}
static void createFHTSrc(Mat &srcFull,
const Mat &src,
int angleRange)
{
bool verticalTiling = false;
switch (angleRange)
{
case ARO_315_0:
case ARO_0_45:
case ARO_CTR_VER:
case ARO_315_45:
verticalTiling = false;
break;
case ARO_45_90:
case ARO_90_135:
case ARO_CTR_HOR:
case ARO_45_135:
verticalTiling = true;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown angleRange %d", angleRange));
}
int wd = verticalTiling ? src.cols : src.cols + src.rows;
int ht = verticalTiling ? src.cols + src.rows : src.rows;
srcFull = Mat(ht, wd, src.type());
Mat imgReg;
if (verticalTiling)
imgReg = Mat(srcFull, Rect(0, src.rows, src.cols, src.cols));
else
imgReg = Mat(srcFull, Rect(src.cols, 0, src.rows, src.rows));
imgReg = Mat::zeros(imgReg.size(), imgReg.type());
imgReg = Mat(srcFull, Rect(0, 0, src.cols, src.rows));
src.copyTo(imgReg);
}
static void setFHTDstRegion(Mat &dstRegion,
const Mat &dst,
const Mat &src,
int quadrant,
int angleRange)
{
int base = -1;
switch (angleRange)
{
case ARO_315_0:
case ARO_315_45:
case ARO_315_135:
base = 0;
break;
case ARO_0_45:
base = 1;
break;
case ARO_45_90:
case ARO_45_135:
base = 2;
break;
case ARO_90_135:
base = 3;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown angleRange %d", angleRange));
}
int quad = -1;
switch (quadrant)
{
case ARO_315_0:
quad = 0;
break;
case ARO_0_45:
quad = 1;
break;
case ARO_45_90:
quad = 2;
break;
case ARO_90_135:
quad = 3;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown quadrant %d", quadrant));
}
if (quad < base)
quad += 4;
int shift = 0;
for (int i = base; i < quad; i++)
shift += (i & 2) ? src.cols - 1 : src.rows - 1;
const int ht = (quad & 2) ? src.cols : src.rows;
dstRegion = Mat(dst, Rect(0, shift, src.rows + src.cols, ht));
}
static void rotateLineRightCyclic(uchar *pLine,
uchar *pBuf,
int len,
int shift)
{
shift = shift % len;
shift = (shift + len) % len;
memcpy(pBuf, pLine, len);
memcpy(pLine + shift, pBuf, len - shift);
if (shift > 0)
memcpy(pLine, pBuf + len - shift, shift);
}
static void skewQuadrant(Mat &quad,
const Mat &src,
uchar *pBuf,
int quadrant)
{
CV_Assert(pBuf);
const int wd = src.cols;
const int ht = src.rows;
double start = 0.;
double step = .5;
switch (quadrant)
{
case ARO_315_0:
case ARO_CTR_VER:
step = -.5;
start = ht - 0.5;
break;
case ARO_0_45:
step = -.5;
start = ht * .5;
break;
case ARO_45_90:
break;
case ARO_90_135:
case ARO_CTR_HOR:
start = wd * .5 - 0.5;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown quadrant %d", quadrant));
}
const int pixlen = static_cast<int>(quad.elemSize());
const int len = quad.cols * pixlen;
for (int y = 0; y < quad.rows; y++)
{
uchar *pLine = quad.ptr(y);
int shift = static_cast<int>(start + step * y) * pixlen;
rotateLineRightCyclic(pLine, pBuf, len, shift);
}
}
void FastHoughTransform(InputArray src,
OutputArray dst,
int dstMatDepth,
int angleRange,
int operation,
int makeSkew)
{
Mat srcMat = src.getMat();
if (!srcMat.isContinuous())
srcMat = srcMat.clone();
CV_Assert(srcMat.cols > 0 && srcMat.rows > 0);
createDstFhtMat(dst, src, dstMatDepth, angleRange);
Mat dstMat = dst.getMat();
Mat imgRegDst;
const int len = dstMat.cols * static_cast<int>(dstMat.elemSize());
CV_Assert(len > 0);
std::vector<uchar> buf_(len);
uchar *buf(&buf_[0]);
if (angleRange == ARO_315_135)
{
{
Mat imgSrc;
createFHTSrc(imgSrc, srcMat, ARO_315_45);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_315_0, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_315_0);
flip(imgRegDst, imgRegDst, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_315_0);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_0_45, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_0_45);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_0_45);
}
{
Mat imgSrc;
createFHTSrc(imgSrc, srcMat, ARO_45_135);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_45_90, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_45_90);
flip(imgRegDst, imgRegDst, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_45_90);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_90_135, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_90_135);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_90_135);
}
return;
}
Mat imgSrc;
createFHTSrc(imgSrc, srcMat, angleRange);
switch (angleRange)
{
case ARO_315_0:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
flip(dstMat, dstMat, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
case ARO_0_45:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
case ARO_45_90:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
flip(dstMat, dstMat, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
case ARO_90_135:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
case ARO_315_45:
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_315_0, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_315_0);
flip(imgRegDst, imgRegDst, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_315_0);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_0_45, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_0_45);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_0_45);
return;
case ARO_45_135:
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_45_90, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_45_90);
flip(imgRegDst, imgRegDst, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_45_90);
setFHTDstRegion(imgRegDst, dstMat, srcMat, ARO_90_135, angleRange);
calculateFHTQuadrant(imgRegDst, imgSrc, operation, ARO_90_135);
if (HDO_DESKEW == makeSkew)
skewQuadrant(imgRegDst, imgSrc, buf, ARO_90_135);
return;
case ARO_CTR_VER:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
flip(dstMat, dstMat, 0);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
case ARO_CTR_HOR:
calculateFHTQuadrant(dstMat, imgSrc, operation, angleRange);
if (HDO_DESKEW == makeSkew)
skewQuadrant(dstMat, imgSrc, buf, angleRange);
return;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown angleRange %d", angleRange));
}
}
//-----------------------------------------------------------------------------
//----------------------fht point2line-----------------------------------------
struct LineSegment {
Point u, v;
LineSegment(const Point _u, const Point _v) : u(_u), v(_v) { }
};
static void getRawPoint(Point &rawHoughPoint,
int &quadRawPoint,
const Point &givenHoughPoint,
const Mat &srcImgInfo,
int angleRange,
int makeSkew)
{
int base = -1;
switch (angleRange)
{
case ARO_315_0:
case ARO_315_45:
case ARO_CTR_VER:
case ARO_315_135:
base = 0;
break;
case ARO_0_45:
base = 1;
break;
case ARO_45_90:
case ARO_45_135:
base = 2;
break;
case ARO_90_135:
case ARO_CTR_HOR:
base = 3;
break;
default:
CV_Error_(CV_StsNotImplemented, ("Unknown angleRange %d", angleRange));
}
int const cols = srcImgInfo.cols;
int const rows = srcImgInfo.rows;
rawHoughPoint.y = givenHoughPoint.y;
int quad = 0, qsize = 0;
for (quad = base; quad < 4; quad++)
{
qsize = (quad & 2) ? cols - 1 : rows - 1;
if (rawHoughPoint.y <= qsize)
break;
rawHoughPoint.y -= qsize;
}
if (quad >= 4)
CV_Error(CV_StsInternal, "");
quadRawPoint = quad;
double skewShift = 0.0;
if (makeSkew == HDO_DESKEW)
{
switch (quad)
{
case 0:
skewShift = rows - (rawHoughPoint.y + 1) * 0.5;
break;
case 1:
skewShift = (rows - rawHoughPoint.y) * 0.5;
break;
case 2:
skewShift = rawHoughPoint.y * 0.5;
break;
default:
skewShift = 0.5 * (cols + rawHoughPoint.y - 1);
break;
}
}
rawHoughPoint.x = givenHoughPoint.x - static_cast<int>(skewShift);
if (rawHoughPoint.x < 0)
rawHoughPoint.x = rows + cols + rawHoughPoint.x;
}
static bool checkRawPoint(const Point &rawHoughPoint,
int quadRawPoint,
const Mat &srcImgInfo)
{
int const cols = srcImgInfo.cols;
int const rows = srcImgInfo.rows;
switch (quadRawPoint)
{
case 0:
//down left triangle on FHT
if (rawHoughPoint.x - cols <= rawHoughPoint.y &&
rawHoughPoint.x - cols >= 0)
return false;
break;
case 1:
//up right triangle on FHT
if (rawHoughPoint.x - cols >= rawHoughPoint.y)
return false;
break;
case 2:
//up right triangle on up-down FHT image
if (rawHoughPoint.x - rows >= cols - 1 - rawHoughPoint.y)
return false;
break;
default:
//down left triangle on up-down FHT image
if (rawHoughPoint.x - rows <= cols - 1 - rawHoughPoint.y &&
rawHoughPoint.x - rows >= 0)
return false;
break;
}
return true;
}
static void shiftLineSegment(LineSegment &segment,
const Point &shift)
{
segment.u.x += shift.x;
segment.v.x += shift.x;
segment.u.y += shift.y;
segment.v.y += shift.y;
}
static void lineFactors(double &a,
double &b,
double &c,
const Point &point1,
const Point &point2)
{
CV_Assert(point1.x != point2.x || point1.y != point2.y);
Point vectorSegment(point2.x - point1.x, point2.y - point1.y);
a = - vectorSegment.y;
b = vectorSegment.x;
c = - (a * point1.x + b * point1.y);
}
static void crossSegments(Point &point,
const LineSegment &line1,
const LineSegment &line2)
{
double a1 = 0.0, b1 = 0.0, c1 = 0.0;
double a2 = 0.0, b2 = 0.0, c2 = 0.0;
lineFactors(a1, b1, c1, line1.u, line1.v);
lineFactors(a2, b2, c2, line2.u, line2.v);
double uLine1onLine2 = a2 * line1.u.x + b2 * line1.u.y + c2;
double vLine1onLine2 = a2 * line1.v.x + b2 * line1.v.y + c2;
double ULine2onLine1 = a1 * line2.u.x + b1 * line2.u.y + c1;
double VLine2onLine1 = a1 * line2.v.x + b1 * line2.v.y + c1;
CV_Assert(ULine2onLine1 != 0 || VLine2onLine1 != 0 ||
uLine1onLine2 != 0 || vLine1onLine2 != 0);
CV_Assert(ULine2onLine1 * VLine2onLine1 <= 0 &&
uLine1onLine2 * vLine1onLine2 <= 0);
static const double double_eps = 1e-10;
CV_Assert(std::abs(uLine1onLine2 - vLine1onLine2) >= double_eps);
double mul = uLine1onLine2 / (uLine1onLine2 - vLine1onLine2);
point.x = cvRound(line1.u.x + mul * (line1.v.x - line1.u.x));
point.y = cvRound(line1.u.y + mul * (line1.v.y - line1.u.y));
}
Vec4i HoughPoint2Line(const Point &houghPoint,
InputArray srcImgInfo,
int angleRange,
int makeSkew,
int rules)
{
Mat srcImgInfoMat = srcImgInfo.getMat();
int const cols = srcImgInfoMat.cols;
int const rows = srcImgInfoMat.rows;
CV_Assert(houghPoint.y >= 0);
CV_Assert(houghPoint.x < cols + rows);
int quad = 0;
Point rawPoint(0, 0);
getRawPoint(rawPoint, quad, houghPoint, srcImgInfoMat, angleRange, makeSkew);
bool ret = checkRawPoint(rawPoint, quad, srcImgInfoMat);
if (!(rules & RO_IGNORE_BORDERS))
{
CV_Assert(ret);
}
LineSegment dstLine(Point(0, 0), Point(0, 0));
switch (quad)
{
case 0:
dstLine.v.y = rows - 1;
dstLine.u.x = rawPoint.x;
dstLine.v.x = dstLine.u.x + rows - rawPoint.y - 1;
break;
case 1:
dstLine.v.y = rows - 1;
dstLine.u.x = rawPoint.x;
dstLine.v.x = dstLine.u.x - rawPoint.y;
break;
case 2:
dstLine.v.x = cols - 1;
dstLine.u.y = rawPoint.x;
dstLine.v.y = dstLine.u.y - cols + rawPoint.y + 1;
break;
default:
dstLine.v.x = cols - 1;
dstLine.u.y = rawPoint.x;
dstLine.v.y = dstLine.u.y + rawPoint.y;
break;
}
if (angleRange == ARO_CTR_VER)
{
int shift = cvRound(0.5 * dstLine.u.y);
shift = shift % (cols + rows);
dstLine.u.x = dstLine.u.x - shift;
shift = cvRound(0.5 * dstLine.v.y);
shift = shift % (cols + rows);
dstLine.v.x = dstLine.v.x - shift;
}
else if (angleRange == ARO_CTR_HOR)
{
int shift = cvRound(0.5 * dstLine.u.x);
shift = shift % (cols + rows);
dstLine.u.y = dstLine.u.y - shift;
shift = cvRound(0.5 * dstLine.v.x);
shift = shift % (cols + rows);
dstLine.v.y = dstLine.v.y - shift;
}
if (!ret)
{
return Vec4i(dstLine.v.x, dstLine.v.y, dstLine.u.x, dstLine.u.y);
}
if (rules & RO_IGNORE_BORDERS)
{
switch (quad)
{
case 0:
if (dstLine.v.x > cols + rows - 1)
{
Point shiftVector(-(cols + rows), 0);
shiftLineSegment(dstLine, shiftVector);
}
break;
case 3:
if (dstLine.v.y > rows + cols - 1)
{
Point shiftVector(0, -(cols + rows));
shiftLineSegment(dstLine, shiftVector);
}
break;
default:
break;
}
return Vec4i(dstLine.v.x, dstLine.v.y, dstLine.u.x, dstLine.u.y);
}
Point minIntersectPoint(0, 0);
Point minLeftUpSrcPoint(0, 0);
Point minRightUpSrcPoint(cols - 1, 0);
Point minLeftDownSrcPoint(0, rows - 1);
Point minRightDownSrcPoint(cols - 1, rows - 1);
switch (quad)
{
case 0:
if (dstLine.v.x > cols + rows - 1)
{
LineSegment minRightToDstLine(Point(cols + rows, 0),
Point(cols + rows, rows - 1) );
crossSegments(minIntersectPoint, dstLine, minRightToDstLine);
dstLine.u.y = minIntersectPoint.y;
dstLine.u.x = 0;
dstLine.v.x = dstLine.v.x - (cols + rows);
}
if (dstLine.v.x > cols - 1)
{
LineSegment minRightSrcLine(minRightUpSrcPoint,
minRightDownSrcPoint);
crossSegments(minIntersectPoint, dstLine, minRightSrcLine);
dstLine.v.y = minIntersectPoint.y;
dstLine.v.x = cols - 1;
}
break;
case 1:
if (dstLine.v.x < 0)
{
LineSegment minLeftSrcLine(minLeftUpSrcPoint, minLeftDownSrcPoint);
crossSegments(minIntersectPoint, dstLine, minLeftSrcLine);
dstLine.v.y = minIntersectPoint.y;
dstLine.v.x = 0;
}
if (dstLine.u.x > cols - 1)
{
LineSegment minRightSrcLine(minRightUpSrcPoint,
minRightDownSrcPoint);
crossSegments(minIntersectPoint, dstLine, minRightSrcLine);
dstLine.u.y = minIntersectPoint.y;
dstLine.u.x = cols - 1;
}
break;
case 2:
if (dstLine.v.y < 0)
{
LineSegment minTopSrcLine(minLeftUpSrcPoint, minRightUpSrcPoint);
crossSegments(minIntersectPoint, dstLine, minTopSrcLine);
dstLine.v.x = minIntersectPoint.x;
dstLine.v.y = 0;
}
if (dstLine.u.y > rows - 1)
{
LineSegment minBottomSrcLine(minLeftDownSrcPoint,
minRightDownSrcPoint);
crossSegments(minIntersectPoint, dstLine, minBottomSrcLine );
dstLine.u.x = minIntersectPoint.x;
dstLine.u.y = rows - 1;
}
break;
default:
if (dstLine.v.y > rows + cols - 1)
{
LineSegment minDownToDstLine(Point(0, rows + cols),
Point(cols - 1, rows + cols));
crossSegments(minIntersectPoint, dstLine, minDownToDstLine);
dstLine.u.x = minIntersectPoint.x;
dstLine.u.y = 0;
dstLine.v.y = dstLine.v.y - (rows + cols);
}
if (dstLine.v.y > rows - 1)
{
LineSegment minBottomSrcLine(minLeftDownSrcPoint,
minRightDownSrcPoint);
crossSegments(minIntersectPoint, dstLine, minBottomSrcLine);
dstLine.v.x = minIntersectPoint.x;
dstLine.v.y = rows - 1;
}
break;
}
return Vec4i(dstLine.v.x, dstLine.v.y, dstLine.u.x, dstLine.u.y);
}
//-----------------------------------------------------------------------------
} } // namespace cv::ximgproc
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace cv;
using namespace cv::ximgproc;
using namespace std;
using namespace testing;
using std::tr1::make_tuple;
using std::tr1::get;
//----------------------utils---------------------------------------------------
template <typename T> struct Eps
{
static T get() { return 1; }
};
template <> struct Eps<float> { static float get() { return float(1e-3); } };
template <> struct Eps<double> { static double get() { return 1e-6; } };
template <typename T> struct MinPos
{
static T get() { return Eps<T>::get(); }
};
template <typename T> struct Max { static T get()
{
return saturate_cast<T>(numeric_limits<T>::max()); }
};
template <typename T> struct Rand
{
static T get(T _min = MinPos<T>::get(), T _max = Max<T>::get())
{
RNG& rng = TS::ptr()->get_rng();
return saturate_cast<T>(rng.uniform(int(std::max(MinPos<T>::get(),
_min)),
int(std::min(Max<T>::get(),
_max))));
}
};
template <> struct Rand <float>
{
static float get(float _min = MinPos<float>::get(),
float _max = Max<float>::get())
{
RNG& rng = TS::ptr()->get_rng();
return rng.uniform(std::max(MinPos<float>::get(), _min),
std::min(Max<float>::get(), _max));
}
};
template <> struct Rand <double>
{
static double get(double _min = MinPos<double>::get(),
double _max = Max<double>::get())
{
RNG& rng = TS::ptr()->get_rng();
return rng.uniform(std::max(MinPos<double>::get(), _min),
std::min(Max<double>::get(), _max));
}
};
template <typename T> struct Eq
{
static bool get(T a, T b)
{
return a < b ? b - a < Eps<T>::get() : a - b < Eps<T>::get();
}
};
//----------------------TestFHT-------------------------------------------------
class TestFHT
{
public:
TestFHT() : ts(TS::ptr()) {}
void run_n_tests(int depth,
int channels,
int pts_count,
int n_per_test);
private:
template <typename T>
int run_n_tests_t(int depth,
int channels,
int pts_count,
int n_per_test);
template <typename T>
int run_test(int depth,
int channels,
int pts_count);
template <typename T>
int put_random_points(Mat &img,
int count,
vector<Point> &pts);
int run_func(Mat const&src,
Mat& fht);
template <typename T>
int validate_test_results(Mat const &fht,
Mat const &src,
vector<Point> const& pts);
template <typename T> int validate_sum(Mat const& src, Mat const& fht);
int validate_point(Mat const& fht, vector<Point> const &pts);
int validate_line(Mat const& fht, Mat const& src, vector<Point> const& pts);
private:
TS *ts;
};
template <typename T>
int TestFHT::put_random_points(Mat &img, int count, vector<Point> &pts)
{
int code = TS::OK;
pts.resize(count, Point(-1, -1));
for (int i = 0; i < count; ++i)
{
RNG rng = ts->get_rng();
Point const pt(rng.uniform(0, img.cols),
rng.uniform(0, img.rows));
pts[i] = pt;
for (int c = 0; c < img.channels(); ++c)
{
T color = Rand<T>::get(MinPos<T>::get(),
T(Max<T>::get() / count));
T *img_line = (T*)(img.data + img.step * pt.y);
img_line[pt.x * img.channels() + c] = color;
}
}
return code;
}
template <typename T>
int TestFHT::validate_sum(Mat const& src, Mat const& fht)
{
int const channels = src.channels();
if (fht.channels() != channels)
return TS::FAIL_BAD_ARG_CHECK;
vector<Mat> src_channels(channels);
split(src, src_channels);
vector<Mat> fht_channels(channels);
split(fht, fht_channels);
for (int c = 0; c < channels; ++c)
{
T const src_sum = saturate_cast<T>(sum(src_channels[c]).val[0]);
for (int y = 0; y < fht.rows; ++y)
{
T const fht_sum = saturate_cast<T>(sum(fht_channels[c].row(y)).val[0]);
if (!Eq<T>::get(src_sum, fht_sum))
{
ts->printf(TS::LOG,
"The sum of column #%d of channel #%d of the fast "
"hough transform result and the sum of source image"
" mismatch (=%g, should be =%g)\n",
y, c, (float)fht_sum, (float)src_sum);
return TS::FAIL_BAD_ACCURACY;
}
}
}
return TS::OK;
}
int TestFHT::validate_point(Mat const& fht,
vector<Point> const &pts)
{
if (pts.empty())
return TS::OK;
for (size_t i = 1; i < pts.size(); ++i)
{
if (pts[0] != pts[i])
return TS::OK;
}
int const channels = fht.channels();
vector<Mat> fht_channels(channels);
split(fht, fht_channels);
for (int c = 0; c < channels; ++c)
{
for (int y = 0; y < fht.rows; ++y)
{
int cnt = countNonZero(fht_channels[c].row(y));
if (cnt != 1)
{
ts->printf(TS::LOG,
"The incorrect count of non-zero values in column "
"#%d, channel #%d of FastHoughTransform result "
"image (=%d, should be %d)\n",
y, c, cnt, 1);
return TS::FAIL_BAD_ACCURACY;
}
}
}
return TS::OK;
}
static const double MAX_LDIST = 2.0;
int TestFHT::validate_line(Mat const& fht,
Mat const& src,
vector<Point> const& pts)
{
size_t const size = (int)pts.size();
if (size < 2)
return TS::OK;
size_t first_pt_i = 0, second_pt_i = 1;
for (size_t i = first_pt_i + 1; i < size; ++i)
{
if (pts[i] != pts[first_pt_i])
{
second_pt_i = first_pt_i;
break;
}
}
if (pts[second_pt_i] == pts[first_pt_i])
return TS::OK;
for (size_t i = second_pt_i + 1; i < size; ++i)
{
if (pts[i] != pts[second_pt_i])
return TS::OK;
}
const Point &f = pts[first_pt_i];
const Point &s = pts[second_pt_i];
int const channels = fht.channels();
vector<Mat> fht_channels(channels);
split(fht, fht_channels);
for (int ch = 0; ch < channels; ++ch)
{
Point fht_max(-1, -1);
minMaxLoc(fht_channels[ch], 0, 0, 0, &fht_max);
Vec4i src_line = HoughPoint2Line(fht_max, src,
ARO_315_135, HDO_DESKEW, RO_STRICT);
double const a = src_line[1] - src_line[3];
double const b = src_line[2] - src_line[0];
double const c = - (a * src_line[0] + b * src_line[1]);
double const fd = abs(f.x * a + f.y * b + c) / sqrt(a * a + b * b);
double const sd = abs(s.x * a + s.y * b + c) / sqrt(a * a + b * b);
double const dist = std::max(fd, sd);
if (dist > MAX_LDIST)
{
ts->printf(TS::LOG,
"Failed to detect max line in channels %d (distance "
"between point and line correspoinding of maximum in "
"FastHoughTransform space is #%g)\n", ch, dist);
return TS::FAIL_BAD_ACCURACY;
}
}
return TS::OK;
}
template <typename T>
int TestFHT::validate_test_results(Mat const &fht,
Mat const &src,
vector<Point> const& pts)
{
int code = validate_sum<T>(src, fht);
if (code == TS::OK)
code = validate_point(fht, pts);
if (code == TS::OK)
code = validate_line(fht, src, pts);
return code;
}
int TestFHT::run_func(Mat const&src,
Mat& fht)
{
int code = TS::OK;
FastHoughTransform(src, fht, src.depth());
return code;
}
static Size random_size(int const max_size_log,
int const elem_size)
{
RNG& rng = TS::ptr()->get_rng();
return randomSize(rng, std::max(1,
max_size_log - cvRound(log(double(elem_size)))));
}
static const int FHT_MAX_SIZE_LOG = 9;
template <typename T>
int TestFHT::run_test(int depth,
int channels,
int pts_count)
{
int code = TS::OK;
Size size = random_size(FHT_MAX_SIZE_LOG,
CV_ELEM_SIZE(CV_MAKE_TYPE(depth, channels)));
Mat src = Mat::zeros(size, CV_MAKETYPE(depth, channels));
vector<Point> pts;
code = put_random_points<T>(src, pts_count, pts);
if (code != TS::OK)
return code;
Mat fht;
code = run_func(src, fht);
if (code != TS::OK)
return code;
code = validate_test_results<T>(fht, src, pts);
return code;
}
void TestFHT::run_n_tests(int depth,
int channels,
int pts_count,
int n)
{
try
{
int code = TS::OK;
switch (depth)
{
case CV_8U:
code = run_n_tests_t<uchar>(depth, channels, pts_count, n);
break;
case CV_8S:
code = run_n_tests_t<schar>(depth, channels, pts_count, n);
break;
case CV_16U:
code = run_n_tests_t<ushort>(depth, channels, pts_count, n);
break;
case CV_16S:
code = run_n_tests_t<short>(depth, channels, pts_count, n);
break;
case CV_32S:
code = run_n_tests_t<int>(depth, channels, pts_count, n);
break;
case CV_32F:
code = run_n_tests_t<float>(depth, channels, pts_count, n);
break;
case CV_64F:
code = run_n_tests_t<double>(depth, channels, pts_count, n);
break;
default:
code = TS::FAIL_BAD_ARG_CHECK;
ts->printf(TS::LOG, "Unknown depth %d\n", depth);
break;
}
if (code != TS::OK)
throw TS::FailureCode(code);
}
catch (const TS::FailureCode& fc)
{
std::string errorStr = TS::str_from_code(fc);
ts->printf(TS::LOG,
"General failure:\n\t%s (%d)\n", errorStr.c_str(), fc);
ts->set_failed_test_info(fc);
}
catch(...)
{
ts->printf(TS::LOG, "Unknown failure\n");
ts->set_failed_test_info(TS::FAIL_EXCEPTION);
}
}
template <typename T>
int TestFHT::run_n_tests_t(int depth,
int channels,
int pts_count,
int n)
{
int code = TS::OK;
for (int iTest = 0; iTest < n; ++iTest)
{
code = run_test<T>(depth, channels, pts_count);
if (code != TS::OK)
{
ts->printf(TS::LOG, "Test %d failed with code %d\n", iTest, code);
break;
}
}
return code;
}
//----------------------TEST_P--------------------------------------------------
typedef std::tr1::tuple<int, int, int, int> Depth_Channels_PtsC_nPerTest;
typedef TestWithParam<Depth_Channels_PtsC_nPerTest> FastHoughTransformTest;
TEST_P(FastHoughTransformTest, accuracy)
{
int const depth = get<0>(GetParam());
int const channels = get<1>(GetParam());
int const pts_count = get<2>(GetParam());
int const n_per_test = get<3>(GetParam());
TestFHT testFht;
testFht.run_n_tests(depth, channels, pts_count, n_per_test);
}
#define FHT_ALL_DEPTHS CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F
#define FHT_ALL_CHANNELS 1, 2, 3, 4
INSTANTIATE_TEST_CASE_P(FullSet, FastHoughTransformTest,
Combine(Values(FHT_ALL_DEPTHS),
Values(FHT_ALL_CHANNELS),
Values(1, 2),
Values(5)));
#undef FHT_ALL_DEPTHS
#undef FHT_ALL_CHANNELS
} // namespace cvtest
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment