Commit e099c399 authored by Vitaliy Lyudvichenko's avatar Vitaliy Lyudvichenko

Adding of RNN layer

parent 893a5659
......@@ -49,10 +49,10 @@ namespace dnn
{
//! LSTM recurrent layer
CV_EXPORTS class LSTMLayer : public Layer
class LSTMLayer : public Layer
{
public:
CV_EXPORTS static Ptr<LSTMLayer> create();
CV_EXPORTS_W static Ptr<LSTMLayer> create();
/** Set trained weights for LSTM layer.
LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
......@@ -91,15 +91,15 @@ namespace dnn
@param output computed outputs: h_t and c_t.
*/
CV_EXPORTS void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
CV_EXPORTS_W void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
};
//! Classical recurrent layer
CV_EXPORTS class RNNLayer : public Layer
class RNNLayer : public Layer
{
public:
CV_EXPORTS Ptr<RNNLayer> create();
CV_EXPORTS_W static Ptr<RNNLayer> create();
/** Setups learned weights.
......@@ -113,16 +113,17 @@ namespace dnn
@param Who is W_xo matrix
@param bo is b_o vector
*/
CV_EXPORTS virtual void setWeights(const Blob &Whh, const Blob &Wxh, const Blob &bh, const Blob &Who, const Blob &bo) = 0;
CV_EXPORTS_W virtual void setWeights(const Blob &Whh, const Blob &Wxh, const Blob &bh, const Blob &Who, const Blob &bo) = 0;
/** Accept two inputs x_t and h_{t-1} and compute two outputs o_t and h_t.
/** Accepts two inputs x_t and h_{t-1} and compute two outputs o_t and h_t.
@param input should contain x_t and h_{t-1}
@param output should contain o_t and h_t
@param input could contain inputs x_t and h_{t-1}. x_t is required whereas h_{t-1} is optional.
If the second input h_{t-1} isn't specified a layer will use internal h_{t-1} from the previous calls, at the first call h_{t-1} will be filled by zeros.
@param output should contain outputs o_t and h_t
*/
virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
};
}
}
#endif
\ No newline at end of file
......@@ -122,6 +122,7 @@ public:
Mat ep, em;
void tanh(Mat &x, Mat &d)
{
//TODO: two exp() is bad idea
cv::exp(-x, em);
cv::exp( x, ep);
cv::divide(ep - em, ep + em, d);
......@@ -183,16 +184,18 @@ Ptr<LSTMLayer> LSTMLayer::create()
return Ptr<LSTMLayer>(new LSTMLayerImpl());
}
void LSTMLayer::forward(std::vector<Blob*> &input, std::vector<Blob> &output)
void LSTMLayer::forward(std::vector<Blob*>&, std::vector<Blob>&)
{
CV_Error(Error::StsNotImplemented, "This function should be unreached");
CV_Error(Error::StsInternal, "This function should be unreached");
}
class RNNLayerImpl : public RNNLayer
{
int nX, nH;
int nX, nH, nO, nSamples;
Mat Whh, Wxh, bh;
Mat Who, bo;
Mat hPrevInternal, dummyBiasOnes;
public:
......@@ -201,36 +204,114 @@ public:
type = "RNN";
}
void setWeights(const Blob &Whh, const Blob &Wxh, const Blob &bh, const Blob &Who, const Blob &bo)
void setWeights(const Blob &W_hh, const Blob &W_xh, const Blob &b_h, const Blob &W_ho, const Blob &b_o)
{
CV_Assert(Whh.dims() == 2 && Wxh.dims() == 2);
CV_Assert(Whh.size(0) == Wxh.size(0) && Whh.size(0) == Whh.size(1) && bh.total() == Wxh.size(0));
CV_Assert(Who.size(0) == bo.total());
CV_Assert(Who.size(1) == Whh.size(1));
blobs.reserve(5);
blobs[0] = Whh;
blobs[1] = Wxh;
blobs[2] = bh;
blobs[3] = Who;
blobs[4] = bo;
CV_Assert(W_hh.dims() == 2 && W_xh.dims() == 2);
CV_Assert(W_hh.size(0) == W_xh.size(0) && W_hh.size(0) == W_hh.size(1) && b_h.total() == W_xh.size(0));
CV_Assert(W_ho.size(0) == b_o.total());
CV_Assert(W_ho.size(1) == W_hh.size(1));
//TODO: Check type
blobs.resize(5);
blobs[0] = W_hh;
blobs[1] = W_xh;
blobs[2] = b_h;
blobs[3] = W_ho;
blobs[4] = b_o;
}
void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output)
{
CV_Assert(input.size() >= 1 && input.size() <= 2);
Whh = blobs[0].matRefConst();
Wxh = blobs[1].matRefConst();
bh = blobs[2].matRefConst();
Who = blobs[3].matRefConst();
bo = blobs[4].matRefConst();
nH = Wxh.rows;
nX = Wxh.cols;
nO = Who.rows;
CV_Assert(input[0]->size(-1) == Wxh.cols);
nSamples = input[0]->total(0, input[0]->dims() - 1);
BlobShape xShape = input[0]->shape();
BlobShape hShape = xShape;
BlobShape oShape = xShape;
hShape[-1] = nH;
oShape[-1] = nO;
if (input.size() == 2)
{
CV_Assert(input[1]->shape() == hShape);
}
else
{
hPrevInternal.create(nSamples, nH, input[0]->type());
hPrevInternal.setTo(0);
}
output.resize(2);
output[0].create(oShape, input[0]->type());
output[1].create(hShape, input[0]->type());
dummyBiasOnes.create(nSamples, 1, bh.type());
dummyBiasOnes.setTo(1);
bh = bh.reshape(1, 1); //is 1 x nH mat
bo = bo.reshape(1, 1); //is 1 x nO mat
}
void tanh(Mat &x)
//in-place tanh function
static void tanh(Mat &x) // 2 / (1 + e^(-2x)) - 1
{
x.convertTo(x, x.type(), -2); // -2x
cv::exp(x, x); // e^(-2x)
x.convertTo(x, x.type(), 1, 1); // 1 + e^(-2x)
cv::pow(x, -1, x); // 1 / (1 + e^(-2x))
x.convertTo(x, x.type(), 2, -1);// 2 / (1 + e^(-2x)) - 1
}
void forward(std::vector<Blob*> &input, std::vector<Blob> &output)
{
Mat xCurr = input[0]->matRefConst();
Mat hPrev = (input.size() >= 2) ? input[1]->matRefConst() : hPrevInternal;
Mat oCurr = output[0].matRef();
Mat hCurr = output[1].matRef();
//TODO: Check types
int xsz[] = {nSamples, nX};
int hsz[] = {nSamples, nH};
int osz[] = {nSamples, nO};
if (xCurr.dims != 2) xCurr = xCurr.reshape(1, 2, xsz);
if (hPrev.dims != 2) hPrev = hPrev.reshape(1, 2, hsz);
if (oCurr.dims != 2) oCurr = oCurr.reshape(1, 2, osz);
if (hCurr.dims != 2) hCurr = hCurr.reshape(1, 2, hsz);
gemmCPU(hPrev, Whh, 1, hCurr, 0, GEMM_2_T); // W_{hh} * h_{prev}
gemmCPU(xCurr, Wxh, 1, hCurr, 1, GEMM_2_T); //+W_{xh} * x_{curr}
gemmCPU(dummyBiasOnes, bh, 1, hCurr, 1); //+bh
tanh(hCurr);
gemmCPU(hPrev, Who, 1, oCurr, 0, GEMM_2_T); // W_{ho} * h_{prev}
gemmCPU(dummyBiasOnes, bo, 1, oCurr, 1); //+b_o
tanh(oCurr);
if (input.size() < 2) //save h_{prev}
hCurr.copyTo(hPrevInternal);
}
};
void RNNLayer::forward(std::vector<Blob*>&, std::vector<Blob>&)
{
CV_Error(Error::StsInternal, "This function should be unreached");
}
CV_EXPORTS_W Ptr<RNNLayer> RNNLayer::create()
{
return Ptr<RNNLayer>(new RNNLayerImpl());
}
}
}
\ No newline at end of file
......@@ -180,10 +180,9 @@ class Layer_LSTM_Test : public ::testing::Test
public:
int Nx, Nc;
Blob Wh, Wx, b;
Ptr<LSTMLayer> lstm;
Ptr<LSTMLayer> layer;
std::vector<Blob> inputs;
std::vector<Blob> outputs;
std::vector<Blob> inputs, outputs;
std::vector<Blob*> inputsPtr;
Layer_LSTM_Test(int _Nx = 31, int _Nc = 100)
......@@ -195,8 +194,8 @@ public:
Wx = Blob(BlobShape(Vec2i(4 * Nc, Nx)));
b = Blob(BlobShape(Vec2i(4 * Nc, 1)));
lstm = LSTMLayer::create();
lstm->setWeights(Wh, Wx, b);
layer = LSTMLayer::create();
layer->setWeights(Wh, Wx, b);
}
void allocateAndForward()
......@@ -205,8 +204,8 @@ public:
for (size_t i = 0; i < inputs.size(); i++)
inputsPtr.push_back(&inputs[i]);
lstm->allocate(inputsPtr, outputs);
lstm->forward(inputsPtr, outputs);
layer->allocate(inputsPtr, outputs);
layer->forward(inputsPtr, outputs);
}
};
......@@ -232,4 +231,63 @@ TEST_F(Layer_LSTM_Test, BasicTest_2)
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nc));
}
class Layer_RNN_Test : public ::testing::Test
{
public:
int Nx, Nh, No;
Blob Whh, Wxh, bh, Who, bo;
Ptr<RNNLayer> layer;
std::vector<Blob> inputs, outputs;
std::vector<Blob*> inputsPtr;
Layer_RNN_Test(int _Nx = 31, int _Nh = 64, int _No = 100)
{
Nx = _Nx;
Nh = _Nh;
No = _No;
Whh = Blob(BlobShape(Vec2i(Nh, Nh)));
Wxh = Blob(BlobShape(Vec2i(Nh, Nx)));
bh = Blob(BlobShape(Vec2i(Nh, 1)));
Who = Blob(BlobShape(Vec2i(No, Nh)));
bo = Blob(BlobShape(Vec2i(No, 1)));
layer = RNNLayer::create();
layer->setWeights(Whh, Wxh, bh, Who, bo);
}
void allocateAndForward()
{
inputsPtr.clear();
for (size_t i = 0; i < inputs.size(); i++)
inputsPtr.push_back(&inputs[i]);
layer->allocate(inputsPtr, outputs);
layer->forward(inputsPtr, outputs);
}
};
TEST_F(Layer_RNN_Test, BasicTest_1)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, No));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nh));
}
TEST_F(Layer_RNN_Test, BasicTest_2)
{
inputs.push_back(Blob(BlobShape(1, 2, 3, Nx)));
inputs.push_back(Blob(BlobShape(1, 2, 3, Nh)));
allocateAndForward();
EXPECT_EQ(outputs.size(), 2);
EXPECT_EQ(outputs[0].shape(), BlobShape(1, 2, 3, No));
EXPECT_EQ(outputs[1].shape(), BlobShape(1, 2, 3, Nh));
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment