Commit db396b9f authored by Wangyida's avatar Wangyida

add data transmission functions in DataTrans Class

parent 391596a1
......@@ -45,15 +45,24 @@ the use of this software, even if advised of the possibility of such damage.
#ifndef __OPENCV_CNN_3DOBJ_HPP__
#define __OPENCV_CNN_3DOBJ_HPP__
#ifdef __cplusplus
#include <glog/logging.h>
#include <leveldb/db.h>
#include <caffe/proto/caffe.pb.h>
#include <opencv2/calib3d.hpp>
#include <opencv2/viz/vizcore.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
//#include <opencv2/imgproc/imgproc.hpp>
#include <string>
#include <fstream>
#include <vector>
#include <stdio.h>
#include <iostream>
#include <string>
#include <set>
#include <string.h>
#include <stdlib.h>
#include <dirent.h>
using std::string;
/** @defgroup cnn_3dobj CNN based on Caffe aimming at 3D object recognition and pose estimation
*/
......@@ -113,8 +122,21 @@ class CV_EXPORTS_W IcoSphere
*/
};
//! @}
class CV_EXPORTS_W DataTrans
{
private:
std::set<string> all_class_name;
std::map<string,int> class2id;
public:
DataTrans();
CV_WRAP void list_dir(const char *path,std::vector<string>& files,bool r);
CV_WRAP string get_classname(string path);
CV_WRAP int get_labelid(string fileName);
CV_WRAP void loadimg(string path,char* buffer,bool is_color);
CV_WRAP void convert(string imgdir,string outputdb,string attachdir,int channel,int width,int height);
};
//! @}
}}
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
ply
format ascii 1.0
element vertex 1177
property float32 x
property float32 y
property float32 z
element face 2256
property list uint8 int32 vertex_indices
end_header
1.38137 0 2.45469
1.4 0 2.4
1.35074 -0.375926 2.4
1.33276 -0.370922 2.45469
1.38426 0 2.4875
1.33555 -0.371699 2.4875
1.40312 0 2.49844
1.35376 -0.376765 2.49844
1.43241 0 2.4875
1.38201 -0.384628 2.4875
1.46655 0 2.45469
1.41495 -0.393796 2.45469
1.5 0 2.4
1.44722 -0.402778 2.4
1.21126 -0.711407 2.4
1.19514 -0.701938 2.45469
1.19764 -0.703409 2.4875
1.21396 -0.712995 2.49844
1.2393 -0.727875 2.4875
1.26884 -0.745225 2.45469
1.29778 -0.762222 2.4
0.994 -0.994 2.4
0.98077 -0.98077 2.45469
0.982824 -0.982824 2.4875
0.996219 -0.996219 2.49844
1.01701 -1.01701 2.4875
1.04125 -1.04125 2.45469
1.065 -1.065 2.4
0.711407 -1.21126 2.4
0.701938 -1.19514 2.45469
0.703409 -1.19764 2.4875
0.712995 -1.21396 2.49844
0.727875 -1.2393 2.4875
0.745225 -1.26884 2.45469
0.762222 -1.29778 2.4
0.375926 -1.35074 2.4
0.370922 -1.33276 2.45469
0.371699 -1.33555 2.4875
0.376765 -1.35376 2.49844
0.384628 -1.38201 2.4875
0.393796 -1.41495 2.45469
0.402778 -1.44722 2.4
0 -1.4 2.4
0 -1.38137 2.45469
0 -1.38426 2.4875
0 -1.40312 2.49844
0 -1.43241 2.4875
0 -1.46655 2.45469
0 -1.5 2.4
-0.375926 -1.35074 2.4
-0.370922 -1.33276 2.45469
-0.371699 -1.33555 2.4875
-0.376765 -1.35376 2.49844
-0.384628 -1.38201 2.4875
-0.393796 -1.41495 2.45469
-0.402778 -1.44722 2.4
-0.711407 -1.21126 2.4
-0.701938 -1.19514 2.45469
-0.703409 -1.19764 2.4875
-0.712995 -1.21396 2.49844
-0.727875 -1.2393 2.4875
-0.745225 -1.26884 2.45469
-0.762222 -1.29778 2.4
-0.994 -0.994 2.4
-0.98077 -0.98077 2.45469
-0.982824 -0.982824 2.4875
-0.996219 -0.996219 2.49844
-1.01701 -1.01701 2.4875
-1.04125 -1.04125 2.45469
-1.065 -1.065 2.4
-1.21126 -0.711407 2.4
-1.19514 -0.701938 2.45469
-1.19764 -0.703409 2.4875
-1.21396 -0.712995 2.49844
-1.2393 -0.727875 2.4875
-1.26884 -0.745225 2.45469
-1.29778 -0.762222 2.4
-1.35074 -0.375926 2.4
-1.33276 -0.370922 2.45469
-1.33555 -0.371699 2.4875
-1.35376 -0.376765 2.49844
-1.38201 -0.384628 2.4875
-1.41495 -0.393796 2.45469
-1.44722 -0.402778 2.4
-1.4 0 2.4
-1.38137 0 2.45469
-1.38426 0 2.4875
-1.40312 0 2.49844
-1.43241 0 2.4875
-1.46655 0 2.45469
-1.5 0 2.4
-1.35074 0.375926 2.4
-1.33276 0.370922 2.45469
-1.33555 0.371699 2.4875
-1.35376 0.376765 2.49844
-1.38201 0.384628 2.4875
-1.41495 0.393796 2.45469
-1.44722 0.402778 2.4
-1.21126 0.711407 2.4
-1.19514 0.701938 2.45469
-1.19764 0.703409 2.4875
-1.21396 0.712995 2.49844
-1.2393 0.727875 2.4875
-1.26884 0.745225 2.45469
-1.29778 0.762222 2.4
-0.994 0.994 2.4
-0.98077 0.98077 2.45469
-0.982824 0.982824 2.4875
-0.996219 0.996219 2.49844
-1.01701 1.01701 2.4875
-1.04125 1.04125 2.45469
-1.065 1.065 2.4
-0.711407 1.21126 2.4
-0.701938 1.19514 2.45469
-0.703409 1.19764 2.4875
-0.712995 1.21396 2.49844
-0.727875 1.2393 2.4875
-0.745225 1.26884 2.45469
-0.762222 1.29778 2.4
-0.375926 1.35074 2.4
-0.370922 1.33276 2.45469
-0.371699 1.33555 2.4875
-0.376765 1.35376 2.49844
-0.384628 1.38201 2.4875
-0.393796 1.41495 2.45469
-0.402778 1.44722 2.4
0 1.4 2.4
0 1.38137 2.45469
0 1.38426 2.4875
0 1.40312 2.49844
0 1.43241 2.4875
0 1.46655 2.45469
0 1.5 2.4
0.375926 1.35074 2.4
0.370922 1.33276 2.45469
0.371699 1.33555 2.4875
0.376765 1.35376 2.49844
0.384628 1.38201 2.4875
0.393796 1.41495 2.45469
0.402778 1.44722 2.4
0.711407 1.21126 2.4
0.701938 1.19514 2.45469
0.703409 1.19764 2.4875
0.712995 1.21396 2.49844
0.727875 1.2393 2.4875
0.745225 1.26884 2.45469
0.762222 1.29778 2.4
0.994 0.994 2.4
0.98077 0.98077 2.45469
0.982824 0.982824 2.4875
0.996219 0.996219 2.49844
1.01701 1.01701 2.4875
1.04125 1.04125 2.45469
1.065 1.065 2.4
1.21126 0.711407 2.4
1.19514 0.701938 2.45469
1.19764 0.703409 2.4875
1.21396 0.712995 2.49844
1.2393 0.727875 2.4875
1.26884 0.745225 2.45469
1.29778 0.762222 2.4
1.35074 0.375926 2.4
1.33276 0.370922 2.45469
1.33555 0.371699 2.4875
1.35376 0.376765 2.49844
1.38201 0.384628 2.4875
1.41495 0.393796 2.45469
1.44722 0.402778 2.4
1.62384 0 2.13785
1.56671 -0.436032 2.13785
1.74074 0 1.87778
1.67949 -0.467421 1.87778
1.84375 0 1.62187
1.77888 -0.495081 1.62188
1.92593 0 1.37222
1.85816 -0.517147 1.37222
1.98032 0 1.1309
1.91065 -0.531754 1.1309
2 0 0.9
1.92963 -0.537037 0.9
1.40492 -0.825153 2.13785
1.50606 -0.884554 1.87778
1.59519 -0.936898 1.62188
1.66628 -0.978656 1.37222
1.71335 -1.0063 1.1309
1.73037 -1.0163 0.9
1.15293 -1.15293 2.13785
1.23593 -1.23593 1.87778
1.30906 -1.30906 1.62187
1.36741 -1.36741 1.37222
1.40603 -1.40603 1.1309
1.42 -1.42 0.9
0.825153 -1.40492 2.13785
0.884554 -1.50606 1.87778
0.936898 -1.59519 1.62188
0.978656 -1.66628 1.37222
1.0063 -1.71335 1.1309
1.0163 -1.73037 0.9
0.436032 -1.56671 2.13785
0.467421 -1.67949 1.87778
0.495081 -1.77888 1.62187
0.517147 -1.85816 1.37222
0.531754 -1.91065 1.1309
0.537037 -1.92963 0.9
0 -1.62384 2.13785
0 -1.74074 1.87778
0 -1.84375 1.62187
0 -1.92593 1.37222
0 -1.98032 1.1309
0 -2 0.9
-0.436032 -1.56671 2.13785
-0.467421 -1.67949 1.87778
-0.495081 -1.77888 1.62188
-0.517147 -1.85816 1.37222
-0.531754 -1.91065 1.1309
-0.537037 -1.92963 0.9
-0.825153 -1.40492 2.13785
-0.884554 -1.50606 1.87778
-0.936898 -1.59519 1.62188
-0.978656 -1.66628 1.37222
-1.0063 -1.71335 1.1309
-1.0163 -1.73037 0.9
-1.15293 -1.15293 2.13785
-1.23593 -1.23593 1.87778
-1.30906 -1.30906 1.62187
-1.36741 -1.36741 1.37222
-1.40603 -1.40603 1.1309
-1.42 -1.42 0.9
-1.40492 -0.825153 2.13785
-1.50606 -0.884554 1.87778
-1.59519 -0.936898 1.62188
-1.66628 -0.978656 1.37222
-1.71335 -1.0063 1.1309
-1.73037 -1.0163 0.9
-1.56671 -0.436032 2.13785
-1.67949 -0.467421 1.87778
-1.77888 -0.495081 1.62187
-1.85816 -0.517147 1.37222
-1.91065 -0.531754 1.1309
-1.92963 -0.537037 0.9
-1.62384 0 2.13785
-1.74074 0 1.87778
-1.84375 0 1.62187
-1.92593 0 1.37222
-1.98032 0 1.1309
-2 0 0.9
-1.56671 0.436032 2.13785
-1.67949 0.467421 1.87778
-1.77888 0.495081 1.62188
-1.85816 0.517147 1.37222
-1.91065 0.531754 1.1309
-1.92963 0.537037 0.9
-1.40492 0.825153 2.13785
-1.50606 0.884554 1.87778
-1.59519 0.936898 1.62188
-1.66628 0.978656 1.37222
-1.71335 1.0063 1.1309
-1.73037 1.0163 0.9
-1.15293 1.15293 2.13785
-1.23593 1.23593 1.87778
-1.30906 1.30906 1.62187
-1.36741 1.36741 1.37222
-1.40603 1.40603 1.1309
-1.42 1.42 0.9
-0.825153 1.40492 2.13785
-0.884554 1.50606 1.87778
-0.936898 1.59519 1.62188
-0.978656 1.66628 1.37222
-1.0063 1.71335 1.1309
-1.0163 1.73037 0.9
-0.436032 1.56671 2.13785
-0.467421 1.67949 1.87778
-0.495081 1.77888 1.62187
-0.517147 1.85816 1.37222
-0.531754 1.91065 1.1309
-0.537037 1.92963 0.9
0 1.62384 2.13785
0 1.74074 1.87778
0 1.84375 1.62187
0 1.92593 1.37222
0 1.98032 1.1309
0 2 0.9
0.436032 1.56671 2.13785
0.467421 1.67949 1.87778
0.495081 1.77888 1.62188
0.517147 1.85816 1.37222
0.531754 1.91065 1.1309
0.537037 1.92963 0.9
0.825153 1.40492 2.13785
0.884554 1.50606 1.87778
0.936898 1.59519 1.62188
0.978656 1.66628 1.37222
1.0063 1.71335 1.1309
1.0163 1.73037 0.9
1.15293 1.15293 2.13785
1.23593 1.23593 1.87778
1.30906 1.30906 1.62187
1.36741 1.36741 1.37222
1.40603 1.40603 1.1309
1.42 1.42 0.9
1.40492 0.825153 2.13785
1.50606 0.884554 1.87778
1.59519 0.936898 1.62188
1.66628 0.978656 1.37222
1.71335 1.0063 1.1309
1.73037 1.0163 0.9
1.56671 0.436032 2.13785
1.67949 0.467421 1.87778
1.77888 0.495081 1.62187
1.85816 0.517147 1.37222
1.91065 0.531754 1.1309
1.92963 0.537037 0.9
1.96296 0 0.693403
1.8939 -0.527092 0.693403
1.87037 0 0.522222
1.80456 -0.502229 0.522222
1.75 0 0.384375
1.68843 -0.469907 0.384375
1.62963 0 0.277778
1.57229 -0.437586 0.277778
1.53704 0 0.200347
1.48296 -0.412723 0.200347
1.5 0 0.15
1.44722 -0.402778 0.15
1.69833 -0.997476 0.693403
1.61822 -0.950425 0.522222
1.51407 -0.889259 0.384375
1.40993 -0.828093 0.277778
1.32982 -0.781043 0.200347
1.29778 -0.762222 0.15
1.3937 -1.3937 0.693403
1.32796 -1.32796 0.522222
1.2425 -1.2425 0.384375
1.15704 -1.15704 0.277778
1.0913 -1.0913 0.200347
1.065 -1.065 0.15
0.997476 -1.69833 0.693403
0.950425 -1.61822 0.522222
0.889259 -1.51407 0.384375
0.828093 -1.40993 0.277778
0.781043 -1.32982 0.200347
0.762222 -1.29778 0.15
0.527092 -1.8939 0.693403
0.502229 -1.80456 0.522222
0.469907 -1.68843 0.384375
0.437586 -1.57229 0.277778
0.412723 -1.48296 0.200347
0.402778 -1.44722 0.15
0 -1.96296 0.693403
0 -1.87037 0.522222
0 -1.75 0.384375
0 -1.62963 0.277778
0 -1.53704 0.200347
0 -1.5 0.15
-0.527092 -1.8939 0.693403
-0.502229 -1.80456 0.522222
-0.469907 -1.68843 0.384375
-0.437586 -1.57229 0.277778
-0.412723 -1.48296 0.200347
-0.402778 -1.44722 0.15
-0.997476 -1.69833 0.693403
-0.950425 -1.61822 0.522222
-0.889259 -1.51407 0.384375
-0.828093 -1.40993 0.277778
-0.781043 -1.32982 0.200347
-0.762222 -1.29778 0.15
-1.3937 -1.3937 0.693403
-1.32796 -1.32796 0.522222
-1.2425 -1.2425 0.384375
-1.15704 -1.15704 0.277778
-1.0913 -1.0913 0.200347
-1.065 -1.065 0.15
-1.69833 -0.997476 0.693403
-1.61822 -0.950425 0.522222
-1.51407 -0.889259 0.384375
-1.40993 -0.828093 0.277778
-1.32982 -0.781043 0.200347
-1.29778 -0.762222 0.15
-1.8939 -0.527092 0.693403
-1.80456 -0.502229 0.522222
-1.68843 -0.469907 0.384375
-1.57229 -0.437586 0.277778
-1.48296 -0.412723 0.200347
-1.44722 -0.402778 0.15
-1.96296 0 0.693403
-1.87037 0 0.522222
-1.75 0 0.384375
-1.62963 0 0.277778
-1.53704 0 0.200347
-1.5 0 0.15
-1.8939 0.527092 0.693403
-1.80456 0.502229 0.522222
-1.68843 0.469907 0.384375
-1.57229 0.437586 0.277778
-1.48296 0.412723 0.200347
-1.44722 0.402778 0.15
-1.69833 0.997476 0.693403
-1.61822 0.950425 0.522222
-1.51407 0.889259 0.384375
-1.40993 0.828093 0.277778
-1.32982 0.781043 0.200347
-1.29778 0.762222 0.15
-1.3937 1.3937 0.693403
-1.32796 1.32796 0.522222
-1.2425 1.2425 0.384375
-1.15704 1.15704 0.277778
-1.0913 1.0913 0.200347
-1.065 1.065 0.15
-0.997476 1.69833 0.693403
-0.950425 1.61822 0.522222
-0.889259 1.51407 0.384375
-0.828093 1.40993 0.277778
-0.781043 1.32982 0.200347
-0.762222 1.29778 0.15
-0.527092 1.8939 0.693403
-0.502229 1.80456 0.522222
-0.469907 1.68843 0.384375
-0.437586 1.57229 0.277778
-0.412723 1.48296 0.200347
-0.402778 1.44722 0.15
0 1.96296 0.693403
0 1.87037 0.522222
0 1.75 0.384375
0 1.62963 0.277778
0 1.53704 0.200347
0 1.5 0.15
0.527092 1.8939 0.693403
0.502229 1.80456 0.522222
0.469907 1.68843 0.384375
0.437586 1.57229 0.277778
0.412723 1.48296 0.200347
0.402778 1.44722 0.15
0.997476 1.69833 0.693403
0.950425 1.61822 0.522222
0.889259 1.51407 0.384375
0.828093 1.40993 0.277778
0.781043 1.32982 0.200347
0.762222 1.29778 0.15
1.3937 1.3937 0.693403
1.32796 1.32796 0.522222
1.2425 1.2425 0.384375
1.15704 1.15704 0.277778
1.0913 1.0913 0.200347
1.065 1.065 0.15
1.69833 0.997476 0.693403
1.61822 0.950425 0.522222
1.51407 0.889259 0.384375
1.40993 0.828093 0.277778
1.32982 0.781043 0.200347
1.29778 0.762222 0.15
1.8939 0.527092 0.693403
1.80456 0.502229 0.522222
1.68843 0.469907 0.384375
1.57229 0.437586 0.277778
1.48296 0.412723 0.200347
1.44722 0.402778 0.15
0.605903 0 0.005903
0 0 0
0.584584 0.162696 0.005903
1.02222 0 0.022222
0.986255 0.274486 0.022222
1.28437 0 0.046875
1.23918 0.344878 0.046875
1.42778 0 0.077778
1.37754 0.383385 0.077778
1.48785 0 0.112847
1.4355 0.399515 0.112847
0.524218 0.307888 0.005903
0.884412 0.51944 0.022222
1.11122 0.652653 0.046875
1.23529 0.725523 0.077778
1.28726 0.756047 0.112847
0.430191 0.430191 0.005903
0.725778 0.725778 0.022222
0.911906 0.911906 0.046875
1.01372 1.01372 0.077778
1.05637 1.05637 0.112847
0.307888 0.524218 0.005903
0.51944 0.884412 0.022222
0.652653 1.11122 0.046875
0.725523 1.23529 0.077778
0.756047 1.28726 0.112847
0.162696 0.584584 0.005903
0.274486 0.986255 0.022222
0.344878 1.23918 0.046875
0.383385 1.37754 0.077778
0.399515 1.4355 0.112847
0 0.605903 0.005903
0 1.02222 0.022222
0 1.28437 0.046875
0 1.42778 0.077778
0 1.48785 0.112847
-0.162696 0.584584 0.005903
-0.274486 0.986255 0.022222
-0.344878 1.23918 0.046875
-0.383385 1.37754 0.077778
-0.399515 1.4355 0.112847
-0.307888 0.524218 0.005903
-0.51944 0.884412 0.022222
-0.652653 1.11122 0.046875
-0.725523 1.23529 0.077778
-0.756047 1.28726 0.112847
-0.430191 0.430191 0.005903
-0.725778 0.725778 0.022222
-0.911906 0.911906 0.046875
-1.01372 1.01372 0.077778
-1.05637 1.05637 0.112847
-0.524218 0.307888 0.005903
-0.884412 0.51944 0.022222
-1.11122 0.652653 0.046875
-1.23529 0.725523 0.077778
-1.28726 0.756047 0.112847
-0.584584 0.162696 0.005903
-0.986255 0.274486 0.022222
-1.23918 0.344878 0.046875
-1.37754 0.383385 0.077778
-1.4355 0.399515 0.112847
-0.605903 0 0.005903
-1.02222 0 0.022222
-1.28437 0 0.046875
-1.42778 0 0.077778
-1.48785 0 0.112847
-0.584584 -0.162696 0.005903
-0.986255 -0.274486 0.022222
-1.23918 -0.344878 0.046875
-1.37754 -0.383385 0.077778
-1.4355 -0.399515 0.112847
-0.524218 -0.307888 0.005903
-0.884412 -0.51944 0.022222
-1.11122 -0.652653 0.046875
-1.23529 -0.725523 0.077778
-1.28726 -0.756047 0.112847
-0.430191 -0.430191 0.005903
-0.725778 -0.725778 0.022222
-0.911906 -0.911906 0.046875
-1.01372 -1.01372 0.077778
-1.05637 -1.05637 0.112847
-0.307888 -0.524218 0.005903
-0.51944 -0.884412 0.022222
-0.652653 -1.11122 0.046875
-0.725523 -1.23529 0.077778
-0.756047 -1.28726 0.112847
-0.162696 -0.584584 0.005903
-0.274486 -0.986255 0.022222
-0.344878 -1.23918 0.046875
-0.383385 -1.37754 0.077778
-0.399515 -1.4355 0.112847
0 -0.605903 0.005903
0 -1.02222 0.022222
0 -1.28437 0.046875
0 -1.42778 0.077778
0 -1.48785 0.112847
0.162696 -0.584584 0.005903
0.274486 -0.986255 0.022222
0.344878 -1.23918 0.046875
0.383385 -1.37754 0.077778
0.399515 -1.4355 0.112847
0.307888 -0.524218 0.005903
0.51944 -0.884412 0.022222
0.652653 -1.11122 0.046875
0.725523 -1.23529 0.077778
0.756047 -1.28726 0.112847
0.430191 -0.430191 0.005903
0.725778 -0.725778 0.022222
0.911906 -0.911906 0.046875
1.01372 -1.01372 0.077778
1.05637 -1.05637 0.112847
0.524218 -0.307888 0.005903
0.884412 -0.51944 0.022222
1.11122 -0.652653 0.046875
1.23529 -0.725523 0.077778
1.28726 -0.756047 0.112847
0.584584 -0.162696 0.005903
0.986255 -0.274486 0.022222
1.23918 -0.344878 0.046875
1.37754 -0.383385 0.077778
1.4355 -0.399515 0.112847
0.2 0 2.7
0.171296 0 2.78542
0.165279 -0.046045 2.78542
0.192963 -0.053704 2.7
0.148234 -0.087106 2.78542
0.173037 -0.10163 2.7
0.121672 -0.121672 2.78542
0.142 -0.142 2.7
0.087106 -0.148234 2.78542
0.10163 -0.173037 2.7
0.046045 -0.165279 2.78542
0.053704 -0.192963 2.7
0 -0.171296 2.78542
0 -0.2 2.7
-0.046045 -0.165279 2.78542
-0.053704 -0.192963 2.7
-0.087106 -0.148234 2.78542
-0.10163 -0.173037 2.7
-0.121672 -0.121672 2.78542
-0.142 -0.142 2.7
-0.148234 -0.087106 2.78542
-0.173037 -0.10163 2.7
-0.165279 -0.046045 2.78542
-0.192963 -0.053704 2.7
-0.171296 0 2.78542
-0.2 0 2.7
-0.165279 0.046045 2.78542
-0.192963 0.053704 2.7
-0.148234 0.087106 2.78542
-0.173037 0.10163 2.7
-0.121672 0.121672 2.78542
-0.142 0.142 2.7
-0.087106 0.148234 2.78542
-0.10163 0.173037 2.7
-0.046045 0.165279 2.78542
-0.053704 0.192963 2.7
0 0.171296 2.78542
0 0.2 2.7
0.046045 0.165279 2.78542
0.053704 0.192963 2.7
0.087106 0.148234 2.78542
0.10163 0.173037 2.7
0.121672 0.121672 2.78542
0.142 0.142 2.7
0.148234 0.087106 2.78542
0.173037 0.10163 2.7
0.165279 0.046045 2.78542
0.192963 0.053704 2.7
0.350926 0 2.63611
0.338579 -0.09423 2.63611
0.574074 0 2.58889
0.553875 -0.15415 2.58889
0.825 0 2.55
0.795972 -0.221528 2.55
1.05926 0 2.51111
1.02199 -0.284431 2.51111
1.23241 0 2.46389
1.18904 -0.330924 2.46389
1.3 0 2.4
1.25426 -0.349074 2.4
0.303616 -0.178322 2.63611
0.49668 -0.291715 2.58889
0.713778 -0.419222 2.55
0.916455 -0.538261 2.51111
1.06626 -0.626246 2.46389
1.12474 -0.660593 2.4
0.249157 -0.249157 2.63611
0.407593 -0.407593 2.58889
0.58575 -0.58575 2.55
0.752074 -0.752074 2.51111
0.875009 -0.875009 2.46389
0.923 -0.923 2.4
0.178322 -0.303616 2.63611
0.291715 -0.49668 2.58889
0.419222 -0.713778 2.55
0.538261 -0.916455 2.51111
0.626246 -1.06626 2.46389
0.660593 -1.12474 2.4
0.09423 -0.338579 2.63611
0.15415 -0.553875 2.58889
0.221528 -0.795972 2.55
0.284431 -1.02199 2.51111
0.330924 -1.18904 2.46389
0.349074 -1.25426 2.4
0 -0.350926 2.63611
0 -0.574074 2.58889
0 -0.825 2.55
0 -1.05926 2.51111
0 -1.23241 2.46389
0 -1.3 2.4
-0.09423 -0.338579 2.63611
-0.15415 -0.553875 2.58889
-0.221528 -0.795972 2.55
-0.284431 -1.02199 2.51111
-0.330924 -1.18904 2.46389
-0.349074 -1.25426 2.4
-0.178322 -0.303616 2.63611
-0.291715 -0.49668 2.58889
-0.419222 -0.713778 2.55
-0.538261 -0.916455 2.51111
-0.626246 -1.06626 2.46389
-0.660593 -1.12474 2.4
-0.249157 -0.249157 2.63611
-0.407593 -0.407593 2.58889
-0.58575 -0.58575 2.55
-0.752074 -0.752074 2.51111
-0.875009 -0.875009 2.46389
-0.923 -0.923 2.4
-0.303616 -0.178322 2.63611
-0.49668 -0.291715 2.58889
-0.713778 -0.419222 2.55
-0.916455 -0.538261 2.51111
-1.06626 -0.626246 2.46389
-1.12474 -0.660593 2.4
-0.338579 -0.09423 2.63611
-0.553875 -0.15415 2.58889
-0.795972 -0.221528 2.55
-1.02199 -0.284431 2.51111
-1.18904 -0.330924 2.46389
-1.25426 -0.349074 2.4
-0.350926 0 2.63611
-0.574074 0 2.58889
-0.825 0 2.55
-1.05926 0 2.51111
-1.23241 0 2.46389
-1.3 0 2.4
-0.338579 0.09423 2.63611
-0.553875 0.15415 2.58889
-0.795972 0.221528 2.55
-1.02199 0.284431 2.51111
-1.18904 0.330924 2.46389
-1.25426 0.349074 2.4
-0.303616 0.178322 2.63611
-0.49668 0.291715 2.58889
-0.713778 0.419222 2.55
-0.916455 0.538261 2.51111
-1.06626 0.626246 2.46389
-1.12474 0.660593 2.4
-0.249157 0.249157 2.63611
-0.407593 0.407593 2.58889
-0.58575 0.58575 2.55
-0.752074 0.752074 2.51111
-0.875009 0.875009 2.46389
-0.923 0.923 2.4
-0.178322 0.303616 2.63611
-0.291715 0.49668 2.58889
-0.419222 0.713778 2.55
-0.538261 0.916455 2.51111
-0.626246 1.06626 2.46389
-0.660593 1.12474 2.4
-0.09423 0.338579 2.63611
-0.15415 0.553875 2.58889
-0.221528 0.795972 2.55
-0.284431 1.02199 2.51111
-0.330924 1.18904 2.46389
-0.349074 1.25426 2.4
0 0.350926 2.63611
0 0.574074 2.58889
0 0.825 2.55
0 1.05926 2.51111
0 1.23241 2.46389
0 1.3 2.4
0.09423 0.338579 2.63611
0.15415 0.553875 2.58889
0.221528 0.795972 2.55
0.284431 1.02199 2.51111
0.330924 1.18904 2.46389
0.349074 1.25426 2.4
0.178322 0.303616 2.63611
0.291715 0.49668 2.58889
0.419222 0.713778 2.55
0.538261 0.916455 2.51111
0.626246 1.06626 2.46389
0.660593 1.12474 2.4
0.249157 0.249157 2.63611
0.407593 0.407593 2.58889
0.58575 0.58575 2.55
0.752074 0.752074 2.51111
0.875009 0.875009 2.46389
0.923 0.923 2.4
0.303616 0.178322 2.63611
0.49668 0.291715 2.58889
0.713778 0.419222 2.55
0.916455 0.538261 2.51111
1.06626 0.626246 2.46389
1.12474 0.660593 2.4
0.338579 0.09423 2.63611
0.553875 0.15415 2.58889
0.795972 0.221528 2.55
1.02199 0.284431 2.51111
1.18904 0.330924 2.46389
1.25426 0.349074 2.4
-1.92454 0 2.02396
-1.6 0 2.025
-1.59259 -0.125 2.04167
-1.92704 -0.125 2.04055
-2.1963 0 2.01667
-2.20645 -0.125 2.03272
-2.4125 0 1.99687
-2.42824 -0.125 2.01146
-2.57037 0 1.95833
-2.58985 -0.125 1.97006
-2.66713 0 1.89479
-2.6887 -0.125 1.90181
-2.7 0 1.8
-2.72222 -0.125 1.8
-1.57407 -0.2 2.08333
-1.9333 -0.2 2.08202
-2.23182 -0.2 2.07284
-2.46759 -0.2 2.04792
-2.63855 -0.2 1.99938
-2.74263 -0.2 1.91937
-2.77778 -0.2 1.8
-1.55 -0.225 2.1375
-1.94144 -0.225 2.13594
-2.26481 -0.225 2.125
-2.51875 -0.225 2.09531
-2.70185 -0.225 2.0375
-2.81273 -0.225 1.94219
-2.85 -0.225 1.8
-1.52593 -0.2 2.19167
-1.94957 -0.2 2.18985
-2.29781 -0.2 2.17716
-2.56991 -0.2 2.14271
-2.76516 -0.2 2.07562
-2.88284 -0.2 1.96501
-2.92222 -0.2 1.8
-1.50741 -0.125 2.23333
-1.95583 -0.125 2.23133
-2.32318 -0.125 2.21728
-2.60926 -0.125 2.17917
-2.81385 -0.125 2.10494
-2.93676 -0.125 1.98256
-2.97778 -0.125 1.8
-1.5 0 2.25
-1.95833 0 2.24792
-2.33333 0 2.23333
-2.625 0 2.19375
-2.83333 0 2.11667
-2.95833 0 1.98958
-3 0 1.8
-1.50741 0.125 2.23333
-1.95583 0.125 2.23133
-2.32318 0.125 2.21728
-2.60926 0.125 2.17917
-2.81385 0.125 2.10494
-2.93676 0.125 1.98256
-2.97778 0.125 1.8
-1.52593 0.2 2.19167
-1.94957 0.2 2.18985
-2.29781 0.2 2.17716
-2.56991 0.2 2.14271
-2.76516 0.2 2.07562
-2.88284 0.2 1.96501
-2.92222 0.2 1.8
-1.55 0.225 2.1375
-1.94144 0.225 2.13594
-2.26481 0.225 2.125
-2.51875 0.225 2.09531
-2.70185 0.225 2.0375
-2.81273 0.225 1.94219
-2.85 0.225 1.8
-1.57407 0.2 2.08333
-1.9333 0.2 2.08202
-2.23182 0.2 2.07284
-2.46759 0.2 2.04792
-2.63855 0.2 1.99938
-2.74263 0.2 1.91937
-2.77778 0.2 1.8
-1.59259 0.125 2.04167
-1.92704 0.125 2.04055
-2.20645 0.125 2.03272
-2.42824 0.125 2.01146
-2.58985 0.125 1.97006
-2.6887 0.125 1.90181
-2.72222 0.125 1.8
-2.68287 0 1.67083
-2.70418 -0.125 1.66398
-2.62963 0 1.51667
-2.64829 -0.125 1.50535
-2.5375 0 1.35
-2.55185 -0.125 1.33576
-2.4037 0 1.18333
-2.41221 -0.125 1.16687
-2.22546 0 1.02917
-2.22668 -0.125 1.01033
-1.99259 -0.125 0.877778
-2.75747 -0.2 1.64684
-2.69492 -0.2 1.47706
-2.58773 -0.2 1.30017
-2.43347 -0.2 1.12572
-2.22972 -0.2 0.963227
-1.97407 -0.2 0.822222
-2.82674 -0.225 1.62457
-2.75556 -0.225 1.44028
-2.63437 -0.225 1.25391
-2.46111 -0.225 1.07222
-2.23368 -0.225 0.901997
-1.95 -0.225 0.75
-2.896 -0.2 1.60229
-2.81619 -0.2 1.4035
-2.68102 -0.2 1.20764
-2.48875 -0.2 1.01872
-2.23764 -0.2 0.840766
-1.92593 -0.2 0.677778
-2.94929 -0.125 1.58515
-2.86283 -0.125 1.37521
-2.7169 -0.125 1.17205
-2.51001 -0.125 0.977572
-2.24068 -0.125 0.793666
-1.90741 -0.125 0.622222
-2.9706 0 1.5783
-2.88148 0 1.36389
-2.73125 0 1.15781
-2.51852 0 0.961111
-2.2419 0 0.774826
-1.9 0 0.6
-2.94929 0.125 1.58515
-2.86283 0.125 1.37521
-2.7169 0.125 1.17205
-2.51001 0.125 0.977572
-2.24068 0.125 0.793666
-1.90741 0.125 0.622222
-2.896 0.2 1.60229
-2.81619 0.2 1.4035
-2.68102 0.2 1.20764
-2.48875 0.2 1.01872
-2.23764 0.2 0.840766
-1.92593 0.2 0.677778
-2.82674 0.225 1.62457
-2.75556 0.225 1.44028
-2.63437 0.225 1.25391
-2.46111 0.225 1.07222
-2.23368 0.225 0.901997
-1.95 0.225 0.75
-2.75747 0.2 1.64684
-2.69492 0.2 1.47706
-2.58773 0.2 1.30017
-2.43347 0.2 1.12572
-2.22972 0.2 0.963227
-1.97407 0.2 0.822222
-2.70418 0.125 1.66398
-2.64829 0.125 1.50535
-2.55185 0.125 1.33576
-2.41221 0.125 1.16687
-2.22668 0.125 1.01033
-1.99259 0.125 0.877778
2.0588 0 1.47639
1.7 0 1.425
1.7 -0.275 1.36389
2.07238 -0.262346 1.42521
2.27037 0 1.61111
2.29012 -0.23071 1.57202
2.3875 0 1.8
2.40972 -0.189583 1.77361
2.46296 0 2.01389
2.48765 -0.148457 1.99928
2.54954 0 2.22361
2.5804 -0.116821 2.21831
2.7 0 2.4
2.74444 -0.104167 2.4
1.7 -0.44 1.21111
2.10633 -0.419753 1.29725
2.33951 -0.369136 1.47428
2.46528 -0.303333 1.70764
2.54938 -0.237531 1.96276
2.65756 -0.186914 2.20507
2.85556 -0.166667 2.4
1.7 -0.495 1.0125
2.15046 -0.472222 1.1309
2.4037 -0.415278 1.34722
2.5375 -0.34125 1.62187
2.62963 -0.267222 1.91528
2.75787 -0.210278 2.18785
3 -0.1875 2.4
1.7 -0.44 0.813889
2.1946 -0.419753 0.964558
2.4679 -0.369136 1.22016
2.60972 -0.303333 1.53611
2.70988 -0.237531 1.8678
2.85818 -0.186914 2.17063
3.14444 -0.166667 2.4
1.7 -0.275 0.661111
2.22855 -0.262346 0.8366
2.51728 -0.23071 1.12243
2.66528 -0.189583 1.47014
2.7716 -0.148457 1.83128
2.93534 -0.116821 2.15738
3.25556 -0.104167 2.4
1.7 0 0.6
2.24213 0 0.785417
2.53704 0 1.08333
2.6875 0 1.44375
2.7963 0 1.81667
2.9662 0 2.15208
3.3 0 2.4
1.7 0.275 0.661111
2.22855 0.262346 0.8366
2.51728 0.23071 1.12243
2.66528 0.189583 1.47014
2.7716 0.148457 1.83128
2.93534 0.116821 2.15738
3.25556 0.104167 2.4
1.7 0.44 0.813889
2.1946 0.419753 0.964558
2.4679 0.369136 1.22016
2.60972 0.303333 1.53611
2.70988 0.237531 1.8678
2.85818 0.186914 2.17063
3.14444 0.166667 2.4
1.7 0.495 1.0125
2.15046 0.472222 1.1309
2.4037 0.415278 1.34722
2.5375 0.34125 1.62187
2.62963 0.267222 1.91528
2.75787 0.210278 2.18785
3 0.1875 2.4
1.7 0.44 1.21111
2.10633 0.419753 1.29725
2.33951 0.369136 1.47428
2.46528 0.303333 1.70764
2.54938 0.237531 1.96276
2.65756 0.186914 2.20507
2.85556 0.166667 2.4
1.7 0.275 1.36389
2.07238 0.262346 1.42521
2.29012 0.23071 1.57202
2.40972 0.189583 1.77361
2.48765 0.148457 1.99928
2.5804 0.116821 2.21831
2.74444 0.104167 2.4
2.74907 0 2.43125
2.79641 -0.101032 2.43193
2.79259 0 2.45
2.83978 -0.092978 2.45123
2.825 0 2.45625
2.86968 -0.082031 2.45781
2.84074 0 2.45
2.88121 -0.070216 2.45154
2.83426 0 2.43125
2.86949 -0.059558 2.43231
2.8 0 2.4
2.82963 -0.052083 2.4
2.91474 -0.161574 2.43361
2.95775 -0.148148 2.45432
2.98137 -0.129167 2.46172
2.98237 -0.107407 2.4554
2.95756 -0.085648 2.43496
2.9037 -0.066667 2.4
3.06858 -0.181684 2.43581
3.11111 -0.165972 2.45833
3.12656 -0.142969 2.4668
3.11389 -0.115278 2.46042
3.07205 -0.085504 2.43841
3 -0.05625 2.4
3.22241 -0.16142 2.438
3.26447 -0.146914 2.46235
3.27176 -0.125 2.47187
3.2454 -0.097531 2.46543
3.18654 -0.066358 2.44186
3.0963 -0.033333 2.4
3.34075 -0.100839 2.43969
3.38244 -0.091435 2.46543
3.38345 -0.076823 2.47578
3.34657 -0.05787 2.46929
3.27461 -0.035446 2.44451
3.17037 -0.010417 2.4
3.38808 0 2.44036
3.42963 0 2.46667
3.42813 0 2.47734
3.38704 0 2.47083
3.30984 0 2.44557
3.2 0 2.4
3.34075 0.10108 2.43969
3.38244 0.093364 2.46543
3.38345 0.083333 2.47578
3.34657 0.073303 2.46929
3.27461 0.065586 2.44451
3.17037 0.0625 2.4
3.22241 0.161728 2.438
3.26447 0.149383 2.46235
3.27176 0.133333 2.47187
3.2454 0.117284 2.46543
3.18654 0.104938 2.44186
3.0963 0.1 2.4
3.06858 0.181944 2.43581
3.11111 0.168056 2.45833
3.12656 0.15 2.4668
3.11389 0.131944 2.46042
3.07205 0.118056 2.43841
3 0.1125 2.4
2.91474 0.161728 2.43361
2.95775 0.149383 2.45432
2.98137 0.133333 2.46172
2.98237 0.117284 2.4554
2.95756 0.104938 2.43496
2.9037 0.1 2.4
2.79641 0.10108 2.43193
2.83978 0.093364 2.45123
2.86968 0.083333 2.45781
2.88121 0.073303 2.45154
2.86949 0.065586 2.43231
2.82963 0.0625 2.4
0.278704 0 3.12708
0 0 3.15
0.268946 -0.075078 3.12708
0.362963 0 3.06667
0.350254 -0.097771 3.06667
0.325 0 2.98125
0.313617 -0.087529 2.98125
0.237037 0 2.88333
0.228728 -0.063803 2.88333
0.241285 -0.141931 3.12708
0.314228 -0.184834 3.06667
0.281352 -0.165481 2.98125
0.20518 -0.120647 2.88333
0.19814 -0.19814 3.12708
0.258037 -0.258037 3.06667
0.231031 -0.231031 2.98125
0.168463 -0.168463 2.88333
0.141931 -0.241285 3.12708
0.184834 -0.314228 3.06667
0.165481 -0.281352 2.98125
0.120647 -0.20518 2.88333
0.075078 -0.268946 3.12708
0.097771 -0.350254 3.06667
0.087529 -0.313617 2.98125
0.063803 -0.228728 2.88333
0 -0.278704 3.12708
0 -0.362963 3.06667
0 -0.325 2.98125
0 -0.237037 2.88333
-0.075078 -0.268946 3.12708
-0.097771 -0.350254 3.06667
-0.087529 -0.313617 2.98125
-0.063803 -0.228728 2.88333
-0.141931 -0.241285 3.12708
-0.184834 -0.314228 3.06667
-0.165481 -0.281352 2.98125
-0.120647 -0.20518 2.88333
-0.19814 -0.19814 3.12708
-0.258037 -0.258037 3.06667
-0.231031 -0.231031 2.98125
-0.168463 -0.168463 2.88333
-0.241285 -0.141931 3.12708
-0.314228 -0.184834 3.06667
-0.281352 -0.165481 2.98125
-0.20518 -0.120647 2.88333
-0.268946 -0.075078 3.12708
-0.350254 -0.097771 3.06667
-0.313617 -0.087529 2.98125
-0.228728 -0.063803 2.88333
-0.278704 0 3.12708
-0.362963 0 3.06667
-0.325 0 2.98125
-0.237037 0 2.88333
-0.268946 0.075078 3.12708
-0.350254 0.097771 3.06667
-0.313617 0.087529 2.98125
-0.228728 0.063803 2.88333
-0.241285 0.141931 3.12708
-0.314228 0.184834 3.06667
-0.281352 0.165481 2.98125
-0.20518 0.120647 2.88333
-0.19814 0.19814 3.12708
-0.258037 0.258037 3.06667
-0.231031 0.231031 2.98125
-0.168463 0.168463 2.88333
-0.141931 0.241285 3.12708
-0.184834 0.314228 3.06667
-0.165481 0.281352 2.98125
-0.120647 0.20518 2.88333
-0.075078 0.268946 3.12708
-0.097771 0.350254 3.06667
-0.087529 0.313617 2.98125
-0.063803 0.228728 2.88333
0 0.278704 3.12708
0 0.362963 3.06667
0 0.325 2.98125
0 0.237037 2.88333
0.075078 0.268946 3.12708
0.097771 0.350254 3.06667
0.087529 0.313617 2.98125
0.063803 0.228728 2.88333
0.141931 0.241285 3.12708
0.184834 0.314228 3.06667
0.165481 0.281352 2.98125
0.120647 0.20518 2.88333
0.19814 0.19814 3.12708
0.258037 0.258037 3.06667
0.231031 0.231031 2.98125
0.168463 0.168463 2.88333
0.241285 0.141931 3.12708
0.314228 0.184834 3.06667
0.281352 0.165481 2.98125
0.20518 0.120647 2.88333
0.268946 0.075078 3.12708
0.350254 0.097771 3.06667
0.313617 0.087529 2.98125
0.228728 0.063803 2.88333
3 0 1 2
3 0 2 3
3 4 0 3
3 4 3 5
3 6 4 5
3 6 5 7
3 8 6 7
3 8 7 9
3 10 8 9
3 10 9 11
3 12 10 11
3 12 11 13
3 3 2 14
3 3 14 15
3 5 3 15
3 5 15 16
3 7 5 16
3 7 16 17
3 9 7 17
3 9 17 18
3 11 9 18
3 11 18 19
3 13 11 19
3 13 19 20
3 15 14 21
3 15 21 22
3 16 15 22
3 16 22 23
3 17 16 23
3 17 23 24
3 18 17 24
3 18 24 25
3 19 18 25
3 19 25 26
3 20 19 26
3 20 26 27
3 22 21 28
3 22 28 29
3 23 22 29
3 23 29 30
3 24 23 30
3 24 30 31
3 25 24 31
3 25 31 32
3 26 25 32
3 26 32 33
3 27 26 33
3 27 33 34
3 29 28 35
3 29 35 36
3 30 29 36
3 30 36 37
3 31 30 37
3 31 37 38
3 32 31 38
3 32 38 39
3 33 32 39
3 33 39 40
3 34 33 40
3 34 40 41
3 36 35 42
3 36 42 43
3 37 36 43
3 37 43 44
3 38 37 44
3 38 44 45
3 39 38 45
3 39 45 46
3 40 39 46
3 40 46 47
3 41 40 47
3 41 47 48
3 43 42 49
3 43 49 50
3 44 43 50
3 44 50 51
3 45 44 51
3 45 51 52
3 46 45 52
3 46 52 53
3 47 46 53
3 47 53 54
3 48 47 54
3 48 54 55
3 50 49 56
3 50 56 57
3 51 50 57
3 51 57 58
3 52 51 58
3 52 58 59
3 53 52 59
3 53 59 60
3 54 53 60
3 54 60 61
3 55 54 61
3 55 61 62
3 57 56 63
3 57 63 64
3 58 57 64
3 58 64 65
3 59 58 65
3 59 65 66
3 60 59 66
3 60 66 67
3 61 60 67
3 61 67 68
3 62 61 68
3 62 68 69
3 64 63 70
3 64 70 71
3 65 64 71
3 65 71 72
3 66 65 72
3 66 72 73
3 67 66 73
3 67 73 74
3 68 67 74
3 68 74 75
3 69 68 75
3 69 75 76
3 71 70 77
3 71 77 78
3 72 71 78
3 72 78 79
3 73 72 79
3 73 79 80
3 74 73 80
3 74 80 81
3 75 74 81
3 75 81 82
3 76 75 82
3 76 82 83
3 78 77 84
3 78 84 85
3 79 78 85
3 79 85 86
3 80 79 86
3 80 86 87
3 81 80 87
3 81 87 88
3 82 81 88
3 82 88 89
3 83 82 89
3 83 89 90
3 85 84 91
3 85 91 92
3 86 85 92
3 86 92 93
3 87 86 93
3 87 93 94
3 88 87 94
3 88 94 95
3 89 88 95
3 89 95 96
3 90 89 96
3 90 96 97
3 92 91 98
3 92 98 99
3 93 92 99
3 93 99 100
3 94 93 100
3 94 100 101
3 95 94 101
3 95 101 102
3 96 95 102
3 96 102 103
3 97 96 103
3 97 103 104
3 99 98 105
3 99 105 106
3 100 99 106
3 100 106 107
3 101 100 107
3 101 107 108
3 102 101 108
3 102 108 109
3 103 102 109
3 103 109 110
3 104 103 110
3 104 110 111
3 106 105 112
3 106 112 113
3 107 106 113
3 107 113 114
3 108 107 114
3 108 114 115
3 109 108 115
3 109 115 116
3 110 109 116
3 110 116 117
3 111 110 117
3 111 117 118
3 113 112 119
3 113 119 120
3 114 113 120
3 114 120 121
3 115 114 121
3 115 121 122
3 116 115 122
3 116 122 123
3 117 116 123
3 117 123 124
3 118 117 124
3 118 124 125
3 120 119 126
3 120 126 127
3 121 120 127
3 121 127 128
3 122 121 128
3 122 128 129
3 123 122 129
3 123 129 130
3 124 123 130
3 124 130 131
3 125 124 131
3 125 131 132
3 127 126 133
3 127 133 134
3 128 127 134
3 128 134 135
3 129 128 135
3 129 135 136
3 130 129 136
3 130 136 137
3 131 130 137
3 131 137 138
3 132 131 138
3 132 138 139
3 134 133 140
3 134 140 141
3 135 134 141
3 135 141 142
3 136 135 142
3 136 142 143
3 137 136 143
3 137 143 144
3 138 137 144
3 138 144 145
3 139 138 145
3 139 145 146
3 141 140 147
3 141 147 148
3 142 141 148
3 142 148 149
3 143 142 149
3 143 149 150
3 144 143 150
3 144 150 151
3 145 144 151
3 145 151 152
3 146 145 152
3 146 152 153
3 148 147 154
3 148 154 155
3 149 148 155
3 149 155 156
3 150 149 156
3 150 156 157
3 151 150 157
3 151 157 158
3 152 151 158
3 152 158 159
3 153 152 159
3 153 159 160
3 155 154 161
3 155 161 162
3 156 155 162
3 156 162 163
3 157 156 163
3 157 163 164
3 158 157 164
3 158 164 165
3 159 158 165
3 159 165 166
3 160 159 166
3 160 166 167
3 162 161 1
3 162 1 0
3 163 162 0
3 163 0 4
3 164 163 4
3 164 4 6
3 165 164 6
3 165 6 8
3 166 165 8
3 166 8 10
3 167 166 10
3 167 10 12
3 168 12 13
3 168 13 169
3 170 168 169
3 170 169 171
3 172 170 171
3 172 171 173
3 174 172 173
3 174 173 175
3 176 174 175
3 176 175 177
3 178 176 177
3 178 177 179
3 169 13 20
3 169 20 180
3 171 169 180
3 171 180 181
3 173 171 181
3 173 181 182
3 175 173 182
3 175 182 183
3 177 175 183
3 177 183 184
3 179 177 184
3 179 184 185
3 180 20 27
3 180 27 186
3 181 180 186
3 181 186 187
3 182 181 187
3 182 187 188
3 183 182 188
3 183 188 189
3 184 183 189
3 184 189 190
3 185 184 190
3 185 190 191
3 186 27 34
3 186 34 192
3 187 186 192
3 187 192 193
3 188 187 193
3 188 193 194
3 189 188 194
3 189 194 195
3 190 189 195
3 190 195 196
3 191 190 196
3 191 196 197
3 192 34 41
3 192 41 198
3 193 192 198
3 193 198 199
3 194 193 199
3 194 199 200
3 195 194 200
3 195 200 201
3 196 195 201
3 196 201 202
3 197 196 202
3 197 202 203
3 198 41 48
3 198 48 204
3 199 198 204
3 199 204 205
3 200 199 205
3 200 205 206
3 201 200 206
3 201 206 207
3 202 201 207
3 202 207 208
3 203 202 208
3 203 208 209
3 204 48 55
3 204 55 210
3 205 204 210
3 205 210 211
3 206 205 211
3 206 211 212
3 207 206 212
3 207 212 213
3 208 207 213
3 208 213 214
3 209 208 214
3 209 214 215
3 210 55 62
3 210 62 216
3 211 210 216
3 211 216 217
3 212 211 217
3 212 217 218
3 213 212 218
3 213 218 219
3 214 213 219
3 214 219 220
3 215 214 220
3 215 220 221
3 216 62 69
3 216 69 222
3 217 216 222
3 217 222 223
3 218 217 223
3 218 223 224
3 219 218 224
3 219 224 225
3 220 219 225
3 220 225 226
3 221 220 226
3 221 226 227
3 222 69 76
3 222 76 228
3 223 222 228
3 223 228 229
3 224 223 229
3 224 229 230
3 225 224 230
3 225 230 231
3 226 225 231
3 226 231 232
3 227 226 232
3 227 232 233
3 228 76 83
3 228 83 234
3 229 228 234
3 229 234 235
3 230 229 235
3 230 235 236
3 231 230 236
3 231 236 237
3 232 231 237
3 232 237 238
3 233 232 238
3 233 238 239
3 234 83 90
3 234 90 240
3 235 234 240
3 235 240 241
3 236 235 241
3 236 241 242
3 237 236 242
3 237 242 243
3 238 237 243
3 238 243 244
3 239 238 244
3 239 244 245
3 240 90 97
3 240 97 246
3 241 240 246
3 241 246 247
3 242 241 247
3 242 247 248
3 243 242 248
3 243 248 249
3 244 243 249
3 244 249 250
3 245 244 250
3 245 250 251
3 246 97 104
3 246 104 252
3 247 246 252
3 247 252 253
3 248 247 253
3 248 253 254
3 249 248 254
3 249 254 255
3 250 249 255
3 250 255 256
3 251 250 256
3 251 256 257
3 252 104 111
3 252 111 258
3 253 252 258
3 253 258 259
3 254 253 259
3 254 259 260
3 255 254 260
3 255 260 261
3 256 255 261
3 256 261 262
3 257 256 262
3 257 262 263
3 258 111 118
3 258 118 264
3 259 258 264
3 259 264 265
3 260 259 265
3 260 265 266
3 261 260 266
3 261 266 267
3 262 261 267
3 262 267 268
3 263 262 268
3 263 268 269
3 264 118 125
3 264 125 270
3 265 264 270
3 265 270 271
3 266 265 271
3 266 271 272
3 267 266 272
3 267 272 273
3 268 267 273
3 268 273 274
3 269 268 274
3 269 274 275
3 270 125 132
3 270 132 276
3 271 270 276
3 271 276 277
3 272 271 277
3 272 277 278
3 273 272 278
3 273 278 279
3 274 273 279
3 274 279 280
3 275 274 280
3 275 280 281
3 276 132 139
3 276 139 282
3 277 276 282
3 277 282 283
3 278 277 283
3 278 283 284
3 279 278 284
3 279 284 285
3 280 279 285
3 280 285 286
3 281 280 286
3 281 286 287
3 282 139 146
3 282 146 288
3 283 282 288
3 283 288 289
3 284 283 289
3 284 289 290
3 285 284 290
3 285 290 291
3 286 285 291
3 286 291 292
3 287 286 292
3 287 292 293
3 288 146 153
3 288 153 294
3 289 288 294
3 289 294 295
3 290 289 295
3 290 295 296
3 291 290 296
3 291 296 297
3 292 291 297
3 292 297 298
3 293 292 298
3 293 298 299
3 294 153 160
3 294 160 300
3 295 294 300
3 295 300 301
3 296 295 301
3 296 301 302
3 297 296 302
3 297 302 303
3 298 297 303
3 298 303 304
3 299 298 304
3 299 304 305
3 300 160 167
3 300 167 306
3 301 300 306
3 301 306 307
3 302 301 307
3 302 307 308
3 303 302 308
3 303 308 309
3 304 303 309
3 304 309 310
3 305 304 310
3 305 310 311
3 306 167 12
3 306 12 168
3 307 306 168
3 307 168 170
3 308 307 170
3 308 170 172
3 309 308 172
3 309 172 174
3 310 309 174
3 310 174 176
3 311 310 176
3 311 176 178
3 312 178 179
3 312 179 313
3 314 312 313
3 314 313 315
3 316 314 315
3 316 315 317
3 318 316 317
3 318 317 319
3 320 318 319
3 320 319 321
3 322 320 321
3 322 321 323
3 313 179 185
3 313 185 324
3 315 313 324
3 315 324 325
3 317 315 325
3 317 325 326
3 319 317 326
3 319 326 327
3 321 319 327
3 321 327 328
3 323 321 328
3 323 328 329
3 324 185 191
3 324 191 330
3 325 324 330
3 325 330 331
3 326 325 331
3 326 331 332
3 327 326 332
3 327 332 333
3 328 327 333
3 328 333 334
3 329 328 334
3 329 334 335
3 330 191 197
3 330 197 336
3 331 330 336
3 331 336 337
3 332 331 337
3 332 337 338
3 333 332 338
3 333 338 339
3 334 333 339
3 334 339 340
3 335 334 340
3 335 340 341
3 336 197 203
3 336 203 342
3 337 336 342
3 337 342 343
3 338 337 343
3 338 343 344
3 339 338 344
3 339 344 345
3 340 339 345
3 340 345 346
3 341 340 346
3 341 346 347
3 342 203 209
3 342 209 348
3 343 342 348
3 343 348 349
3 344 343 349
3 344 349 350
3 345 344 350
3 345 350 351
3 346 345 351
3 346 351 352
3 347 346 352
3 347 352 353
3 348 209 215
3 348 215 354
3 349 348 354
3 349 354 355
3 350 349 355
3 350 355 356
3 351 350 356
3 351 356 357
3 352 351 357
3 352 357 358
3 353 352 358
3 353 358 359
3 354 215 221
3 354 221 360
3 355 354 360
3 355 360 361
3 356 355 361
3 356 361 362
3 357 356 362
3 357 362 363
3 358 357 363
3 358 363 364
3 359 358 364
3 359 364 365
3 360 221 227
3 360 227 366
3 361 360 366
3 361 366 367
3 362 361 367
3 362 367 368
3 363 362 368
3 363 368 369
3 364 363 369
3 364 369 370
3 365 364 370
3 365 370 371
3 366 227 233
3 366 233 372
3 367 366 372
3 367 372 373
3 368 367 373
3 368 373 374
3 369 368 374
3 369 374 375
3 370 369 375
3 370 375 376
3 371 370 376
3 371 376 377
3 372 233 239
3 372 239 378
3 373 372 378
3 373 378 379
3 374 373 379
3 374 379 380
3 375 374 380
3 375 380 381
3 376 375 381
3 376 381 382
3 377 376 382
3 377 382 383
3 378 239 245
3 378 245 384
3 379 378 384
3 379 384 385
3 380 379 385
3 380 385 386
3 381 380 386
3 381 386 387
3 382 381 387
3 382 387 388
3 383 382 388
3 383 388 389
3 384 245 251
3 384 251 390
3 385 384 390
3 385 390 391
3 386 385 391
3 386 391 392
3 387 386 392
3 387 392 393
3 388 387 393
3 388 393 394
3 389 388 394
3 389 394 395
3 390 251 257
3 390 257 396
3 391 390 396
3 391 396 397
3 392 391 397
3 392 397 398
3 393 392 398
3 393 398 399
3 394 393 399
3 394 399 400
3 395 394 400
3 395 400 401
3 396 257 263
3 396 263 402
3 397 396 402
3 397 402 403
3 398 397 403
3 398 403 404
3 399 398 404
3 399 404 405
3 400 399 405
3 400 405 406
3 401 400 406
3 401 406 407
3 402 263 269
3 402 269 408
3 403 402 408
3 403 408 409
3 404 403 409
3 404 409 410
3 405 404 410
3 405 410 411
3 406 405 411
3 406 411 412
3 407 406 412
3 407 412 413
3 408 269 275
3 408 275 414
3 409 408 414
3 409 414 415
3 410 409 415
3 410 415 416
3 411 410 416
3 411 416 417
3 412 411 417
3 412 417 418
3 413 412 418
3 413 418 419
3 414 275 281
3 414 281 420
3 415 414 420
3 415 420 421
3 416 415 421
3 416 421 422
3 417 416 422
3 417 422 423
3 418 417 423
3 418 423 424
3 419 418 424
3 419 424 425
3 420 281 287
3 420 287 426
3 421 420 426
3 421 426 427
3 422 421 427
3 422 427 428
3 423 422 428
3 423 428 429
3 424 423 429
3 424 429 430
3 425 424 430
3 425 430 431
3 426 287 293
3 426 293 432
3 427 426 432
3 427 432 433
3 428 427 433
3 428 433 434
3 429 428 434
3 429 434 435
3 430 429 435
3 430 435 436
3 431 430 436
3 431 436 437
3 432 293 299
3 432 299 438
3 433 432 438
3 433 438 439
3 434 433 439
3 434 439 440
3 435 434 440
3 435 440 441
3 436 435 441
3 436 441 442
3 437 436 442
3 437 442 443
3 438 299 305
3 438 305 444
3 439 438 444
3 439 444 445
3 440 439 445
3 440 445 446
3 441 440 446
3 441 446 447
3 442 441 447
3 442 447 448
3 443 442 448
3 443 448 449
3 444 305 311
3 444 311 450
3 445 444 450
3 445 450 451
3 446 445 451
3 446 451 452
3 447 446 452
3 447 452 453
3 448 447 453
3 448 453 454
3 449 448 454
3 449 454 455
3 450 311 178
3 450 178 312
3 451 450 312
3 451 312 314
3 452 451 314
3 452 314 316
3 453 452 316
3 453 316 318
3 454 453 318
3 454 318 320
3 455 454 320
3 455 320 322
3 456 457 458
3 459 456 458
3 459 458 460
3 461 459 460
3 461 460 462
3 463 461 462
3 463 462 464
3 465 463 464
3 465 464 466
3 322 465 466
3 322 466 455
3 458 457 467
3 460 458 467
3 460 467 468
3 462 460 468
3 462 468 469
3 464 462 469
3 464 469 470
3 466 464 470
3 466 470 471
3 455 466 471
3 455 471 449
3 467 457 472
3 468 467 472
3 468 472 473
3 469 468 473
3 469 473 474
3 470 469 474
3 470 474 475
3 471 470 475
3 471 475 476
3 449 471 476
3 449 476 443
3 472 457 477
3 473 472 477
3 473 477 478
3 474 473 478
3 474 478 479
3 475 474 479
3 475 479 480
3 476 475 480
3 476 480 481
3 443 476 481
3 443 481 437
3 477 457 482
3 478 477 482
3 478 482 483
3 479 478 483
3 479 483 484
3 480 479 484
3 480 484 485
3 481 480 485
3 481 485 486
3 437 481 486
3 437 486 431
3 482 457 487
3 483 482 487
3 483 487 488
3 484 483 488
3 484 488 489
3 485 484 489
3 485 489 490
3 486 485 490
3 486 490 491
3 431 486 491
3 431 491 425
3 487 457 492
3 488 487 492
3 488 492 493
3 489 488 493
3 489 493 494
3 490 489 494
3 490 494 495
3 491 490 495
3 491 495 496
3 425 491 496
3 425 496 419
3 492 457 497
3 493 492 497
3 493 497 498
3 494 493 498
3 494 498 499
3 495 494 499
3 495 499 500
3 496 495 500
3 496 500 501
3 419 496 501
3 419 501 413
3 497 457 502
3 498 497 502
3 498 502 503
3 499 498 503
3 499 503 504
3 500 499 504
3 500 504 505
3 501 500 505
3 501 505 506
3 413 501 506
3 413 506 407
3 502 457 507
3 503 502 507
3 503 507 508
3 504 503 508
3 504 508 509
3 505 504 509
3 505 509 510
3 506 505 510
3 506 510 511
3 407 506 511
3 407 511 401
3 507 457 512
3 508 507 512
3 508 512 513
3 509 508 513
3 509 513 514
3 510 509 514
3 510 514 515
3 511 510 515
3 511 515 516
3 401 511 516
3 401 516 395
3 512 457 517
3 513 512 517
3 513 517 518
3 514 513 518
3 514 518 519
3 515 514 519
3 515 519 520
3 516 515 520
3 516 520 521
3 395 516 521
3 395 521 389
3 517 457 522
3 518 517 522
3 518 522 523
3 519 518 523
3 519 523 524
3 520 519 524
3 520 524 525
3 521 520 525
3 521 525 526
3 389 521 526
3 389 526 383
3 522 457 527
3 523 522 527
3 523 527 528
3 524 523 528
3 524 528 529
3 525 524 529
3 525 529 530
3 526 525 530
3 526 530 531
3 383 526 531
3 383 531 377
3 527 457 532
3 528 527 532
3 528 532 533
3 529 528 533
3 529 533 534
3 530 529 534
3 530 534 535
3 531 530 535
3 531 535 536
3 377 531 536
3 377 536 371
3 532 457 537
3 533 532 537
3 533 537 538
3 534 533 538
3 534 538 539
3 535 534 539
3 535 539 540
3 536 535 540
3 536 540 541
3 371 536 541
3 371 541 365
3 537 457 542
3 538 537 542
3 538 542 543
3 539 538 543
3 539 543 544
3 540 539 544
3 540 544 545
3 541 540 545
3 541 545 546
3 365 541 546
3 365 546 359
3 542 457 547
3 543 542 547
3 543 547 548
3 544 543 548
3 544 548 549
3 545 544 549
3 545 549 550
3 546 545 550
3 546 550 551
3 359 546 551
3 359 551 353
3 547 457 552
3 548 547 552
3 548 552 553
3 549 548 553
3 549 553 554
3 550 549 554
3 550 554 555
3 551 550 555
3 551 555 556
3 353 551 556
3 353 556 347
3 552 457 557
3 553 552 557
3 553 557 558
3 554 553 558
3 554 558 559
3 555 554 559
3 555 559 560
3 556 555 560
3 556 560 561
3 347 556 561
3 347 561 341
3 557 457 562
3 558 557 562
3 558 562 563
3 559 558 563
3 559 563 564
3 560 559 564
3 560 564 565
3 561 560 565
3 561 565 566
3 341 561 566
3 341 566 335
3 562 457 567
3 563 562 567
3 563 567 568
3 564 563 568
3 564 568 569
3 565 564 569
3 565 569 570
3 566 565 570
3 566 570 571
3 335 566 571
3 335 571 329
3 567 457 572
3 568 567 572
3 568 572 573
3 569 568 573
3 569 573 574
3 570 569 574
3 570 574 575
3 571 570 575
3 571 575 576
3 329 571 576
3 329 576 323
3 572 457 456
3 573 572 456
3 573 456 459
3 574 573 459
3 574 459 461
3 575 574 461
3 575 461 463
3 576 575 463
3 576 463 465
3 323 576 465
3 323 465 322
3 577 578 579
3 577 579 580
3 580 579 581
3 580 581 582
3 582 581 583
3 582 583 584
3 584 583 585
3 584 585 586
3 586 585 587
3 586 587 588
3 588 587 589
3 588 589 590
3 590 589 591
3 590 591 592
3 592 591 593
3 592 593 594
3 594 593 595
3 594 595 596
3 596 595 597
3 596 597 598
3 598 597 599
3 598 599 600
3 600 599 601
3 600 601 602
3 602 601 603
3 602 603 604
3 604 603 605
3 604 605 606
3 606 605 607
3 606 607 608
3 608 607 609
3 608 609 610
3 610 609 611
3 610 611 612
3 612 611 613
3 612 613 614
3 614 613 615
3 614 615 616
3 616 615 617
3 616 617 618
3 618 617 619
3 618 619 620
3 620 619 621
3 620 621 622
3 622 621 623
3 622 623 624
3 624 623 578
3 624 578 577
3 625 577 580
3 625 580 626
3 627 625 626
3 627 626 628
3 629 627 628
3 629 628 630
3 631 629 630
3 631 630 632
3 633 631 632
3 633 632 634
3 635 633 634
3 635 634 636
3 626 580 582
3 626 582 637
3 628 626 637
3 628 637 638
3 630 628 638
3 630 638 639
3 632 630 639
3 632 639 640
3 634 632 640
3 634 640 641
3 636 634 641
3 636 641 642
3 637 582 584
3 637 584 643
3 638 637 643
3 638 643 644
3 639 638 644
3 639 644 645
3 640 639 645
3 640 645 646
3 641 640 646
3 641 646 647
3 642 641 647
3 642 647 648
3 643 584 586
3 643 586 649
3 644 643 649
3 644 649 650
3 645 644 650
3 645 650 651
3 646 645 651
3 646 651 652
3 647 646 652
3 647 652 653
3 648 647 653
3 648 653 654
3 649 586 588
3 649 588 655
3 650 649 655
3 650 655 656
3 651 650 656
3 651 656 657
3 652 651 657
3 652 657 658
3 653 652 658
3 653 658 659
3 654 653 659
3 654 659 660
3 655 588 590
3 655 590 661
3 656 655 661
3 656 661 662
3 657 656 662
3 657 662 663
3 658 657 663
3 658 663 664
3 659 658 664
3 659 664 665
3 660 659 665
3 660 665 666
3 661 590 592
3 661 592 667
3 662 661 667
3 662 667 668
3 663 662 668
3 663 668 669
3 664 663 669
3 664 669 670
3 665 664 670
3 665 670 671
3 666 665 671
3 666 671 672
3 667 592 594
3 667 594 673
3 668 667 673
3 668 673 674
3 669 668 674
3 669 674 675
3 670 669 675
3 670 675 676
3 671 670 676
3 671 676 677
3 672 671 677
3 672 677 678
3 673 594 596
3 673 596 679
3 674 673 679
3 674 679 680
3 675 674 680
3 675 680 681
3 676 675 681
3 676 681 682
3 677 676 682
3 677 682 683
3 678 677 683
3 678 683 684
3 679 596 598
3 679 598 685
3 680 679 685
3 680 685 686
3 681 680 686
3 681 686 687
3 682 681 687
3 682 687 688
3 683 682 688
3 683 688 689
3 684 683 689
3 684 689 690
3 685 598 600
3 685 600 691
3 686 685 691
3 686 691 692
3 687 686 692
3 687 692 693
3 688 687 693
3 688 693 694
3 689 688 694
3 689 694 695
3 690 689 695
3 690 695 696
3 691 600 602
3 691 602 697
3 692 691 697
3 692 697 698
3 693 692 698
3 693 698 699
3 694 693 699
3 694 699 700
3 695 694 700
3 695 700 701
3 696 695 701
3 696 701 702
3 697 602 604
3 697 604 703
3 698 697 703
3 698 703 704
3 699 698 704
3 699 704 705
3 700 699 705
3 700 705 706
3 701 700 706
3 701 706 707
3 702 701 707
3 702 707 708
3 703 604 606
3 703 606 709
3 704 703 709
3 704 709 710
3 705 704 710
3 705 710 711
3 706 705 711
3 706 711 712
3 707 706 712
3 707 712 713
3 708 707 713
3 708 713 714
3 709 606 608
3 709 608 715
3 710 709 715
3 710 715 716
3 711 710 716
3 711 716 717
3 712 711 717
3 712 717 718
3 713 712 718
3 713 718 719
3 714 713 719
3 714 719 720
3 715 608 610
3 715 610 721
3 716 715 721
3 716 721 722
3 717 716 722
3 717 722 723
3 718 717 723
3 718 723 724
3 719 718 724
3 719 724 725
3 720 719 725
3 720 725 726
3 721 610 612
3 721 612 727
3 722 721 727
3 722 727 728
3 723 722 728
3 723 728 729
3 724 723 729
3 724 729 730
3 725 724 730
3 725 730 731
3 726 725 731
3 726 731 732
3 727 612 614
3 727 614 733
3 728 727 733
3 728 733 734
3 729 728 734
3 729 734 735
3 730 729 735
3 730 735 736
3 731 730 736
3 731 736 737
3 732 731 737
3 732 737 738
3 733 614 616
3 733 616 739
3 734 733 739
3 734 739 740
3 735 734 740
3 735 740 741
3 736 735 741
3 736 741 742
3 737 736 742
3 737 742 743
3 738 737 743
3 738 743 744
3 739 616 618
3 739 618 745
3 740 739 745
3 740 745 746
3 741 740 746
3 741 746 747
3 742 741 747
3 742 747 748
3 743 742 748
3 743 748 749
3 744 743 749
3 744 749 750
3 745 618 620
3 745 620 751
3 746 745 751
3 746 751 752
3 747 746 752
3 747 752 753
3 748 747 753
3 748 753 754
3 749 748 754
3 749 754 755
3 750 749 755
3 750 755 756
3 751 620 622
3 751 622 757
3 752 751 757
3 752 757 758
3 753 752 758
3 753 758 759
3 754 753 759
3 754 759 760
3 755 754 760
3 755 760 761
3 756 755 761
3 756 761 762
3 757 622 624
3 757 624 763
3 758 757 763
3 758 763 764
3 759 758 764
3 759 764 765
3 760 759 765
3 760 765 766
3 761 760 766
3 761 766 767
3 762 761 767
3 762 767 768
3 763 624 577
3 763 577 625
3 764 763 625
3 764 625 627
3 765 764 627
3 765 627 629
3 766 765 629
3 766 629 631
3 767 766 631
3 767 631 633
3 768 767 633
3 768 633 635
3 769 770 771
3 769 771 772
3 773 769 772
3 773 772 774
3 775 773 774
3 775 774 776
3 777 775 776
3 777 776 778
3 779 777 778
3 779 778 780
3 781 779 780
3 781 780 782
3 772 771 783
3 772 783 784
3 774 772 784
3 774 784 785
3 776 774 785
3 776 785 786
3 778 776 786
3 778 786 787
3 780 778 787
3 780 787 788
3 782 780 788
3 782 788 789
3 784 783 790
3 784 790 791
3 785 784 791
3 785 791 792
3 786 785 792
3 786 792 793
3 787 786 793
3 787 793 794
3 788 787 794
3 788 794 795
3 789 788 795
3 789 795 796
3 791 790 797
3 791 797 798
3 792 791 798
3 792 798 799
3 793 792 799
3 793 799 800
3 794 793 800
3 794 800 801
3 795 794 801
3 795 801 802
3 796 795 802
3 796 802 803
3 798 797 804
3 798 804 805
3 799 798 805
3 799 805 806
3 800 799 806
3 800 806 807
3 801 800 807
3 801 807 808
3 802 801 808
3 802 808 809
3 803 802 809
3 803 809 810
3 805 804 811
3 805 811 812
3 806 805 812
3 806 812 813
3 807 806 813
3 807 813 814
3 808 807 814
3 808 814 815
3 809 808 815
3 809 815 816
3 810 809 816
3 810 816 817
3 812 811 818
3 812 818 819
3 813 812 819
3 813 819 820
3 814 813 820
3 814 820 821
3 815 814 821
3 815 821 822
3 816 815 822
3 816 822 823
3 817 816 823
3 817 823 824
3 819 818 825
3 819 825 826
3 820 819 826
3 820 826 827
3 821 820 827
3 821 827 828
3 822 821 828
3 822 828 829
3 823 822 829
3 823 829 830
3 824 823 830
3 824 830 831
3 826 825 832
3 826 832 833
3 827 826 833
3 827 833 834
3 828 827 834
3 828 834 835
3 829 828 835
3 829 835 836
3 830 829 836
3 830 836 837
3 831 830 837
3 831 837 838
3 833 832 839
3 833 839 840
3 834 833 840
3 834 840 841
3 835 834 841
3 835 841 842
3 836 835 842
3 836 842 843
3 837 836 843
3 837 843 844
3 838 837 844
3 838 844 845
3 840 839 846
3 840 846 847
3 841 840 847
3 841 847 848
3 842 841 848
3 842 848 849
3 843 842 849
3 843 849 850
3 844 843 850
3 844 850 851
3 845 844 851
3 845 851 852
3 847 846 770
3 847 770 769
3 848 847 769
3 848 769 773
3 849 848 773
3 849 773 775
3 850 849 775
3 850 775 777
3 851 850 777
3 851 777 779
3 852 851 779
3 852 779 781
3 853 781 782
3 853 782 854
3 855 853 854
3 855 854 856
3 857 855 856
3 857 856 858
3 859 857 858
3 859 858 860
3 861 859 860
3 861 860 862
3 245 861 862
3 245 862 863
3 854 782 789
3 854 789 864
3 856 854 864
3 856 864 865
3 858 856 865
3 858 865 866
3 860 858 866
3 860 866 867
3 862 860 867
3 862 867 868
3 863 862 868
3 863 868 869
3 864 789 796
3 864 796 870
3 865 864 870
3 865 870 871
3 866 865 871
3 866 871 872
3 867 866 872
3 867 872 873
3 868 867 873
3 868 873 874
3 869 868 874
3 869 874 875
3 870 796 803
3 870 803 876
3 871 870 876
3 871 876 877
3 872 871 877
3 872 877 878
3 873 872 878
3 873 878 879
3 874 873 879
3 874 879 880
3 875 874 880
3 875 880 881
3 876 803 810
3 876 810 882
3 877 876 882
3 877 882 883
3 878 877 883
3 878 883 884
3 879 878 884
3 879 884 885
3 880 879 885
3 880 885 886
3 881 880 886
3 881 886 887
3 882 810 817
3 882 817 888
3 883 882 888
3 883 888 889
3 884 883 889
3 884 889 890
3 885 884 890
3 885 890 891
3 886 885 891
3 886 891 892
3 887 886 892
3 887 892 893
3 888 817 824
3 888 824 894
3 889 888 894
3 889 894 895
3 890 889 895
3 890 895 896
3 891 890 896
3 891 896 897
3 892 891 897
3 892 897 898
3 893 892 898
3 893 898 899
3 894 824 831
3 894 831 900
3 895 894 900
3 895 900 901
3 896 895 901
3 896 901 902
3 897 896 902
3 897 902 903
3 898 897 903
3 898 903 904
3 899 898 904
3 899 904 905
3 900 831 838
3 900 838 906
3 901 900 906
3 901 906 907
3 902 901 907
3 902 907 908
3 903 902 908
3 903 908 909
3 904 903 909
3 904 909 910
3 905 904 910
3 905 910 911
3 906 838 845
3 906 845 912
3 907 906 912
3 907 912 913
3 908 907 913
3 908 913 914
3 909 908 914
3 909 914 915
3 910 909 915
3 910 915 916
3 911 910 916
3 911 916 917
3 912 845 852
3 912 852 918
3 913 912 918
3 913 918 919
3 914 913 919
3 914 919 920
3 915 914 920
3 915 920 921
3 916 915 921
3 916 921 922
3 917 916 922
3 917 922 923
3 918 852 781
3 918 781 853
3 919 918 853
3 919 853 855
3 920 919 855
3 920 855 857
3 921 920 857
3 921 857 859
3 922 921 859
3 922 859 861
3 923 922 861
3 923 861 245
3 924 925 926
3 924 926 927
3 928 924 927
3 928 927 929
3 930 928 929
3 930 929 931
3 932 930 931
3 932 931 933
3 934 932 933
3 934 933 935
3 936 934 935
3 936 935 937
3 927 926 938
3 927 938 939
3 929 927 939
3 929 939 940
3 931 929 940
3 931 940 941
3 933 931 941
3 933 941 942
3 935 933 942
3 935 942 943
3 937 935 943
3 937 943 944
3 939 938 945
3 939 945 946
3 940 939 946
3 940 946 947
3 941 940 947
3 941 947 948
3 942 941 948
3 942 948 949
3 943 942 949
3 943 949 950
3 944 943 950
3 944 950 951
3 946 945 952
3 946 952 953
3 947 946 953
3 947 953 954
3 948 947 954
3 948 954 955
3 949 948 955
3 949 955 956
3 950 949 956
3 950 956 957
3 951 950 957
3 951 957 958
3 953 952 959
3 953 959 960
3 954 953 960
3 954 960 961
3 955 954 961
3 955 961 962
3 956 955 962
3 956 962 963
3 957 956 963
3 957 963 964
3 958 957 964
3 958 964 965
3 960 959 966
3 960 966 967
3 961 960 967
3 961 967 968
3 962 961 968
3 962 968 969
3 963 962 969
3 963 969 970
3 964 963 970
3 964 970 971
3 965 964 971
3 965 971 972
3 967 966 973
3 967 973 974
3 968 967 974
3 968 974 975
3 969 968 975
3 969 975 976
3 970 969 976
3 970 976 977
3 971 970 977
3 971 977 978
3 972 971 978
3 972 978 979
3 974 973 980
3 974 980 981
3 975 974 981
3 975 981 982
3 976 975 982
3 976 982 983
3 977 976 983
3 977 983 984
3 978 977 984
3 978 984 985
3 979 978 985
3 979 985 986
3 981 980 987
3 981 987 988
3 982 981 988
3 982 988 989
3 983 982 989
3 983 989 990
3 984 983 990
3 984 990 991
3 985 984 991
3 985 991 992
3 986 985 992
3 986 992 993
3 988 987 994
3 988 994 995
3 989 988 995
3 989 995 996
3 990 989 996
3 990 996 997
3 991 990 997
3 991 997 998
3 992 991 998
3 992 998 999
3 993 992 999
3 993 999 1000
3 995 994 1001
3 995 1001 1002
3 996 995 1002
3 996 1002 1003
3 997 996 1003
3 997 1003 1004
3 998 997 1004
3 998 1004 1005
3 999 998 1005
3 999 1005 1006
3 1000 999 1006
3 1000 1006 1007
3 1002 1001 925
3 1002 925 924
3 1003 1002 924
3 1003 924 928
3 1004 1003 928
3 1004 928 930
3 1005 1004 930
3 1005 930 932
3 1006 1005 932
3 1006 932 934
3 1007 1006 934
3 1007 934 936
3 1008 936 937
3 1008 937 1009
3 1010 1008 1009
3 1010 1009 1011
3 1012 1010 1011
3 1012 1011 1013
3 1014 1012 1013
3 1014 1013 1015
3 1016 1014 1015
3 1016 1015 1017
3 1018 1016 1017
3 1018 1017 1019
3 1009 937 944
3 1009 944 1020
3 1011 1009 1020
3 1011 1020 1021
3 1013 1011 1021
3 1013 1021 1022
3 1015 1013 1022
3 1015 1022 1023
3 1017 1015 1023
3 1017 1023 1024
3 1019 1017 1024
3 1019 1024 1025
3 1020 944 951
3 1020 951 1026
3 1021 1020 1026
3 1021 1026 1027
3 1022 1021 1027
3 1022 1027 1028
3 1023 1022 1028
3 1023 1028 1029
3 1024 1023 1029
3 1024 1029 1030
3 1025 1024 1030
3 1025 1030 1031
3 1026 951 958
3 1026 958 1032
3 1027 1026 1032
3 1027 1032 1033
3 1028 1027 1033
3 1028 1033 1034
3 1029 1028 1034
3 1029 1034 1035
3 1030 1029 1035
3 1030 1035 1036
3 1031 1030 1036
3 1031 1036 1037
3 1032 958 965
3 1032 965 1038
3 1033 1032 1038
3 1033 1038 1039
3 1034 1033 1039
3 1034 1039 1040
3 1035 1034 1040
3 1035 1040 1041
3 1036 1035 1041
3 1036 1041 1042
3 1037 1036 1042
3 1037 1042 1043
3 1038 965 972
3 1038 972 1044
3 1039 1038 1044
3 1039 1044 1045
3 1040 1039 1045
3 1040 1045 1046
3 1041 1040 1046
3 1041 1046 1047
3 1042 1041 1047
3 1042 1047 1048
3 1043 1042 1048
3 1043 1048 1049
3 1044 972 979
3 1044 979 1050
3 1045 1044 1050
3 1045 1050 1051
3 1046 1045 1051
3 1046 1051 1052
3 1047 1046 1052
3 1047 1052 1053
3 1048 1047 1053
3 1048 1053 1054
3 1049 1048 1054
3 1049 1054 1055
3 1050 979 986
3 1050 986 1056
3 1051 1050 1056
3 1051 1056 1057
3 1052 1051 1057
3 1052 1057 1058
3 1053 1052 1058
3 1053 1058 1059
3 1054 1053 1059
3 1054 1059 1060
3 1055 1054 1060
3 1055 1060 1061
3 1056 986 993
3 1056 993 1062
3 1057 1056 1062
3 1057 1062 1063
3 1058 1057 1063
3 1058 1063 1064
3 1059 1058 1064
3 1059 1064 1065
3 1060 1059 1065
3 1060 1065 1066
3 1061 1060 1066
3 1061 1066 1067
3 1062 993 1000
3 1062 1000 1068
3 1063 1062 1068
3 1063 1068 1069
3 1064 1063 1069
3 1064 1069 1070
3 1065 1064 1070
3 1065 1070 1071
3 1066 1065 1071
3 1066 1071 1072
3 1067 1066 1072
3 1067 1072 1073
3 1068 1000 1007
3 1068 1007 1074
3 1069 1068 1074
3 1069 1074 1075
3 1070 1069 1075
3 1070 1075 1076
3 1071 1070 1076
3 1071 1076 1077
3 1072 1071 1077
3 1072 1077 1078
3 1073 1072 1078
3 1073 1078 1079
3 1074 1007 936
3 1074 936 1008
3 1075 1074 1008
3 1075 1008 1010
3 1076 1075 1010
3 1076 1010 1012
3 1077 1076 1012
3 1077 1012 1014
3 1078 1077 1014
3 1078 1014 1016
3 1079 1078 1016
3 1079 1016 1018
3 1080 1081 1082
3 1083 1080 1082
3 1083 1082 1084
3 1085 1083 1084
3 1085 1084 1086
3 1087 1085 1086
3 1087 1086 1088
3 578 1087 1088
3 578 1088 579
3 1082 1081 1089
3 1084 1082 1089
3 1084 1089 1090
3 1086 1084 1090
3 1086 1090 1091
3 1088 1086 1091
3 1088 1091 1092
3 579 1088 1092
3 579 1092 581
3 1089 1081 1093
3 1090 1089 1093
3 1090 1093 1094
3 1091 1090 1094
3 1091 1094 1095
3 1092 1091 1095
3 1092 1095 1096
3 581 1092 1096
3 581 1096 583
3 1093 1081 1097
3 1094 1093 1097
3 1094 1097 1098
3 1095 1094 1098
3 1095 1098 1099
3 1096 1095 1099
3 1096 1099 1100
3 583 1096 1100
3 583 1100 585
3 1097 1081 1101
3 1098 1097 1101
3 1098 1101 1102
3 1099 1098 1102
3 1099 1102 1103
3 1100 1099 1103
3 1100 1103 1104
3 585 1100 1104
3 585 1104 587
3 1101 1081 1105
3 1102 1101 1105
3 1102 1105 1106
3 1103 1102 1106
3 1103 1106 1107
3 1104 1103 1107
3 1104 1107 1108
3 587 1104 1108
3 587 1108 589
3 1105 1081 1109
3 1106 1105 1109
3 1106 1109 1110
3 1107 1106 1110
3 1107 1110 1111
3 1108 1107 1111
3 1108 1111 1112
3 589 1108 1112
3 589 1112 591
3 1109 1081 1113
3 1110 1109 1113
3 1110 1113 1114
3 1111 1110 1114
3 1111 1114 1115
3 1112 1111 1115
3 1112 1115 1116
3 591 1112 1116
3 591 1116 593
3 1113 1081 1117
3 1114 1113 1117
3 1114 1117 1118
3 1115 1114 1118
3 1115 1118 1119
3 1116 1115 1119
3 1116 1119 1120
3 593 1116 1120
3 593 1120 595
3 1117 1081 1121
3 1118 1117 1121
3 1118 1121 1122
3 1119 1118 1122
3 1119 1122 1123
3 1120 1119 1123
3 1120 1123 1124
3 595 1120 1124
3 595 1124 597
3 1121 1081 1125
3 1122 1121 1125
3 1122 1125 1126
3 1123 1122 1126
3 1123 1126 1127
3 1124 1123 1127
3 1124 1127 1128
3 597 1124 1128
3 597 1128 599
3 1125 1081 1129
3 1126 1125 1129
3 1126 1129 1130
3 1127 1126 1130
3 1127 1130 1131
3 1128 1127 1131
3 1128 1131 1132
3 599 1128 1132
3 599 1132 601
3 1129 1081 1133
3 1130 1129 1133
3 1130 1133 1134
3 1131 1130 1134
3 1131 1134 1135
3 1132 1131 1135
3 1132 1135 1136
3 601 1132 1136
3 601 1136 603
3 1133 1081 1137
3 1134 1133 1137
3 1134 1137 1138
3 1135 1134 1138
3 1135 1138 1139
3 1136 1135 1139
3 1136 1139 1140
3 603 1136 1140
3 603 1140 605
3 1137 1081 1141
3 1138 1137 1141
3 1138 1141 1142
3 1139 1138 1142
3 1139 1142 1143
3 1140 1139 1143
3 1140 1143 1144
3 605 1140 1144
3 605 1144 607
3 1141 1081 1145
3 1142 1141 1145
3 1142 1145 1146
3 1143 1142 1146
3 1143 1146 1147
3 1144 1143 1147
3 1144 1147 1148
3 607 1144 1148
3 607 1148 609
3 1145 1081 1149
3 1146 1145 1149
3 1146 1149 1150
3 1147 1146 1150
3 1147 1150 1151
3 1148 1147 1151
3 1148 1151 1152
3 609 1148 1152
3 609 1152 611
3 1149 1081 1153
3 1150 1149 1153
3 1150 1153 1154
3 1151 1150 1154
3 1151 1154 1155
3 1152 1151 1155
3 1152 1155 1156
3 611 1152 1156
3 611 1156 613
3 1153 1081 1157
3 1154 1153 1157
3 1154 1157 1158
3 1155 1154 1158
3 1155 1158 1159
3 1156 1155 1159
3 1156 1159 1160
3 613 1156 1160
3 613 1160 615
3 1157 1081 1161
3 1158 1157 1161
3 1158 1161 1162
3 1159 1158 1162
3 1159 1162 1163
3 1160 1159 1163
3 1160 1163 1164
3 615 1160 1164
3 615 1164 617
3 1161 1081 1165
3 1162 1161 1165
3 1162 1165 1166
3 1163 1162 1166
3 1163 1166 1167
3 1164 1163 1167
3 1164 1167 1168
3 617 1164 1168
3 617 1168 619
3 1165 1081 1169
3 1166 1165 1169
3 1166 1169 1170
3 1167 1166 1170
3 1167 1170 1171
3 1168 1167 1171
3 1168 1171 1172
3 619 1168 1172
3 619 1172 621
3 1169 1081 1173
3 1170 1169 1173
3 1170 1173 1174
3 1171 1170 1174
3 1171 1174 1175
3 1172 1171 1175
3 1172 1175 1176
3 621 1172 1176
3 621 1176 623
3 1173 1081 1080
3 1174 1173 1080
3 1174 1080 1083
3 1175 1174 1083
3 1175 1083 1085
3 1176 1175 1085
3 1176 1085 1087
3 623 1176 1087
3 623 1087 578
......@@ -7,3 +7,7 @@ set(SOURCES sphereview_3dobj_demo.cpp)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(sphereview_test ${SOURCES})
target_link_libraries(sphereview_test ${OpenCV_LIBS})
set(SOURCES2 images2db_demo.cpp)
add_executable(images2db_test ${SOURCES2})
target_link_libraries(images2db_test ${OpenCV_LIBS})
#include <stdio.h> // for snprintf
#include <string>
#include <vector>
#include "boost/algorithm/string.hpp"
#include "google/protobuf/text_format.h"
#define CPU_ONLY
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp"
using caffe::Blob;
using caffe::Caffe;
using caffe::Datum;
using caffe::Net;
using boost::shared_ptr;
using std::string;
namespace db = caffe::db;
template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv);
int main(int argc, char** argv) {
return feature_extraction_pipeline<float>(argc, argv);
// return feature_extraction_pipeline<double>(argc, argv);
}
template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv) {
::google::InitGoogleLogging(argv[0]);
const int num_required_args = 7;
/*if (argc < num_required_args) {
LOG(ERROR)<<
"This program takes in a trained network and an input data layer, and then"
" extract features of the input data produced by the net.\n"
"Usage: extract_features pretrained_net_param"
" feature_extraction_proto_file extract_feature_blob_name1[,name2,...]"
" save_feature_dataset_name1[,name2,...] num_mini_batches db_type"
" [CPU/GPU] [DEVICE_ID=0]\n"
"Note: you can extract multiple features in one pass by specifying"
" multiple feature blob names and dataset names seperated by ','."
" The names cannot contain white space characters and the number of blobs"
" and datasets must be equal.";
return 1;
}*/
int arg_pos = num_required_args;
arg_pos = num_required_args;
//if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) {
if (argc > arg_pos && strcmp("CPU", "GPU") == 0) {
LOG(ERROR)<< "Using GPU";
int device_id = 0;
if (argc > arg_pos + 1) {
device_id = atoi(argv[arg_pos + 1]);
CHECK_GE(device_id, 0);
}
LOG(ERROR) << "Using Device_id=" << device_id;
Caffe::SetDevice(device_id);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
}
arg_pos = 0; // the name of the executable
//std::string pretrained_binary_proto(argv[++arg_pos]);
std::string pretrained_binary_proto("/home/wangyida/Desktop/caffe/examples/triplet/3d_triplet_iter_200.caffemodel");
// Expected prototxt contains at least one data layer such as
// the layer data_layer_name and one feature blob such as the
// fc7 top blob to extract features.
/*
layers {
name: "data_layer_name"
type: DATA
data_param {
source: "/path/to/your/images/to/extract/feature/images_leveldb"
mean_file: "/path/to/your/image_mean.binaryproto"
batch_size: 128
crop_size: 227
mirror: false
}
top: "data_blob_name"
top: "label_blob_name"
}
layers {
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
bottom: "fc7"
top: "fc7"
}
*/
//std::string feature_extraction_proto(argv[++arg_pos]);
std::string feature_extraction_proto("/home/wangyida/Desktop/caffe/examples/triplet/3d_triplet.prototxt");
boost::shared_ptr<Net<Dtype> > feature_extraction_net(
new Net<Dtype>(feature_extraction_proto, caffe::TEST));
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);
//std::string extract_feature_blob_names(argv[++arg_pos]);
std::string extract_feature_blob_names("feat");
std::vector<std::string> blob_names;
boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(","));
//std::string save_feature_dataset_names(argv[++arg_pos]);
std::string save_feature_dataset_names("/home/wangyida/Desktop/caffe/examples/triplet/feature_extracted");
std::vector<std::string> dataset_names;
boost::split(dataset_names, save_feature_dataset_names,
boost::is_any_of(","));
CHECK_EQ(blob_names.size(), dataset_names.size()) <<
" the number of blob names and dataset names must be equal";
size_t num_features = blob_names.size();
for (size_t i = 0; i < num_features; i++) {
CHECK(feature_extraction_net->has_blob(blob_names[i]))
<< "Unknown feature blob name " << blob_names[i]
<< " in the network " << feature_extraction_proto;
}
//int num_mini_batches = atoi(argv[++arg_pos]);
int num_mini_batches = atoi("6");
/*std::vector<shared_ptr<db::DB> > feature_dbs;
std::vector<shared_ptr<db::Transaction> > txns;
const char* db_type = argv[++arg_pos];
for (size_t i = 0; i < num_features; ++i) {
LOG(INFO)<< "Opening dataset " << dataset_names[i];
shared_ptr<db::DB> db(db::GetDB(db_type));
db->Open(dataset_names.at(i), db::NEW);
feature_dbs.push_back(db);
shared_ptr<db::Transaction> txn(db->NewTransaction());
txns.push_back(txn);
}*/
std::vector<FILE*> files;
for (size_t i = 0; i < num_features; ++i)
{
LOG(INFO) << "Opening file " << dataset_names[i];
FILE * temp = NULL;
temp = fopen(dataset_names[i].c_str(), "wb");
files.push_back(temp);
}
LOG(ERROR)<< "Extacting Features";
//bool header_flag = true;
Datum datum;
//const int kMaxKeyStrLength = 100;
//char key_str[kMaxKeyStrLength];
std::vector<Blob<float>*> input_vec;
std::vector<int> image_indices(num_features, 0);
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
feature_extraction_net->Forward(input_vec);
for (int i = 0; i < num_features; ++i) {
const boost::shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net
->blob_by_name(blob_names[i]);
int batch_size = feature_blob->num();
int dim_features = feature_blob->count() / batch_size;
if (batch_index == 0)
{
int fea_num = batch_size*num_mini_batches;
fwrite(&dim_features, sizeof(int), 1, files[i]);
fwrite(&fea_num, sizeof(int), 1, files[i]);
//bool header_flag = false;
}
const Dtype* feature_blob_data;
for (int n = 0; n < batch_size; ++n) {
feature_blob_data = feature_blob->cpu_data() +
feature_blob->offset(n);
fwrite(feature_blob_data, sizeof(Dtype), dim_features, files[i]);
++image_indices[i];
if (image_indices[i] % 1000 == 0) {
LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
" query images for feature blob " << blob_names[i];
}
} // for (int n = 0; n < batch_size; ++n)
} // for (int i = 0; i < num_features; ++i)
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
// write the last batch
for (int i = 0; i < num_features; ++i) {
/* if (image_indices[i] % 1000 != 0) {
txns.at(i)->Commit();
}
LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
" query images for feature blob " << blob_names[i];
feature_dbs.at(i)->Close();*/
fclose(files[i]);
}
LOG(ERROR)<< "Successfully extracted the features!";
return 0;
}
#include <google/protobuf/text_format.h>
#include <glog/logging.h>
#include <leveldb/db.h>
#include <stdint.h>
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <set>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <dirent.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sys/types.h>
#include "caffe/proto/caffe.pb.h"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
#include <opencv2/imgproc/imgproc.hpp>
using std::string;
using namespace std;
set<string> all_class_name;
map<string,int> class2id;
void list_dir(const char *path,vector<string>& files,bool r = false)
{
DIR *pDir;
struct dirent *ent;
char childpath[512];
pDir = opendir(path);
memset(childpath, 0, sizeof(childpath));
while ((ent = readdir(pDir)) != NULL)
{
if (ent->d_type & DT_DIR)
{
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
{
continue;
}
if(r)
{
sprintf(childpath, "%s/%s", path, ent->d_name);
list_dir(childpath,files);
}
}
else
{
files.push_back(ent->d_name);
}
}
sort(files.begin(),files.end());
}
string get_classname(string path)
{
int index = path.find_last_of('_');
return path.substr(0, index);
}
int get_labelid(string fileName)
{
string class_name_tmp = get_classname(fileName);
all_class_name.insert(class_name_tmp);
map<string,int>::iterator name_iter_tmp = class2id.find(class_name_tmp);
if (name_iter_tmp == class2id.end())
{
int id = class2id.size();
class2id.insert(name_iter_tmp, std::make_pair(class_name_tmp, id));
return id;
}
else
{
return name_iter_tmp->second;
}
}
void loadimg(string path,char* buffer)
{
cv::Mat img = cv::imread(path, CV_LOAD_IMAGE_COLOR);
string val;
int rows = img.rows;
int cols = img.cols;
int pos=0;
for (int c = 0; c < 3; c++)
{
for (int row = 0; row < rows; row++)
{
for (int col = 0; col < cols; col++)
{
buffer[pos++]=img.at<cv::Vec3b>(row,col)[c];
}
}
}
}
void convert(string imgdir,string outputdb,string attachdir,int channel,int width,int height)
{
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
options.error_if_exists = true;
caffe::Datum datum;
datum.set_channels(channel);
datum.set_height(height);
datum.set_width(width);
int image_size = channel*width*height;
char buffer[image_size];
string value;
CHECK(leveldb::DB::Open(options, outputdb, &db).ok());
vector<string> filenames;
list_dir(imgdir.c_str(),filenames);
string img_log = attachdir+"image_filename";
ofstream writefile(img_log.c_str());
for(int i=0;i<filenames.size();i++)
{
string path= imgdir;
path.append(filenames[i]);
loadimg(path,buffer);
int labelid = get_labelid(filenames[i]);
datum.set_label(labelid);
datum.set_data(buffer,image_size);
datum.SerializeToString(&value);
snprintf(buffer, image_size, "%05d", i);
printf("\nclassid:%d classname:%s abspath:%s",labelid,get_classname(filenames[i]).c_str(),path.c_str());
db->Put(leveldb::WriteOptions(),string(buffer),value);
//printf("%d %s\n",i,fileNames[i].c_str());
assert(writefile.is_open());
writefile<<i<<" "<<filenames[i]<<"\n";
}
delete db;
writefile.close();
img_log = attachdir+"image_classname";
writefile.open(img_log.c_str());
set<string>::iterator iter = all_class_name.begin();
while(iter != all_class_name.end())
{
assert(writefile.is_open());
writefile<<(*iter)<<"\n";
//printf("%s\n",(*iter).c_str());
iter++;
}
writefile.close();
}
int main(int argc, char** argv)
{
if (argc < 6)
{
LOG(ERROR) << "convert_imagedata src_dir dst_dir attach_dir channel width height";
return 0;
}
//./convert_imagedata.bin /home/linger/imdata/collarTest/ /home/linger/linger/testfile/dbtest/ /home/linger/linger/testfile/test_attachment/ 3 250 250
// ./convert_imagedata.bin /home/linger/imdata/collar_train/ /home/linger/linger/testfile/crop_train_db/ /home/linger/linger/testfile/crop_train_attachment/ 3 50 50
google::InitGoogleLogging(argv[0]);
string src_dir = argv[1];
string src_dst = argv[2];
string attach_dir = argv[3];
int channel = atoi(argv[4]);
int width = atoi(argv[5]);
int height = atoi(argv[6]);
//for test
/*
src_dir = "/home/linger/imdata/collarTest/";
src_dst = "/home/linger/linger/testfile/dbtest/";
attach_dir = "/home/linger/linger/testfile/";
channel = 3;
width = 250;
height = 250;
*/
convert(src_dir,src_dst,attach_dir,channel,width,height);
}
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <opencv2/cnn_3dobj.hpp>
using namespace cv;
using namespace std;
using namespace cv::cnn_3dobj;
int main(int argc, char* argv[])
{
const String keys = "{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=4 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}"
"{src_dir | | Source direction of the images ready for being converted to leveldb dataset.}"
"{src_dst | | Aim direction of the converted to leveldb dataset. }"
"{attach_dir | | Path for saving additional files which describe the transmission results. }"
"{channel | 1 | Channel of the images. }"
"{width | 64 | Width of images}"
"{height | 64 | Height of images}";
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Demo for Sphere View data generation");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string src_dir = parser.get<string>("src_dir");
string src_dst = parser.get<string>("src_dst");
string attach_dir = parser.get<string>("attach_dir");
int channel = parser.get<int>("channel");
int width = parser.get<int>("width");
int height = parser.get<int>("height");
cv::cnn_3dobj::DataTrans transTemp();
transTemp.convert(src_dir,src_dst,attach_dir,channel,width,height);
}
......@@ -112,9 +112,12 @@ int main(int argc, char *argv[]){
if (camera_pov)
myWindow.setViewerPose(cam_pose);
char* temp = new char;
sprintf (temp,"%d",pose);
sprintf (temp,"%d",label_class);
string filename = temp;
filename += "_";
filename = imagedir + filename;
sprintf (temp,"%d",pose);
filename += temp;
filename += ".png";
myWindow.saveScreenshot(filename);
ViewSphere.writeBinaryfile(filename, binaryPath, headerPath,(int)campos.size()*num_class, label_class);
......
#include "precomp.hpp"
using std::string;
using namespace std;
namespace cv
{
namespace cnn_3dobj
{
DataTrans::DataTrans()
{
};
void DataTrans::list_dir(const char *path,vector<string>& files,bool r)
{
DIR *pDir;
struct dirent *ent;
char childpath[512];
pDir = opendir(path);
memset(childpath, 0, sizeof(childpath));
while ((ent = readdir(pDir)) != NULL)
{
if (ent->d_type & DT_DIR)
{
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
{
continue;
}
if(r)
{
sprintf(childpath, "%s/%s", path, ent->d_name);
list_dir(childpath,files,false);
}
}
else
{
files.push_back(ent->d_name);
}
}
sort(files.begin(),files.end());
};
string DataTrans::get_classname(string path)
{
int index = path.find_last_of('_');
return path.substr(0, index);
}
int DataTrans::get_labelid(string fileName)
{
string class_name_tmp = get_classname(fileName);
all_class_name.insert(class_name_tmp);
map<string,int>::iterator name_iter_tmp = class2id.find(class_name_tmp);
if (name_iter_tmp == class2id.end())
{
int id = class2id.size();
class2id.insert(name_iter_tmp, std::make_pair(class_name_tmp, id));
return id;
}
else
{
return name_iter_tmp->second;
}
}
void DataTrans::loadimg(string path,char* buffer,const bool is_color)
{
cv::Mat img = cv::imread(path, is_color);
string val;
int rows = img.rows;
int cols = img.cols;
int pos=0;
int channel;
if (is_color == 0)
{
channel = 1;
}else{
channel = 3;
}
for (int c = 0; c < channel; c++)
{
for (int row = 0; row < rows; row++)
{
for (int col = 0; col < cols; col++)
{
buffer[pos++]=img.at<cv::Vec3b>(row,col)[c];
}
}
}
};
void DataTrans::convert(string imgdir,string outputdb,string attachdir,int channel,int width,int height)
{
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
options.error_if_exists = true;
caffe::Datum datum;
datum.set_channels(channel);
datum.set_height(height);
datum.set_width(width);
int image_size = channel*width*height;
char buffer[image_size];
string value;
CHECK(leveldb::DB::Open(options, outputdb, &db).ok());
vector<string> filenames;
list_dir(imgdir.c_str(),filenames, false);
string img_log = attachdir+"image_filename";
ofstream writefile(img_log.c_str());
for(int i=0;i<(int)filenames.size();i++)
{
string path= imgdir;
path.append(filenames[i]);
loadimg(path,buffer,false);
int labelid = get_labelid(filenames[i]);
datum.set_label(labelid);
datum.set_data(buffer,image_size);
datum.SerializeToString(&value);
snprintf(buffer, image_size, "%05d", i);
printf("\nclassid:%d classname:%s abspath:%s",labelid,get_classname(filenames[i]).c_str(),path.c_str());
db->Put(leveldb::WriteOptions(),string(buffer),value);
//printf("%d %s\n",i,fileNames[i].c_str());
assert(writefile.is_open());
writefile<<i<<" "<<filenames[i]<<"\n";
}
delete db;
writefile.close();
img_log = attachdir+"image_classname";
writefile.open(img_log.c_str());
set<string>::iterator iter = all_class_name.begin();
while(iter != all_class_name.end())
{
assert(writefile.is_open());
writefile<<(*iter)<<"\n";
//printf("%s\n",(*iter).c_str());
iter++;
}
writefile.close();
};
}}
......@@ -6,7 +6,6 @@ namespace cv
{
namespace cnn_3dobj
{
IcoSphere::IcoSphere(float radius_in, int depth_in)
{
......@@ -50,7 +49,7 @@ namespace cnn_3dobj
for(int i=0; i < (int)CameraPos.size(); i++) {
cout << CameraPos.at(i).x <<' '<< CameraPos.at(i).y << ' ' << CameraPos.at(i).z << endl;
}
}
};
void IcoSphere::norm(float v[])
{
......@@ -65,7 +64,7 @@ namespace cnn_3dobj
for (int i = 0; i < 3; ++i) {
v[i] /= ((float)len);
}
}
};
void IcoSphere::add(float v[])
{
......@@ -78,7 +77,7 @@ namespace cnn_3dobj
}
temp_Campos.x = temp->at(0);temp_Campos.y = temp->at(1);temp_Campos.z = temp->at(2);
CameraPos.push_back(temp_Campos);
}
};
void IcoSphere::subdivide(float v1[], float v2[], float v3[], int depth)
{
......@@ -111,13 +110,13 @@ namespace cnn_3dobj
subdivide(v2, v23, v12, depth - 1);
subdivide(v3, v31, v23, depth - 1);
subdivide(v12, v23, v31, depth - 1);
}
};
uint32_t IcoSphere::swap_endian(uint32_t val)
{
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
return (val << 16) | (val >> 16);
}
};
cv::Point3d IcoSphere::getCenter(cv::Mat cloud)
{
......@@ -133,7 +132,7 @@ namespace cnn_3dobj
dataout.y = dataout.y/cloud.cols;
dataout.z = dataout.z/cloud.cols;
return dataout;
}
};
float IcoSphere::getRadius(cv::Mat cloud, cv::Point3d center)
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment