Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
dda5b885
Commit
dda5b885
authored
May 31, 2014
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make Stump real-valued
parent
ee55e8d6
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
55 additions
and
34 deletions
+55
-34
acffeature.hpp
apps/icf/acffeature.hpp
+1
-1
waldboost.cpp
apps/icf/waldboost.cpp
+42
-22
waldboost.hpp
apps/icf/waldboost.hpp
+12
-11
No files found.
apps/icf/acffeature.hpp
View file @
dda5b885
...
@@ -65,7 +65,7 @@ public:
...
@@ -65,7 +65,7 @@ public:
ACFFeatureEvaluator
(
const
std
::
vector
<
Point
>&
features
);
ACFFeatureEvaluator
(
const
std
::
vector
<
Point
>&
features
);
/* Set channels for feature evaluation */
/* Set channels for feature evaluation */
void
setChannels
(
const
std
::
vector
<
Mat
>
>
&
channels
);
void
setChannels
(
const
std
::
vector
<
Mat
>&
channels
);
/* Set window position */
/* Set window position */
void
setPosition
(
Size
position
);
void
setPosition
(
Size
position
);
...
...
apps/icf/waldboost.cpp
View file @
dda5b885
#include <cmath>
#include <algorithm>
using
std
::
swap
;
#include "waldboost.hpp"
#include "waldboost.hpp"
using
cv
::
Mat
;
using
cv
::
Mat
;
...
@@ -6,6 +11,7 @@ using cv::sort;
...
@@ -6,6 +11,7 @@ using cv::sort;
using
cv
::
sortIdx
;
using
cv
::
sortIdx
;
using
cv
::
adas
::
Stump
;
using
cv
::
adas
::
Stump
;
using
cv
::
adas
::
WaldBoost
;
using
cv
::
adas
::
WaldBoost
;
using
cv
::
Ptr
;
/* Cumulative sum by rows */
/* Cumulative sum by rows */
static
void
cumsum
(
const
Mat_
<
float
>&
src
,
Mat_
<
float
>
dst
)
static
void
cumsum
(
const
Mat_
<
float
>&
src
,
Mat_
<
float
>
dst
)
...
@@ -81,28 +87,37 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
...
@@ -81,28 +87,37 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
cumsum
(
neg_weights
,
neg_cum_weights
);
cumsum
(
neg_weights
,
neg_cum_weights
);
/* Compute total weights of positive and negative samples */
/* Compute total weights of positive and negative samples */
int
pos_total_weight
=
0
,
neg_total_weight
=
0
;
float
pos_total_weight
=
pos_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
for
(
int
col
=
0
;
col
<
labels
.
cols
;
++
col
)
float
neg_total_weight
=
neg_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
{
if
(
labels
.
at
<
int
>
(
0
,
col
)
==
+
1
)
pos_total_weight
+=
weights
.
at
<
float
>
(
0
,
col
);
float
eps
=
1.
/
4
*
labels
.
cols
;
else
neg_total_weight
+=
weights
.
at
<
float
>
(
0
,
col
);
}
/* Compute minimal error */
/* Compute minimal error */
float
min_err
=
FLT_MAX
;
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_row
=
-
1
;
int
min_col
=
-
1
;
int
min_col
=
-
1
;
int
min_polarity
=
0
;
int
min_polarity
=
0
;
float
min_pos_value
=
1
,
min_neg_value
=
-
1
;
for
(
int
row
=
0
;
row
<
sorted_weights
.
rows
;
++
row
)
for
(
int
row
=
0
;
row
<
sorted_weights
.
rows
;
++
row
)
{
{
for
(
int
col
=
0
;
col
<
sorted_weights
.
cols
-
1
;
++
col
)
for
(
int
col
=
0
;
col
<
sorted_weights
.
cols
-
1
;
++
col
)
{
{
float
err
;
float
err
,
h_pos
,
h_neg
;
// Direct polarity
err
=
pos_cum_weights
.
at
<
float
>
(
row
,
col
)
+
float
pos_wrong
=
pos_cum_weights
.
at
<
float
>
(
row
,
col
);
(
neg_total_weight
-
neg_cum_weights
.
at
<
float
>
(
row
,
col
));
float
pos_right
=
pos_total_weight
-
pos_wrong
;
float
neg_right
=
neg_cum_weights
.
at
<
float
>
(
row
,
col
);
float
neg_wrong
=
neg_total_weight
-
neg_right
;
h_pos
=
.5
*
log
((
pos_right
+
eps
)
/
(
pos_wrong
+
eps
));
h_neg
=
.5
*
log
((
neg_wrong
+
eps
)
/
(
neg_right
+
eps
));
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
if
(
err
<
min_err
)
if
(
err
<
min_err
)
{
{
...
@@ -110,11 +125,19 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
...
@@ -110,11 +125,19 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
min_row
=
row
;
min_row
=
row
;
min_col
=
col
;
min_col
=
col
;
min_polarity
=
+
1
;
min_polarity
=
+
1
;
min_pos_value
=
h_pos
;
min_neg_value
=
h_neg
;
}
}
// Opposite polarity
swap
(
pos_right
,
pos_wrong
);
swap
(
neg_right
,
neg_wrong
);
h_pos
=
-
h_pos
;
h_neg
=
-
h_neg
;
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
err
=
(
pos_total_weight
-
pos_cum_weights
.
at
<
float
>
(
row
,
col
))
+
neg_cum_weights
.
at
<
float
>
(
row
,
col
);
if
(
err
<
min_err
)
if
(
err
<
min_err
)
{
{
...
@@ -122,6 +145,8 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
...
@@ -122,6 +145,8 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
min_row
=
row
;
min_row
=
row
;
min_col
=
col
;
min_col
=
col
;
min_polarity
=
-
1
;
min_polarity
=
-
1
;
min_pos_value
=
h_pos
;
min_neg_value
=
h_neg
;
}
}
}
}
}
}
...
@@ -130,18 +155,13 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
...
@@ -130,18 +155,13 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
threshold_
=
(
sorted_data
.
at
<
int
>
(
min_row
,
min_col
)
+
threshold_
=
(
sorted_data
.
at
<
int
>
(
min_row
,
min_col
)
+
sorted_data
.
at
<
int
>
(
min_row
,
min_col
+
1
)
)
/
2
;
sorted_data
.
at
<
int
>
(
min_row
,
min_col
+
1
)
)
/
2
;
polarity_
=
min_polarity
;
polarity_
=
min_polarity
;
pos_value_
=
min_pos_value
;
neg_value_
=
min_neg_value
;
return
min_row
;
return
min_row
;
}
}
static
inline
int
sign
(
int
value
)
float
Stump
::
predict
(
int
value
)
{
if
(
value
>
0
)
return
+
1
;
return
-
1
;
}
int
Stump
::
predict
(
int
value
)
{
{
return
polarity_
*
sign
(
value
-
threshold_
)
;
return
polarity_
*
(
value
-
threshold_
)
>
0
?
pos_value_
:
neg_value_
;
}
}
apps/icf/waldboost.hpp
View file @
dda5b885
...
@@ -56,11 +56,13 @@ class Stump
...
@@ -56,11 +56,13 @@ class Stump
public
:
public
:
/* Initialize zero stump */
/* Initialize zero stump */
Stump
()
:
threshold_
(
0
),
polarity_
(
1
)
{};
Stump
()
:
threshold_
(
0
),
polarity_
(
1
)
,
pos_value_
(
1
),
neg_value_
(
-
1
)
{}
/* Initialize stump with given threshold and polarity */
/* Initialize stump with given threshold, polarity
Stump
(
int
threshold
,
int
polarity
)
:
threshold_
(
threshold
),
and classification values */
polarity_
(
polarity
)
{};
Stump
(
int
threshold
,
int
polarity
,
float
pos_value
,
float
neg_value
)
:
threshold_
(
threshold
),
polarity_
(
polarity
),
pos_value_
(
pos_value
),
neg_value_
(
neg_value
)
{}
/* Train stump for given data
/* Train stump for given data
...
@@ -77,21 +79,20 @@ public:
...
@@ -77,21 +79,20 @@ public:
/* Predict object class given
/* Predict object class given
value — feature value. Feature must be the same as
chose during training
value — feature value. Feature must be the same as
was chosen
stump
during training
stump
Returns
object class from {-1, +1}
Returns
real value, sign(value) means class
*/
*/
in
t
predict
(
int
value
);
floa
t
predict
(
int
value
);
private
:
private
:
/* Stump decision threshold */
/* Stump decision threshold */
int
threshold_
;
int
threshold_
;
/* Stump polarity, can be from {-1, +1} */
/* Stump polarity, can be from {-1, +1} */
int
polarity_
;
int
polarity_
;
/* Stump decision rule:
/* Classification values for positive and negative classes */
h(value) = polarity * sign(value - threshold)
float
pos_value_
,
neg_value_
;
*/
};
};
struct
WaldBoostParams
struct
WaldBoostParams
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment