Commit df859520 authored by Muresan Mircea Paul's avatar Muresan Mircea Paul

made modifications in accordance to the comments

fixed that unused variable warning

fixed windows warnings

Added 2 samples just to show how to access functionality

fixed issues

added the up to date version of sbm

modified samples to be warning free
parent 54d41251
...@@ -47,24 +47,27 @@ ...@@ -47,24 +47,27 @@
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/features2d.hpp" #include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp" #include "opencv2/core/affine.hpp"
#include "../../stereo/src/descriptor.hpp"
#include "../../stereo/src/matching.hpp"
/** /**
@defgroup stereo Stereo Correspondance Algorithms @defgroup stereo Stereo Correspondance Algorithms
*/ */
namespace cv namespace cv
{ {
namespace stereo namespace stereo
{ {
//! @addtogroup stereo //! @addtogroup stereo
//! @{ //! @{
// void correctMatches( InputArray F, InputArray points1, InputArray points2, // void correctMatches( InputArray F, InputArray points1, InputArray points2,
// OutputArray newPoints1, OutputArray newPoints2 ); // OutputArray newPoints1, OutputArray newPoints2 );
enum {
CV_SPECKLE_REMOVAL_ALGORITHM, CV_SPECKLE_REMOVAL_AVG_ALGORITHM
};
/** @brief Filters off small noise blobs (speckles) in the disparity map /** @brief Filters off small noise blobs (speckles) in the disparity map
@param img The input 16-bit signed disparity image @param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles @param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
...@@ -112,6 +115,7 @@ namespace cv ...@@ -112,6 +115,7 @@ namespace cv
virtual int getDisp12MaxDiff() const = 0; virtual int getDisp12MaxDiff() const = 0;
virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
}; };
...@@ -149,6 +153,20 @@ namespace cv ...@@ -149,6 +153,20 @@ namespace cv
virtual Rect getROI2() const = 0; virtual Rect getROI2() const = 0;
virtual void setROI2(Rect roi2) = 0; virtual void setROI2(Rect roi2) = 0;
virtual int getScalleFactor() const = 0 ;
virtual void setScalleFactor(int factor) = 0;
virtual int getSpekleRemovalTechnique() const = 0 ;
virtual void setSpekleRemovalTechnique(int factor) = 0;
virtual bool getUsePrefilter() const = 0 ;
virtual void setUsePrefilter(bool factor) = 0;
virtual int getBinaryKernelType() const = 0;
virtual void setBinaryKernelType(int value) = 0;
virtual int getAgregationWindowSize() const = 0;
virtual void setAgregationWindowSize(int value) = 0;
/** @brief Creates StereoBM object /** @brief Creates StereoBM object
@param numDisparities the disparity search range. For each pixel algorithm will find the best @param numDisparities the disparity search range. For each pixel algorithm will find the best
......
#include <iostream>
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace stereo;
using namespace std;
//in this example we will load a sequence of images from a file process them and display the result on the screen
//the descriptor used is the modified_census transform
int main(int, char**)
{
//begin the program
cout << " Running Main function \n";
//declare 2 images
Mat image1, image2;
// -- 1. Call the constructor for StereoBinaryBM
int ndisparities = 32; /**< Range of disparity */
int kernelSize = 9; /**< Size of the block window. Must be odd */
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(ndisparities, kernelSize);
// -- 2. Set parameters
sbm->setPreFilterCap(31);
sbm->setMinDisparity(0);
sbm->setTextureThreshold(10);
sbm->setUniquenessRatio(0);
sbm->setSpeckleWindowSize(400);//speckle size
sbm->setSpeckleRange(200);
sbm->setDisp12MaxDiff(0);
sbm->setScalleFactor(4);//the scalling factor
sbm->setBinaryKernelType(CV_MODIFIED_CENSUS_TRANSFORM);//binary descriptor kernel
sbm->setAgregationWindowSize(9);
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);//speckle removal algorithm
sbm->setUsePrefilter(false);//prefilter or not the images prior to making the transformations
for(int i = 0 ; i < 200; i++)
{
string path = "D:\\WorkingSec";
string left = "l.bmp";
string right = ".bmp";
std::string s;
std::stringstream out;
out << i;
s = out.str();
string finLeft = path + "\\rezult" + s + left;
string finRigth = path + "\\rezult" + s + right;
image1 = imread(finLeft, CV_8UC1);
image2 = imread(finRigth, CV_8UC1);
//set a certain region of interest
Rect region_of_interest = Rect(0, 20, image1.cols, (image1.rows - 20 - 110));
Mat imgLeft = image1(region_of_interest);
Mat imgRight = image2(region_of_interest);
Mat imgDisparity8U = Mat(imgLeft.rows, imgLeft.cols, CV_8UC1);
if (imgLeft.empty() || imgRight.empty())
{
std::cout << " --(!) Error reading images \n" ; return -1;
}
////-- 3. Calculate the disparity image
sbm->compute(imgLeft, imgRight, imgDisparity8U);
imshow("RealImage", image1);
imshow("Disparity", imgDisparity8U);
waitKey(1);
}
waitKey(0);
return 0;
}
#include <iostream>
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace stereo;
using namespace std;
int main(int, char**)
{
//begin the program
cout << " Running Main function \n";
//declare 2 images
Mat image1, image2;
// -- 1. Call the constructor for StereoBinaryBM
int ndisparities = 32; /**< Range of disparity */
int kernelSize = 9; /**< Size of the block window. Must be odd */
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(ndisparities, kernelSize);
// -- 2. Set parameters
sbm->setPreFilterCap(31);
sbm->setMinDisparity(0);
sbm->setTextureThreshold(10);
sbm->setUniquenessRatio(0);
sbm->setSpeckleWindowSize(400);//speckle size
sbm->setSpeckleRange(200);
sbm->setDisp12MaxDiff(0);
sbm->setScalleFactor(4);//the scalling factor
sbm->setBinaryKernelType(CV_MEAN_VARIATION);//binary descriptor kernel
sbm->setAgregationWindowSize(9);
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);//speckle removal algorithm
sbm->setUsePrefilter(false);//prefilter or not the images prior to making the transformations
//load 2 images from disc
image1 = imread("D:\\rezult0l.bmp", CV_8UC1);
image2 = imread("D:\\rezult0.bmp", CV_8UC1);
//set a certain region of interest
Rect region_of_interest = Rect(0, 20, image1.cols, (image1.rows - 20 - 110));
Mat imgLeft = image1(region_of_interest);
Mat imgRight = image2(region_of_interest);
Mat imgDisparity8U = Mat(imgLeft.rows, imgLeft.cols, CV_8UC1);
if (imgLeft.empty() || imgRight.empty())
{
std::cout << " --(!) Error reading images \n" ; return -1;
}
////-- 3. Calculate the disparity image
sbm->compute(imgLeft, imgRight, imgDisparity8U);
imshow("RealImage", image1);
imshow("Disparity", imgDisparity8U);
waitKey(0);
return 0;
}
...@@ -58,7 +58,7 @@ namespace cv ...@@ -58,7 +58,7 @@ namespace cv
enum { enum {
CV_DENSE_CENSUS, CV_SPARSE_CENSUS, CV_DENSE_CENSUS, CV_SPARSE_CENSUS,
CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM, CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,
CV_MEAN_VARIATION CV_MEAN_VARIATION, CV_STAR_KERNEL
}; };
//!Mean Variation is a robust kernel that compares a pixel //!Mean Variation is a robust kernel that compares a pixel
//!not just with the center but also with the mean of the window //!not just with the center but also with the mean of the window
......
...@@ -57,14 +57,12 @@ namespace cv ...@@ -57,14 +57,12 @@ namespace cv
//maxDisp - represents the maximum disparity //maxDisp - represents the maximum disparity
Matching::Matching(int maxDisp, int scalling, int confidence) Matching::Matching(int maxDisp, int scalling, int confidence)
{ {
CV_Assert(maxDisp > 10);
CV_Assert(scalling != 0);
CV_Assert(confidence >= 1);
this->scallingFactor = scalling;
//set the maximum disparity //set the maximum disparity
this->maxDisparity = maxDisp; setMaxDisparity(maxDisp);
//set scalling factor
setScallingFactor(scalling);
//set the value for the confidence //set the value for the confidence
this->confidenceCheck = confidence; setConfidence(confidence);
//generate the hamming lut in case SSE is not available //generate the hamming lut in case SSE is not available
hammingLut(); hammingLut();
} }
...@@ -82,7 +80,7 @@ namespace cv ...@@ -82,7 +80,7 @@ namespace cv
void Matching::setScallingFactor(int val) void Matching::setScallingFactor(int val)
{ {
CV_Assert(val > 0); CV_Assert(val > 0);
scallingFactor = val; this->scallingFactor = val;
} }
//!method for getting the scalling factor //!method for getting the scalling factor
int Matching::getScallingFactor() int Matching::getScallingFactor()
...@@ -99,10 +97,10 @@ namespace cv ...@@ -99,10 +97,10 @@ namespace cv
CV_Assert(kernelSize % 2 != 0); CV_Assert(kernelSize % 2 != 0);
CV_Assert(cost.rows == leftImage.rows); CV_Assert(cost.rows == leftImage.rows);
CV_Assert(cost.cols / (maxDisparity + 1) == leftImage.cols); CV_Assert(cost.cols / (maxDisparity + 1) == leftImage.cols);
// cost.setTo(0); cost.setTo(0);
int *c = (int *)cost.data; //int *c = (int *)cost.data;
memset(c, 0, sizeof(c[0]) * leftImage.cols * leftImage.rows * (maxDisparity + 1)); //memset(c, 0, sizeof(c[0]) * leftImage.cols * leftImage.rows * (maxDisparity + 1));
parallel_for_(cv::Range(kernelSize / 2,leftImage.rows - kernelSize / 2), hammingDistance(leftImage,rightImage,c,maxDisparity,kernelSize / 2,hamLut)); parallel_for_(cv::Range(kernelSize / 2,leftImage.rows - kernelSize / 2), hammingDistance(leftImage,rightImage,(int *)cost.data,maxDisparity,kernelSize / 2,hamLut));
} }
//preprocessing the cost volume in order to get it ready for aggregation //preprocessing the cost volume in order to get it ready for aggregation
void Matching::costGathering(const Mat &hammingDistanceCost, Mat &cost) void Matching::costGathering(const Mat &hammingDistanceCost, Mat &cost)
...@@ -110,12 +108,12 @@ namespace cv ...@@ -110,12 +108,12 @@ namespace cv
CV_Assert(hammingDistanceCost.rows == hammingDistanceCost.rows); CV_Assert(hammingDistanceCost.rows == hammingDistanceCost.rows);
CV_Assert(hammingDistanceCost.type() == CV_32SC4); CV_Assert(hammingDistanceCost.type() == CV_32SC4);
CV_Assert(cost.type() == CV_32SC4); CV_Assert(cost.type() == CV_32SC4);
//cost.setTo(0); cost.setTo(0);
int maxDisp = maxDisparity; int maxDisp = maxDisparity;
int width = cost.cols / ( maxDisp + 1) - 1; int width = cost.cols / ( maxDisp + 1) - 1;
int height = cost.rows - 1; int height = cost.rows - 1;
int *c = (int *)cost.data; int *c = (int *)cost.data;
memset(c, 0, sizeof(c[0]) * (width + 1) * (height + 1) * (maxDisp + 1)); //memset(c, 0, sizeof(c[0]) * (width + 1) * (height + 1) * (maxDisp + 1));
parallel_for_(cv::Range(1,height), costGatheringHorizontal(hammingDistanceCost,maxDisparity,cost)); parallel_for_(cv::Range(1,height), costGatheringHorizontal(hammingDistanceCost,maxDisparity,cost));
for (int i = 1; i <= height; i++) for (int i = 1; i <= height; i++)
{ {
...@@ -136,12 +134,13 @@ namespace cv ...@@ -136,12 +134,13 @@ namespace cv
CV_Assert(windowSize % 2 != 0); CV_Assert(windowSize % 2 != 0);
CV_Assert(partialSums.rows == cost.rows); CV_Assert(partialSums.rows == cost.rows);
CV_Assert(partialSums.cols == cost.cols); CV_Assert(partialSums.cols == cost.cols);
cost.setTo(0);
int win = windowSize / 2; int win = windowSize / 2;
int *c = (int *)cost.data; //int *c = (int *)cost.data;
int maxDisp = maxDisparity; int maxDisp = maxDisparity;
int width = cost.cols / ( maxDisp + 1) - 1; //int width = cost.cols / ( maxDisp + 1) - 1;
int height = cost.rows - 1; int height = cost.rows - 1;
memset(c, 0, sizeof(c[0]) * width * height * (maxDisp + 1)); //memset(c, 0, sizeof(c[0]) * width * height * (maxDisp + 1));
parallel_for_(cv::Range(win + 1,height - win - 1), agregateCost(partialSums,windowSize,maxDisp,cost)); parallel_for_(cv::Range(win + 1,height - win - 1), agregateCost(partialSums,windowSize,maxDisp,cost));
} }
//!Finding the correct disparity from the cost volume, we also make a confidence check //!Finding the correct disparity from the cost volume, we also make a confidence check
...@@ -303,7 +302,7 @@ namespace cv ...@@ -303,7 +302,7 @@ namespace cv
void Matching ::setConfidence(double val) void Matching ::setConfidence(double val)
{ {
CV_Assert(val >= 1); CV_Assert(val >= 1);
confidenceCheck = val; this->confidenceCheck = val;
} }
//getter for confidence check //getter for confidence check
double Matching ::getConfidence() double Matching ::getConfidence()
...@@ -313,26 +312,27 @@ namespace cv ...@@ -313,26 +312,27 @@ namespace cv
//!Method responsible for generating the disparity map //!Method responsible for generating the disparity map
void Matching::dispartyMapFormation(const Mat &costVolume, Mat &mapFinal, int th) void Matching::dispartyMapFormation(const Mat &costVolume, Mat &mapFinal, int th)
{ {
uint8_t *map = mapFinal.data; mapFinal.setTo(0);
//uint8_t *map = mapFinal.data;
int disparity = maxDisparity; int disparity = maxDisparity;
int width = costVolume.cols / ( disparity + 1) - 1; //int width = costVolume.cols / ( disparity + 1) - 1;
int height = costVolume.rows - 1; int height = costVolume.rows - 1;
memset(map, 0, sizeof(map[0]) * width * height); //memset(map, 0, sizeof(map[0]) * width * height);
parallel_for_(Range(0,height - 1), makeMap(costVolume,th,disparity,confidenceCheck,scallingFactor,mapFinal)); parallel_for_(Range(0,height - 1), makeMap(costVolume,th,disparity,confidenceCheck,scallingFactor,mapFinal));
} }
//!1x9 median filter //!1x9 median filter
void Matching::Median1x9Filter(const Mat &originalMap, Mat &map) void Matching::Median1x9Filter(const Mat &originalImage, Mat &filteredImage)
{ {
CV_Assert(originalMap.rows == map.rows); CV_Assert(originalImage.rows == filteredImage.rows);
CV_Assert(originalMap.cols == map.cols); CV_Assert(originalImage.cols == filteredImage.cols);
parallel_for_(Range(1,originalMap.rows - 2), Median1x9(originalMap,map)); parallel_for_(Range(1,originalImage.rows - 2), Median1x9(originalImage,filteredImage));
} }
//!9x1 median filter //!9x1 median filter
void Matching::Median9x1Filter(const Mat &originalMap, Mat &map) void Matching::Median9x1Filter(const Mat &originalImage, Mat &filteredImage)
{ {
CV_Assert(originalMap.cols == map.cols); CV_Assert(originalImage.cols == filteredImage.cols);
CV_Assert(originalMap.cols == map.cols); CV_Assert(originalImage.cols == filteredImage.cols);
parallel_for_(Range(1,originalMap.cols - 2), Median9x1(originalMap,map)); parallel_for_(Range(1,originalImage.cols - 2), Median9x1(originalImage,filteredImage));
} }
} }
} }
...@@ -81,12 +81,12 @@ namespace cv ...@@ -81,12 +81,12 @@ namespace cv
{ {
private: private:
int *left, *right, *c; int *left, *right, *c;
int v,kernelSize, width, height; int v,kernelSize, width, height,_stride;
int MASK; int MASK;
int *hammLut; int *hammLut;
public : public :
hammingDistance(const Mat &leftImage, const Mat &rightImage, int *cost, int maxDisp, int kerSize, int *hammingLUT): hammingDistance(const Mat &leftImage, const Mat &rightImage, int *cost, int maxDisp, int kerSize, int *hammingLUT):
left((int *)leftImage.data), right((int *)rightImage.data), c(cost), v(maxDisp),kernelSize(kerSize),width(leftImage.cols), height(leftImage.rows), MASK(65535), hammLut(hammingLUT){} left((int *)leftImage.data), right((int *)rightImage.data), c(cost), v(maxDisp),kernelSize(kerSize),width(leftImage.cols), height(leftImage.rows), _stride((int)leftImage.step1()), MASK(65535), hammLut(hammingLUT){}
void operator()(const cv::Range &r) const { void operator()(const cv::Range &r) const {
for (int i = r.start; i <= r.end ; i++) for (int i = r.start; i <= r.end ; i++)
{ {
...@@ -246,16 +246,17 @@ namespace cv ...@@ -246,16 +246,17 @@ namespace cv
class Median1x9:public ParallelLoopBody class Median1x9:public ParallelLoopBody
{ {
private: private:
uint8_t *harta; uint8_t *original;
uint8_t *mapModified; uint8_t *filtered;
int height, width; int height, width,_stride;
public: public:
Median1x9(const Mat &hartaOriginala, Mat &map) Median1x9(const Mat &originalImage, Mat &filteredImage)
{ {
harta = hartaOriginala.data; original = originalImage.data;
mapModified = map.data; filtered = filteredImage.data;
height = hartaOriginala.rows; height = originalImage.rows;
width = hartaOriginala.cols; width = originalImage.cols;
_stride = (int)originalImage.step;
} }
void operator()(const cv::Range &r) const{ void operator()(const cv::Range &r) const{
for (int m = r.start; m <= r.end; m++) for (int m = r.start; m <= r.end; m++)
...@@ -265,7 +266,7 @@ namespace cv ...@@ -265,7 +266,7 @@ namespace cv
int k = 0; int k = 0;
uint8_t window[9]; uint8_t window[9];
for (int i = n - 4; i <= n + 4; ++i) for (int i = n - 4; i <= n + 4; ++i)
window[k++] = harta[m * width + i]; window[k++] = original[m * _stride + i];
for (int j = 0; j < 5; ++j) for (int j = 0; j < 5; ++j)
{ {
int min = j; int min = j;
...@@ -276,7 +277,7 @@ namespace cv ...@@ -276,7 +277,7 @@ namespace cv
window[j] = window[min]; window[j] = window[min];
window[min] = temp; window[min] = temp;
} }
mapModified[m * width + n] = window[4]; filtered[m * _stride + n] = window[4];
} }
} }
} }
...@@ -285,16 +286,17 @@ namespace cv ...@@ -285,16 +286,17 @@ namespace cv
class Median9x1:public ParallelLoopBody class Median9x1:public ParallelLoopBody
{ {
private: private:
uint8_t *harta; uint8_t *original;
uint8_t *mapModified; uint8_t *filtered;
int height, width; int height, width, _stride;
public: public:
Median9x1(const Mat &hartaOriginala, Mat &map) Median9x1(const Mat &originalImage, Mat &filteredImage)
{ {
harta = hartaOriginala.data; original = originalImage.data;
mapModified = map.data; filtered = filteredImage.data;
height = hartaOriginala.rows; height = originalImage.rows;
width = hartaOriginala.cols; width = originalImage.cols;
_stride = (int)originalImage.step;
} }
void operator()(const Range &r) const{ void operator()(const Range &r) const{
for (int n = r.start; n <= r.end; ++n) for (int n = r.start; n <= r.end; ++n)
...@@ -304,7 +306,7 @@ namespace cv ...@@ -304,7 +306,7 @@ namespace cv
int k = 0; int k = 0;
uint8_t window[9]; uint8_t window[9];
for (int i = m - 4; i <= m + 4; ++i) for (int i = m - 4; i <= m + 4; ++i)
window[k++] = harta[i * width + n]; window[k++] = original[i * _stride + n];
for (int j = 0; j < 5; j++) for (int j = 0; j < 5; j++)
{ {
int min = j; int min = j;
...@@ -315,12 +317,12 @@ namespace cv ...@@ -315,12 +317,12 @@ namespace cv
window[j] = window[min]; window[j] = window[min];
window[min] = temp; window[min] = temp;
} }
mapModified[m * width + n] = window[4]; filtered[m * _stride + n] = window[4];
} }
} }
} }
}; };
public: protected:
//!method for setting the maximum disparity //!method for setting the maximum disparity
void setMaxDisparity(int val); void setMaxDisparity(int val);
//!method for getting the disparity //!method for getting the disparity
...@@ -347,12 +349,13 @@ namespace cv ...@@ -347,12 +349,13 @@ namespace cv
*th - is the LR threshold *th - is the LR threshold
*/ */
void dispartyMapFormation(const Mat &costVolume, Mat &map, int th); void dispartyMapFormation(const Mat &costVolume, Mat &map, int th);
void smallRegionRemoval(const Mat &input, int t, Mat &out);
public:
static void Median1x9Filter(const Mat &inputImage, Mat &outputImage);
static void Median9x1Filter(const Mat &inputImage, Mat &outputImage);
//!constructor for the matching class //!constructor for the matching class
//!maxDisp - represents the maximum disparity //!maxDisp - represents the maximum disparity
//!a median filter that has proven to work a bit better especially when applied on disparity maps //!a median filter that has proven to work a bit better especially when applied on disparity maps
static void Median1x9Filter(const Mat &hartaOriginala, Mat &map);
static void Median9x1Filter(const Mat &hartaOriginala, Mat &map);
void smallRegionRemoval(const Mat &harta, int t, Mat &out);
Matching(int maxDisp, int scallingFactor = 4,int confidenceCheck = 6); Matching(int maxDisp, int scallingFactor = 4,int confidenceCheck = 6);
Matching(void); Matching(void);
~Matching(void); ~Matching(void);
......
...@@ -46,6 +46,8 @@ ...@@ -46,6 +46,8 @@
\****************************************************************************************/ \****************************************************************************************/
#include "precomp.hpp" #include "precomp.hpp"
#include "descriptor.hpp"
#include "matching.hpp"
#include <stdio.h> #include <stdio.h>
#include <limits> #include <limits>
...@@ -53,14 +55,15 @@ namespace cv ...@@ -53,14 +55,15 @@ namespace cv
{ {
namespace stereo namespace stereo
{ {
struct StereoBinaryBMParams struct StereoBinaryBMParams
{ {
StereoBinaryBMParams(int _numDisparities = 64, int _SADWindowSize = 9) StereoBinaryBMParams(int _numDisparities = 64, int _kernelSize = 9)
{ {
preFilterType = StereoBinaryBM::PREFILTER_XSOBEL; preFilterType = StereoBinaryBM::PREFILTER_XSOBEL;
preFilterSize = 9; preFilterSize = 9;
preFilterCap = 31; preFilterCap = 31;
SADWindowSize = _SADWindowSize; kernelSize = _kernelSize;
minDisparity = 0; minDisparity = 0;
numDisparities = _numDisparities > 0 ? _numDisparities : 64; numDisparities = _numDisparities > 0 ? _numDisparities : 64;
textureThreshold = 10; textureThreshold = 10;
...@@ -69,12 +72,17 @@ namespace cv ...@@ -69,12 +72,17 @@ namespace cv
roi1 = roi2 = Rect(0, 0, 0, 0); roi1 = roi2 = Rect(0, 0, 0, 0);
disp12MaxDiff = -1; disp12MaxDiff = -1;
dispType = CV_16S; dispType = CV_16S;
usePrefilter = false;
regionRemoval = 1;
scalling = 4;
kernelType = CV_MODIFIED_CENSUS_TRANSFORM;
agregationWindowSize = 9;
} }
int preFilterType; int preFilterType;
int preFilterSize; int preFilterSize;
int preFilterCap; int preFilterCap;
int SADWindowSize; int kernelSize;
int minDisparity; int minDisparity;
int numDisparities; int numDisparities;
int textureThreshold; int textureThreshold;
...@@ -84,6 +92,11 @@ namespace cv ...@@ -84,6 +92,11 @@ namespace cv
Rect roi1, roi2; Rect roi1, roi2;
int disp12MaxDiff; int disp12MaxDiff;
int dispType; int dispType;
int scalling;
bool usePrefilter;
int regionRemoval;
int kernelType;
int agregationWindowSize;
}; };
static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf) static void prefilterNorm(const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf)
...@@ -104,7 +117,6 @@ namespace cv ...@@ -104,7 +117,6 @@ namespace cv
for (x = 0; x < size.width; x++) for (x = 0; x < size.width; x++)
vsum[x] = (ushort)(sptr[x] * (wsz2 + 2)); vsum[x] = (ushort)(sptr[x] * (wsz2 + 2));
for (y = 1; y < wsz2; y++) for (y = 1; y < wsz2; y++)
{ {
for (x = 0; x < size.width; x++) for (x = 0; x < size.width; x++)
...@@ -228,179 +240,6 @@ namespace cv ...@@ -228,179 +240,6 @@ namespace cv
static const int DISPARITY_SHIFT = 4; static const int DISPARITY_SHIFT = 4;
static void
findStereoCorrespondenceBM(const Mat& left, const Mat& right,
Mat& disp, Mat& cost, const StereoBinaryBMParams& state,
uchar* buf, int _dy0, int _dy1)
{
const int ALIGN = 16;
int x, y, d;
int wsz = state.SADWindowSize, wsz2 = wsz / 2;
int dy0 = MIN(_dy0, wsz2 + 1), dy1 = MIN(_dy1, wsz2 + 1);
int ndisp = state.numDisparities;
int mindisp = state.minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left.cols, height = left.rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state.preFilterCap;
int textureThreshold = state.textureThreshold;
int uniquenessRatio = state.uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left.ptr() + lofs;
const uchar* rptr0 = right.ptr() + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp.ptr<short>();
int sstep = (int)left.step;
int dstep = (int)(disp.step / sizeof(dptr[0]));
int cstep = (height + dy0 + dy1)*ndisp;
int costbuf = 0;
int coststep = cost.data ? (int)(cost.step / sizeof(costbuf)) : 0;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
htext = (int*)alignPtr((int*)(hsad0 + (height + dy1)*ndisp) + wsz2 + 2, ALIGN);
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);
for (x = 0; x < TABSZ; x++)
tab[x] = (uchar)std::abs(x - ftzero);
// initialize buffers
memset(hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]));
memset(htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]));
for (x = -wsz2 - 1; x < wsz2; x++)
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + std::min(std::max(x, -lofs), width - lofs - 1) - dy0*sstep;
rptr = rptr0 + std::min(std::max(x, -rofs), width - rofs - 1) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep)
{
int lval = lptr[0];
for (d = 0; d < ndisp; d++)
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
}
}
// initialize the left and right borders of the disparity map
for (y = 0; y < height; y++)
{
for (x = 0; x < lofs; x++)
dptr[y*dstep + x] = FILTERED;
for (x = lofs + width1; x < width; x++)
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for (x = 0; x < width1; x++, dptr++)
{
int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf;
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width - 1 - lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width - 1 - lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width - 1 - rofs) - dy0*sstep;
for (y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep)
{
int lval = lptr[0];
for (d = 0; d < ndisp; d++)
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = hsad[d] + diff - cbuf_sub[d];
}
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
// fill borders
for (y = dy1; y <= wsz2; y++)
htext[height + y] = htext[height + dy1 - 1];
for (y = -wsz2 - 1; y < -dy0; y++)
htext[y] = htext[-dy0];
// initialize sums
int tsum = 0;
{
for (d = 0; d < ndisp; d++)
sad[d] = (int)(hsad0[d - ndisp*dy0] * (wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for (y = 1 - dy0; y < wsz2; y++, hsad += ndisp)
for (d = 0; d < ndisp; d++)
sad[d] = (int)(sad[d] + hsad[d]);
for (y = -wsz2 - 1; y < wsz2; y++)
tsum += htext[y];
}
// finally, start the real processing
{
for (y = 0; y < height; y++)
{
int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height + dy1 - 1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for (d = 0; d < ndisp; d++)
{
int currsad = sad[d] + hsad[d] - hsad_sub[d];
sad[d] = currsad;
if (currsad < minsad)
{
minsad = currsad;
mind = d;
}
}
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if (tsum < textureThreshold)
{
dptr[y*dstep] = FILTERED;
continue;
}
if (uniquenessRatio > 0)
{
int thresh = minsad + (minsad * uniquenessRatio / 100);
for (d = 0; d < ndisp; d++)
{
if ((d < mind - 1 || d > mind + 1) && sad[d] <= thresh)
break;
}
if (d < ndisp)
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp - 2];
int p = sad[mind + 1], n = sad[mind - 1];
d = p + n - 2 * sad[mind] + std::abs(p - n);
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp) * 256 + (d != 0 ? (p - n) * 256 / d : 0) + 15) >> 4);
costptr[y*coststep] = sad[mind];
}
}
}
}
}
struct PrefilterInvoker : public ParallelLoopBody struct PrefilterInvoker : public ParallelLoopBody
{ {
PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right, PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right,
...@@ -429,83 +268,7 @@ namespace cv ...@@ -429,83 +268,7 @@ namespace cv
StereoBinaryBMParams* state; StereoBinaryBMParams* state;
}; };
struct FindStereoCorrespInvoker : public ParallelLoopBody class StereoBinaryBMImpl : public StereoBinaryBM,public Matching
{
FindStereoCorrespInvoker(const Mat& _left, const Mat& _right,
Mat& _disp, StereoBinaryBMParams* _state,
int _nstripes, size_t _stripeBufSize,
bool _useShorts, Rect _validDisparityRect,
Mat& _slidingSumBuf, Mat& _cost)
{
left = &_left; right = &_right;
disp = &_disp; state = _state;
nstripes = _nstripes; stripeBufSize = _stripeBufSize;
useShorts = _useShorts;
validDisparityRect = _validDisparityRect;
slidingSumBuf = &_slidingSumBuf;
cost = &_cost;
}
void operator()(const Range& range) const
{
int cols = left->cols, rows = left->rows;
int _row0 = std::min(cvRound(range.start * rows / nstripes), rows);
int _row1 = std::min(cvRound(range.end * rows / nstripes), rows);
uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize;
int FILTERED = (state->minDisparity - 1) * 16;
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
if (roi.height == 0)
return;
int row0 = roi.y;
int row1 = roi.y + roi.height;
Mat part;
if (row0 > _row0)
{
part = disp->rowRange(_row0, row0);
part = Scalar::all(FILTERED);
}
if (_row1 > row1)
{
part = disp->rowRange(row1, _row1);
part = Scalar::all(FILTERED);
}
Mat left_i = left->rowRange(row0, row1);
Mat right_i = right->rowRange(row0, row1);
Mat disp_i = disp->rowRange(row0, row1);
Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat();
findStereoCorrespondenceBM(left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1);
if (state->disp12MaxDiff >= 0)
validateDisparity(disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff);
if (roi.x > 0)
{
part = disp_i.colRange(0, roi.x);
part = Scalar::all(FILTERED);
}
if (roi.x + roi.width < cols)
{
part = disp_i.colRange(roi.x + roi.width, cols);
part = Scalar::all(FILTERED);
}
}
protected:
const Mat *left, *right;
Mat* disp, *slidingSumBuf, *cost;
StereoBinaryBMParams *state;
int nstripes;
size_t stripeBufSize;
bool useShorts;
Rect validDisparityRect;
};
class StereoBinaryBMImpl : public StereoBinaryBM
{ {
public: public:
StereoBinaryBMImpl() StereoBinaryBMImpl()
...@@ -513,9 +276,9 @@ namespace cv ...@@ -513,9 +276,9 @@ namespace cv
params = StereoBinaryBMParams(); params = StereoBinaryBMParams();
} }
StereoBinaryBMImpl(int _numDisparities, int _SADWindowSize) StereoBinaryBMImpl(int _numDisparities, int _kernelSize) : Matching(_numDisparities)
{ {
params = StereoBinaryBMParams(_numDisparities, _SADWindowSize); params = StereoBinaryBMParams(_numDisparities, _kernelSize);
} }
void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr) void compute(InputArray leftarr, InputArray rightarr, OutputArray disparr)
...@@ -542,9 +305,9 @@ namespace cv ...@@ -542,9 +305,9 @@ namespace cv
if (params.preFilterCap < 1 || params.preFilterCap > 63) if (params.preFilterCap < 1 || params.preFilterCap > 63)
CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63"); CV_Error(Error::StsOutOfRange, "preFilterCap must be within 1..63");
if (params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 || if (params.kernelSize < 5 || params.kernelSize > 255 || params.kernelSize % 2 == 0 ||
params.SADWindowSize >= std::min(leftsize.width, leftsize.height)) params.kernelSize >= std::min(leftsize.width, leftsize.height))
CV_Error(Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height"); CV_Error(Error::StsOutOfRange, "kernelSize must be odd, be within 5..255 and be not larger than image width or height");
if (params.numDisparities <= 0 || params.numDisparities % 16 != 0) if (params.numDisparities <= 0 || params.numDisparities % 16 != 0)
CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16"); CV_Error(Error::StsOutOfRange, "numDisparities must be positive and divisble by 16");
...@@ -557,85 +320,111 @@ namespace cv ...@@ -557,85 +320,111 @@ namespace cv
int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT; int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT;
Mat left0 = leftarr.getMat(), right0 = rightarr.getMat(); Mat left0 = leftarr.getMat(), right0 = rightarr.getMat();
disparr.create(left0.size(), dtype);
Mat disp0 = disparr.getMat(); Mat disp0 = disparr.getMat();
censusImage[0].create(left0.rows,left0.cols,CV_32SC4);
censusImage[1].create(left0.rows,left0.cols,CV_32SC4);
partialSumsLR.create(left0.rows + 1,(left0.cols + 1) * (params.numDisparities + 1),CV_32SC4);
agregatedHammingLRCost.create(left0.rows + 1,(left0.cols + 1) * (params.numDisparities + 1),CV_32SC4);
hammingDistance.create(left0.rows, left0.cols * (params.numDisparities + 1),CV_32SC4);
preFilteredImg0.create(left0.size(), CV_8U); preFilteredImg0.create(left0.size(), CV_8U);
preFilteredImg1.create(left0.size(), CV_8U); preFilteredImg1.create(left0.size(), CV_8U);
cost.create(left0.size(), CV_16S);
Mat left = preFilteredImg0, right = preFilteredImg1; Mat left = preFilteredImg0, right = preFilteredImg1;
int mindisp = params.minDisparity;
int ndisp = params.numDisparities; int ndisp = params.numDisparities;
int width = left0.cols; int width = left0.cols;
int height = left0.rows; int height = left0.rows;
int lofs = std::max(ndisp - 1 + mindisp, 0);
int rofs = -std::min(ndisp - 1 + mindisp, 0);
int width1 = width - rofs - ndisp + 1;
if (lofs >= width || rofs >= width || width1 < 1) int wsz = params.kernelSize;
{
disp0 = Scalar::all(FILTERED * (disp0.type() < CV_32F ? 1 : 1. / (1 << DISPARITY_SHIFT)));
return;
}
Mat disp = disp0;
if (dtype == CV_32F)
{
dispbuf.create(disp0.size(), CV_16S);
disp = dispbuf;
}
int wsz = params.SADWindowSize;
int bufSize0 = (int)((ndisp + 2)*sizeof(int)); int bufSize0 = (int)((ndisp + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*ndisp*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*sizeof(int)); bufSize0 += (int)((height + wsz + 2)*sizeof(int));
bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256); bufSize0 += (int)((height + wsz + 2)*ndisp*(wsz + 2)*sizeof(uchar) + 256);
int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256); int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256);
int bufSize2 = 0; if(params.usePrefilter == true)
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) {
bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar));
#if CV_SSE2
bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2);
#else
const bool useShorts = false;
#endif
const double SAD_overhead_coeff = 10.0;
double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread
double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz - 1) * SAD_overhead_coeff), (double)height);
int nstripes = cvCeil(height / maxStripeSize);
int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2));
if (slidingSumBuf.cols < bufSize)
slidingSumBuf.create(1, bufSize, CV_8U);
uchar *_buf = slidingSumBuf.ptr(); uchar *_buf = slidingSumBuf.ptr();
parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1); parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1);
}
else if(params.usePrefilter == false)
{
left = left0;
right = right0;
}
if(params.kernelType == CV_SPARSE_CENSUS)
{
censusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_SPARSE_CENSUS);
}
else if(params.kernelType == CV_DENSE_CENSUS)
{
censusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_SPARSE_CENSUS);
}
else if(params.kernelType == CV_CS_CENSUS)
{
symetricCensusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_CS_CENSUS);
}
else if(params.kernelType == CV_MODIFIED_CS_CENSUS)
{
symetricCensusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_MODIFIED_CS_CENSUS);
}
else if(params.kernelType == CV_MODIFIED_CENSUS_TRANSFORM)
{
modifiedCensusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_MODIFIED_CENSUS_TRANSFORM,0);
}
else if(params.kernelType == CV_MEAN_VARIATION)
{
parSumsIntensityImage[0].create(left0.rows, left0.cols,CV_32SC4);
parSumsIntensityImage[1].create(left0.rows, left0.cols,CV_32SC4);
Integral[0].create(left0.rows,left0.cols,CV_32SC4);
Integral[1].create(left0.rows,left0.cols,CV_32SC4);
integral(left, parSumsIntensityImage[0],CV_32S);
integral(right, parSumsIntensityImage[1],CV_32S);
imageMeanKernelSize(parSumsIntensityImage[0], params.kernelSize,Integral[0]);
imageMeanKernelSize(parSumsIntensityImage[1], params.kernelSize, Integral[1]);
modifiedCensusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_MEAN_VARIATION,0,Integral[0], Integral[1]);
}
else if(params.kernelType == CV_STAR_KERNEL)
{
starCensusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1]);
}
hammingDistanceBlockMatching(censusImage[0], censusImage[1], hammingDistance);
costGathering(hammingDistance, partialSumsLR);
blockAgregation(partialSumsLR, params.agregationWindowSize, agregatedHammingLRCost);
dispartyMapFormation(agregatedHammingLRCost, disp0, 3);
Median1x9Filter(disp0, disp0);
Median9x1Filter(disp0,disp0);
Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2; if(params.regionRemoval == CV_SPECKLE_REMOVAL_AVG_ALGORITHM)
validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, {
R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect, smallRegionRemoval(disp0,params.speckleWindowSize,disp0);
params.minDisparity, params.numDisparities, }
params.SADWindowSize); else if(params.regionRemoval == CV_SPECKLE_REMOVAL_ALGORITHM)
{
if (params.speckleRange >= 0 && params.speckleWindowSize > 0)
filterSpeckles(disp0, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);
}
}
int getAgregationWindowSize() const { return params.agregationWindowSize;}
void setAgregationWindowSize(int value = 9) { params.agregationWindowSize = value;}
parallel_for_(Range(0, nstripes), int getBinaryKernelType() const { return params.kernelType;}
FindStereoCorrespInvoker(left, right, disp, &params, nstripes, void setBinaryKernelType(int value = CV_MODIFIED_CENSUS_TRANSFORM) { params.kernelType = value; }
bufSize0, useShorts, validDisparityRect,
slidingSumBuf, cost));
if (params.speckleRange >= 0 && params.speckleWindowSize > 0) int getSpekleRemovalTechnique() const { return params.regionRemoval;}
filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); void setSpekleRemovalTechnique(int factor = CV_SPECKLE_REMOVAL_AVG_ALGORITHM) { params.regionRemoval = factor; }
if (disp0.data != disp.data) bool getUsePrefilter() const { return params.usePrefilter;}
disp.convertTo(disp0, disp0.type(), 1. / (1 << DISPARITY_SHIFT), 0); void setUsePrefilter(bool value = false) { params.usePrefilter = value;}
}
int getScalleFactor() const { return params.scalling;}
void setScalleFactor(int factor) {params.scalling = factor; setScallingFactor(factor);}
int getMinDisparity() const { return params.minDisparity; } int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; } void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
...@@ -643,8 +432,8 @@ namespace cv ...@@ -643,8 +432,8 @@ namespace cv
int getNumDisparities() const { return params.numDisparities; } int getNumDisparities() const { return params.numDisparities; }
void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; } void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }
int getBlockSize() const { return params.SADWindowSize; } int getBlockSize() const { return params.kernelSize; }
void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; } void setBlockSize(int blockSize) { params.kernelSize = blockSize; }
int getSpeckleWindowSize() const { return params.speckleWindowSize; } int getSpeckleWindowSize() const { return params.speckleWindowSize; }
void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; } void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }
...@@ -684,7 +473,7 @@ namespace cv ...@@ -684,7 +473,7 @@ namespace cv
fs << "name" << name_ fs << "name" << name_
<< "minDisparity" << params.minDisparity << "minDisparity" << params.minDisparity
<< "numDisparities" << params.numDisparities << "numDisparities" << params.numDisparities
<< "blockSize" << params.SADWindowSize << "blockSize" << params.kernelSize
<< "speckleWindowSize" << params.speckleWindowSize << "speckleWindowSize" << params.speckleWindowSize
<< "speckleRange" << params.speckleRange << "speckleRange" << params.speckleRange
<< "disp12MaxDiff" << params.disp12MaxDiff << "disp12MaxDiff" << params.disp12MaxDiff
...@@ -701,7 +490,7 @@ namespace cv ...@@ -701,7 +490,7 @@ namespace cv
CV_Assert(n.isString() && String(n) == name_); CV_Assert(n.isString() && String(n) == name_);
params.minDisparity = (int)fn["minDisparity"]; params.minDisparity = (int)fn["minDisparity"];
params.numDisparities = (int)fn["numDisparities"]; params.numDisparities = (int)fn["numDisparities"];
params.SADWindowSize = (int)fn["blockSize"]; params.kernelSize = (int)fn["blockSize"];
params.speckleWindowSize = (int)fn["speckleWindowSize"]; params.speckleWindowSize = (int)fn["speckleWindowSize"];
params.speckleRange = (int)fn["speckleRange"]; params.speckleRange = (int)fn["speckleRange"];
params.disp12MaxDiff = (int)fn["disp12MaxDiff"]; params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
...@@ -716,15 +505,21 @@ namespace cv ...@@ -716,15 +505,21 @@ namespace cv
StereoBinaryBMParams params; StereoBinaryBMParams params;
Mat preFilteredImg0, preFilteredImg1, cost, dispbuf; Mat preFilteredImg0, preFilteredImg1, cost, dispbuf;
Mat slidingSumBuf; Mat slidingSumBuf;
Mat parSumsIntensityImage[2];
Mat censusImage[2];
Mat hammingDistance;
Mat partialSumsLR;
Mat agregatedHammingLRCost;
Mat Integral[2];
static const char* name_; static const char* name_;
}; };
const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM"; const char* StereoBinaryBMImpl::name_ = "StereoMatcher.BM";
Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _SADWindowSize) Ptr<StereoBinaryBM> StereoBinaryBM::create(int _numDisparities, int _kernelSize)
{ {
return makePtr<StereoBinaryBMImpl>(_numDisparities, _SADWindowSize); return makePtr<StereoBinaryBMImpl>(_numDisparities, _kernelSize);
} }
} }
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment