Commit d6cb8889 authored by Wangyida's avatar Wangyida

add feature extraction demo in samples folder

parent 5072cc69
set(the_description "CNN for 3D object recognition and pose estimation including a completed Sphere View on 3D objects")
ocv_define_module(cnn_3dobj opencv_core opencv_imgproc opencv_viz opencv_highgui caffe protobuf leveldb glog OPTIONAL WRAP python)
target_link_libraries(cnn_3dobj caffe protobuf leveldb glog)
target_link_libraries(opencv_cnn_3dobj caffe protobuf leveldb glog)
CNN for 3D object recognition and pose estimation including a completed Sphere View of 3D objects from .ply files, when the windows shows the coordinate, press 'q' to go on image generation.
##CNN for 3D object recognition and pose estimation including a completed Sphere View of 3D objects from .ply files, when the windows shows the coordinate, press 'q' to go on image generation.
============================================
Building Process:
#Building Process:
###Prerequisite for this module: protobuf, leveldb, glog, gflags and caffe, for the libcaffe installation, you can install it on standard system path for being able to be linked by this OpenCV module when compiling. Just using: -D CMAKE_INSTALL_PREFIX=/usr/local, so the building process on Caffe on system could be like this:
```
$ cd <caffe_source_directory>
$ mkdir biuld
$ cd build
$ cmake -D CMAKE_INSTALL_PREFIX=/usr/local ..
$ make all
$ make install
```
###After all these steps, the headers and libs of caffe will be set on /usr/local/ path, and when you compiling opencv with opencv_contrib modules as below, the protobif, leveldb, glog, gflags and caffe will be recognized as already installed while building.
#Compiling OpenCV
```
$ cd <opencv_source_directory>
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=OFF -D WITH_V4L=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D WITH_VTK=ON -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules ..
$ make -j4
$ sudo make install
```
================================================
#Building samples
```
$ cd <opencv_contrib>/modules/cnn_3dobj/samples
$ mkdir build
$ cd build
$ cmake ..
$ make
```
=============
#Demo1:
###Imagas generation from different pose, 4 models are used, there will be 276 images in all which each class contains 69 iamges
```
$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=4 -label_class=0
```
###press q to start
```
$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ant.ply -imagedir=../data/images_ant/ -labeldir=../data/label_ant.txt -num_class=4 -label_class=1
```
###press q to start
```
$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/cow.ply -imagedir=../data/images_cow/ -labeldir=../data/label_cow.txt -num_class=4 -label_class=2
```
###press q to start
```
$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/plane.ply -imagedir=../data/images_plane/ -labeldir=../data/label_plane.txt -num_class=4 -label_class=3
==============================================
Then press 'q' to run the demo for images generation when you see the gray background and a coordinate.
```
###press q to start, when all images are created in each class folder, you should copy all images from ../data/images_ape, ../data/images_ant, ../data/images_cow and ../data/images_plane into ../data/images_all folder as a collection of images for network tranining and feature extraction, when all images are copyed correctlly, proceed on.
###After this demo, the binary files of images and labels will be stored as 'binary_image' and 'binary_label' in current path, you should copy them into the leveldb folder in Caffe triplet training, for example: copy these 2 files in <caffe_source_directory>/data/linemod and rename them as 'binary_image_train', 'binary_image_test' and 'binary_label_train', 'binary_label_train'.
###We could start triplet tranining using Caffe
```
$ cd
$ cd <caffe_source_directory>
$ ./examples/triplet/create_3d_triplet.sh
$ ./examples/triplet/train_3d_triplet.sh
```
###After doing this, you will get .caffemodel files as the trained net work. I have already provide the net definition .prototxt files and the trained .caffemodel in <opencv_contrib>/modules/cnn_3dobj/samples/build folder, you could just use them without training in caffe. If you are not interested on feature analysis with the help of binary files provided in Demo2, just skip to Demo3 for feature extraction or Demo4 for classifier.
==============
```
$ cd
$ cd <opencv_contrib>/modules/cnn_3dobj/samples/build
```
#Demo2:
###Convert data into leveldb format from folder ../data/images_all for feature extraction afterwards. The leveldb files including all data will be stored in ../data/dbfile. If you will use the OpenCV defined feature extraction process, you could also skip Demo2 for data converting, just run Demo3 after Demo1 for feature extraction because Demo3 also includes the db file converting process before feature extraction.
```
$ ./images2db_test -images2db_demo=../data/images_all -src_dst=../data/dbfile -attach_dir=../data/dbfile -channel=1 -width=64 -height=64
```
==============
#Demo3:
###feature extraction, this demo will convert a set of images in a particular path into leveldb database for feature extraction using Caffe.
```
$ ./feature_extract_test
```
###This will extract feature from a set of images in a folder as vector<cv::Mat> for further classification and a binary file with containing all feature vectors of each sample. Pay attention: if it's warning you that 'Check failed: leveldb::DB::Open(options, outputdb, &db).ok()', the reason is that there is alreay leveldb files in ../data/dbfile as previous running of Demo2 or Demo3, just delete all files in ../data/dbfile and run Demo3 again.
###After running this, you will get a binary file storing features in ../data/feature folder, I can provide a Matlab script reading this file if someone need it. If you don't need the binary file, the feature could also be stored in vector<cv::Mat> for directly classification using the softmax layer as shown in Demo4.
==============
#Demo4:
###Classifier
==============================================
......@@ -46,8 +46,6 @@ the use of this software, even if advised of the possibility of such damage.
#define __OPENCV_CNN_3DOBJ_HPP__
#ifdef __cplusplus
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <string>
#include <fstream>
#include <vector>
......@@ -62,7 +60,7 @@ the use of this software, even if advised of the possibility of such damage.
#include <glog/logging.h>
#include <google/protobuf/text_format.h>
#include <leveldb/db.h>
#include <opencv2/calib3d.hpp>
//#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/viz/vizcore.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
......@@ -159,7 +157,6 @@ class CV_EXPORTS_W DataTrans
CV_WRAP void convert(string imgdir,string outputdb,string attachdir,int channel,int width,int height);
/** @brief Convert a set of images as a leveldb database for CNN training.
*/
template<typename Dtype>
CV_WRAP std::vector<cv::Mat> feature_extraction_pipeline(std::string pretrained_binary_proto, std::string feature_extraction_proto, std::string save_feature_dataset_names, std::string extract_feature_blob_names, int num_mini_batches, std::string device, int dev_id);
/** @brief Extract feature into a binary file and vector<cv::Mat> for classification, the model proto and network proto are needed, All images in the file root will be used for feature extraction.
*/
......
......@@ -11,3 +11,7 @@ target_link_libraries(sphereview_test ${OpenCV_LIBS})
set(SOURCES2 images2db_demo.cpp)
add_executable(images2db_test ${SOURCES2})
target_link_libraries(images2db_test ${OpenCV_LIBS})
set(SOURCES3 feature_extract_demo.cpp)
add_executable(feature_extract_test ${SOURCES3})
target_link_libraries(feature_extract_test ${OpenCV_LIBS})
# The train/test net protocol buffer definition
net: "examples/triplet/lfw_triplet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of lfw, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0000
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 50000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/triplet/lfw_triplet"
# solver mode: CPU or GPU
solver_mode: CPU
name: "lfw_triplet_train_test"
layer {
name: "triplet_data"
type: "Data"
top: "triplet_data"
top: "sim"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/triplet/lfw_triplet_train_leveldb"
batch_size: 64
}
}
layer {
name: "triplet_data"
type: "Data"
top: "triplet_data"
top: "sim"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/triplet/lfw_triplet_test_leveldb"
batch_size: 100
}
}
layer {
name: "slice_triplet"
type: "Slice"
bottom: "triplet_data"
top: "data"
top: "data_true"
top: "data_false"
slice_param {
slice_dim: 1
slice_point: 1
slice_point: 2
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat"
type: "InnerProduct"
bottom: "ip2"
top: "feat"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_true"
type: "Convolution"
bottom: "data_true"
top: "conv1_true"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1_true"
type: "Pooling"
bottom: "conv1_true"
top: "pool1_true"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_true"
type: "Convolution"
bottom: "pool1_true"
top: "conv2_true"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2_true"
type: "Pooling"
bottom: "conv2_true"
top: "pool2_true"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1_true"
type: "InnerProduct"
bottom: "pool2_true"
top: "ip1_true"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_true"
type: "ReLU"
bottom: "ip1_true"
top: "ip1_true"
}
layer {
name: "ip2_true"
type: "InnerProduct"
bottom: "ip1_true"
top: "ip2_true"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat_true"
type: "InnerProduct"
bottom: "ip2_true"
top: "feat_true"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_false"
type: "Convolution"
bottom: "data_false"
top: "conv1_false"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1_false"
type: "Pooling"
bottom: "conv1_false"
top: "pool1_false"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_false"
type: "Convolution"
bottom: "pool1_false"
top: "conv2_false"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2_false"
type: "Pooling"
bottom: "conv2_false"
top: "pool2_false"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1_false"
type: "InnerProduct"
bottom: "pool2_false"
top: "ip1_false"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_false"
type: "ReLU"
bottom: "ip1_false"
top: "ip1_false"
}
layer {
name: "ip2_false"
type: "InnerProduct"
bottom: "ip1_false"
top: "ip2_false"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat_false"
type: "InnerProduct"
bottom: "ip2_false"
top: "feat_false"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "TripletLoss"
bottom: "feat"
bottom: "feat_true"
bottom: "feat_false"
bottom: "sim"
top: "loss"
triplet_loss_param {
margin: 0.2
}
}
#!/usr/bin/env sh
# This script converts the lfw data into leveldb format.
git clone https://github.com/Wangyida/caffe/tree/cnn_triplet
cd caffe
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
make test
sudo make install
cd ..
cmake ..
make -j4
./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=4 -label_class=0
./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ant.ply -imagedir=../data/images_ant/ -labeldir=../data/label_ant.txt -num_class=4 -label_class=1
./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/cow.ply -imagedir=../data/images_cow/ -labeldir=../data/label_cow.txt -num_class=4 -label_class=2
./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/plane.ply -imagedir=../data/images_plane/ -labeldir=../data/label_plane.txt -num_class=4 -label_class=3
echo "Creating leveldb..."
rm -rf ./linemod_triplet_train_leveldb
rm -rf ./linemod_triplet_test_leveldb
convert_lfw_triplet_data \
./binary_image_train \
./binary_label_train \
./linemod_triplet_train_leveldb
convert_lfw_triplet_data \
./binary_image_test \
./binary_image_test \
./linemod_triplet_test_leveldb
echo "Done."
caffe train --solver=examples/triplet/lfw_triplet_solver.prototxt
name: "lfw_siamese"
input: "data"
input_dim: 10000
input_dim: 1
input_dim: 150
input_dim: 130
name: "3d_test"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/wangyida/Desktop/opencv_contrib/modules/nouse_test/samples/data/dbfile"
batch_size: 46
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
num_output: 16
kernel_size: 8
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
......@@ -32,21 +51,35 @@ layer {
stride: 2
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
num_output: 7
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
......@@ -60,54 +93,61 @@ layer {
stride: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "pool2"
top: "pool2"
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
num_output: 256
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
name: "relu3"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
}
}
layer {
name: "feat"
type: "InnerProduct"
bottom: "ip2"
bottom: "ip1"
top: "feat"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
num_output: 4
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <opencv2/cnn_3dobj.hpp>
#include <stdio.h> // for snprintf
#include <tr1/memory>
#include <string>
#include <vector>
#include "google/protobuf/text_format.h"
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#define CPU_ONLY
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp"
using caffe::Blob;
using caffe::Caffe;
using caffe::Datum;
using caffe::Net;
//using boost::shared_ptr;
using std::string;
//namespace db = caffe::db;
using namespace cv;
using namespace std;
using namespace cv::cnn_3dobj;
int main(int argc, char* argv[])
{
const String keys = "{help | | this demo will convert a set of images in a particular path into leveldb database for feature extraction using Caffe.}"
"{src_dir | ../data/images_all/ | Source direction of the images ready for being converted to leveldb dataset.}"
"{src_dst | ../data/dbfile | Aim direction of the converted to leveldb dataset. }"
"{attach_dir | ../data/dbfile | Path for saving additional files which describe the transmission results. }"
"{channel | 1 | Channel of the images. }"
"{width | 64 | Width of images}"
"{height | 64 | Height of images}"
"{pretrained_binary_proto | ../data/3d_triplet_iter_10000.caffemodel | caffe model for feature exrtaction.}"
"{feature_extraction_proto | ../data/3d_triplet_train_test.prototxt | network definition in .prototxt the path of the training samples must be wrotten in in .prototxt files in Phase TEST}"
"{save_feature_dataset_names | ../data/feature/feature_iter_10000.bin | the output of the extracted feature in form of binary files together with the vector<cv::Mat> features as the feature.}"
"{extract_feature_blob_names | feat | the layer used for feature extraction in CNN.}"
"{num_mini_batches | 6 | batches suit for the batches defined in the .proto for the aim of extracting feature from all images.}"
"{device | CPU | device}"
"{dev_id | 0 | dev_id}";
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Demo for Sphere View data generation");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string src_dir = parser.get<string>("src_dir");
string src_dst = parser.get<string>("src_dst");
string attach_dir = parser.get<string>("attach_dir");
int channel = parser.get<int>("channel");
int width = parser.get<int>("width");
int height = parser.get<int>("height");
string pretrained_binary_proto = parser.get<string>("pretrained_binary_proto");
string feature_extraction_proto = parser.get<string>("feature_extraction_proto");
string save_feature_dataset_names = parser.get<string>("save_feature_dataset_names");
string extract_feature_blob_names = parser.get<string>("extract_feature_blob_names");
int num_mini_batches = parser.get<int>("num_mini_batches");
string device = parser.get<string>("device");
int dev_id = parser.get<int>("dev_id");
cv::cnn_3dobj::DataTrans transTemp;
transTemp.convert(src_dir,src_dst,attach_dir,channel,width,height);
std::vector<cv::Mat> extractedFeature = transTemp.feature_extraction_pipeline(pretrained_binary_proto, feature_extraction_proto, save_feature_dataset_names, extract_feature_blob_names, num_mini_batches, device, dev_id);
}
......@@ -38,10 +38,10 @@ using namespace std;
using namespace cv::cnn_3dobj;
int main(int argc, char* argv[])
{
const String keys = "{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=4 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}"
"{src_dir | | Source direction of the images ready for being converted to leveldb dataset.}"
"{src_dst | | Aim direction of the converted to leveldb dataset. }"
"{attach_dir | | Path for saving additional files which describe the transmission results. }"
const String keys = "{help | | this demo will convert a set of images in a particular path into leveldb database for feature extraction using Caffe.}"
"{src_dir | ../data/images_all | Source direction of the images ready for being converted to leveldb dataset.}"
"{src_dst | ../data/dbfile | Aim direction of the converted to leveldb dataset. }"
"{attach_dir | ../data/dbfile | Path for saving additional files which describe the transmission results. }"
"{channel | 1 | Channel of the images. }"
"{width | 64 | Width of images}"
"{height | 64 | Height of images}";
......@@ -58,6 +58,6 @@ int main(int argc, char* argv[])
int channel = parser.get<int>("channel");
int width = parser.get<int>("width");
int height = parser.get<int>("height");
cv::cnn_3dobj::DataTrans transTemp();
transTemp.convert(src_dir,src_dst,attach_dir,channel,width,height);
cv::cnn_3dobj::DataTrans Trans;
Trans.convert(src_dir,src_dst,attach_dir,channel,width,height);
}
......@@ -28,7 +28,7 @@ namespace cnn_3dobj
if(r)
{
sprintf(childpath, "%s/%s", path, ent->d_name);
list_dir(childpath,files,false);
DataTrans::list_dir(childpath,files,false);
}
}
else
......@@ -148,8 +148,7 @@ namespace cnn_3dobj
};
template<typename Dtype>
std::vector<cv::Mat> feature_extraction_pipeline(std::string pretrained_binary_proto, std::string feature_extraction_proto, std::string save_feature_dataset_names, std::string extract_feature_blob_names, int num_mini_batches, std::string device, int dev_id) {
std::vector<cv::Mat> DataTrans::feature_extraction_pipeline(std::string pretrained_binary_proto, std::string feature_extraction_proto, std::string save_feature_dataset_names, std::string extract_feature_blob_names, int num_mini_batches, std::string device, int dev_id) {
if (strcmp(device.c_str(), "GPU") == 0) {
LOG(ERROR)<< "Using GPU";
int device_id = 0;
......@@ -164,8 +163,8 @@ namespace cnn_3dobj
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
}
boost::shared_ptr<Net<Dtype> > feature_extraction_net(
new Net<Dtype>(feature_extraction_proto, caffe::TEST));
boost::shared_ptr<Net<float> > feature_extraction_net(
new Net<float>(feature_extraction_proto, caffe::TEST));
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);
std::vector<std::string> blob_names;
blob_names.push_back(extract_feature_blob_names);
......@@ -197,8 +196,8 @@ namespace cnn_3dobj
std::vector<int> image_indices(num_features, 0);
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
feature_extraction_net->Forward(input_vec);
for (int i = 0; i < num_features; ++i) {
const boost::shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net
for (size_t i = 0; i < num_features; ++i) {
const boost::shared_ptr<Blob<float> > feature_blob = feature_extraction_net
->blob_by_name(blob_names[i]);
int batch_size = feature_blob->num();
int dim_features = feature_blob->count() / batch_size;
......@@ -208,15 +207,15 @@ namespace cnn_3dobj
fwrite(&dim_features, sizeof(int), 1, files[i]);
fwrite(&fea_num, sizeof(int), 1, files[i]);
}
const Dtype* feature_blob_data;
const float* feature_blob_data;
for (int n = 0; n < batch_size; ++n) {
feature_blob_data = feature_blob->cpu_data() +
feature_blob->offset(n);
fwrite(feature_blob_data, sizeof(Dtype), dim_features, files[i]);
fwrite(feature_blob_data, sizeof(float), dim_features, files[i]);
for (int dim = 0; dim < dim_features; dim++) {
cv::Mat tempfeat = cv::Mat(1, dim_features, CV_32FC1);
tempfeat.at<Dtype>(0,dim) = *(feature_blob_data++);
tempfeat.at<float>(0,dim) = *(feature_blob_data++);
featureVec.push_back(tempfeat);
}
++image_indices[i];
......@@ -228,7 +227,7 @@ namespace cnn_3dobj
} // for (int i = 0; i < num_features; ++i)
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
// write the last batch
for (int i = 0; i < num_features; ++i) {
for (size_t i = 0; i < num_features; ++i) {
fclose(files[i]);
}
......
......@@ -114,8 +114,8 @@ namespace cnn_3dobj
uint32_t IcoSphere::swap_endian(uint32_t val)
{
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
return (val << 16) | (val >> 16);
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
return (val << 16) | (val >> 16);
};
cv::Point3d IcoSphere::getCenter(cv::Mat cloud)
......
......@@ -43,8 +43,6 @@ the use of this software, even if advised of the possibility of such damage.
#define __OPENCV_CNN_3DOBJ_PRECOMP_HPP__
#include <opencv2/cnn_3dobj.hpp>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <string>
#include <fstream>
#include <vector>
......@@ -59,7 +57,9 @@ the use of this software, even if advised of the possibility of such damage.
#include <glog/logging.h>
#include <google/protobuf/text_format.h>
#include <leveldb/db.h>
#include <opencv2/calib3d.hpp>
//#include <opencv2/opencv.hpp>
//#include <opencv2/core/core.hpp>
//#include <opencv2/calib3d.hpp>
#include <opencv2/viz/vizcore.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment