Commit d4a77fc4 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

added xfeatures2d (made of opencv/nonfree and a part of opencv/features2d)

parent 9e5b6684
set(the_description "Contributed/Experimental Algorithms for Salient 2D Features Detection")
ocv_define_module(xfeatures2d opencv_core opencv_imgproc opencv_features2d opencv_calib3d opencv_shape opencv_highgui opencv_videoio opencv_ml)
Non-free 2D Features Algorithms
=================================
This section describes experimental algorithms for 2d feature detection.
StarFeatureDetector
-------------------
.. ocv:class:: StarFeatureDetector : public FeatureDetector
The class implements the keypoint detector introduced by [Agrawal08]_, synonym of ``StarDetector``. ::
class StarFeatureDetector : public FeatureDetector
{
public:
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. [Agrawal08] Agrawal, M., Konolige, K., & Blas, M. R. (2008). Censure: Center surround extremas for realtime feature detection and matching. In Computer Vision–ECCV 2008 (pp. 102-115). Springer Berlin Heidelberg.
This diff is collapsed.
*********************************
features2d. Extra 2D Features Framework
*********************************
.. highlight:: cpp
.. toctree::
:maxdepth: 2
extra_features
nonfree_features
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_XFEATURES2D_HPP__
#define __OPENCV_XFEATURES2D_HPP__
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
namespace cv
{
namespace xfeatures2d
{
CV_EXPORTS bool initModule_xfeatures2d(void);
/*!
FREAK implementation
*/
class CV_EXPORTS FREAK : public DescriptorExtractor
{
public:
/** Constructor
* @param orientationNormalized enable orientation normalization
* @param scaleNormalized enable scale normalization
* @param patternScale scaling of the description pattern
* @param nbOctave number of octaves covered by the detected keypoints
* @param selectedPairs (optional) user defined selected pairs
*/
explicit FREAK( bool orientationNormalized = true,
bool scaleNormalized = true,
float patternScale = 22.0f,
int nOctaves = 4,
const std::vector<int>& selectedPairs = std::vector<int>());
FREAK( const FREAK& rhs );
FREAK& operator=( const FREAK& );
virtual ~FREAK();
/** returns the descriptor length in bytes */
virtual int descriptorSize() const;
/** returns the descriptor type */
virtual int descriptorType() const;
/** returns the default norm type */
virtual int defaultNorm() const;
/** select the 512 "best description pairs"
* @param images grayscale images set
* @param keypoints set of detected keypoints
* @param corrThresh correlation threshold
* @param verbose print construction information
* @return list of best pair indexes
*/
std::vector<int> selectPairs( const std::vector<Mat>& images, std::vector<std::vector<KeyPoint> >& keypoints,
const double corrThresh = 0.7, bool verbose = true );
AlgorithmInfo* info() const;
enum
{
NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
};
protected:
virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
void buildPattern();
template <typename imgType, typename iiType>
imgType meanIntensity( InputArray image, InputArray integral, const float kp_x, const float kp_y,
const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
template <typename srcMatType, typename iiMatType>
void computeDescriptors( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
template <typename srcMatType>
void extractDescriptor(srcMatType *pointsValue, void ** ptr) const;
bool orientationNormalized; //true if the orientation is normalized, false otherwise
bool scaleNormalized; //true if the scale is normalized, false otherwise
double patternScale; //scaling of the pattern
int nOctaves; //number of octaves
bool extAll; // true if all pairs need to be extracted for pairs selection
double patternScale0;
int nOctaves0;
std::vector<int> selectedPairs0;
struct PatternPoint
{
float x; // x coordinate relative to center
float y; // x coordinate relative to center
float sigma; // Gaussian smoothing sigma
};
struct DescriptionPair
{
uchar i; // index of the first point
uchar j; // index of the second point
};
struct OrientationPair
{
uchar i; // index of the first point
uchar j; // index of the second point
int weight_dx; // dx/(norm_sq))*4096
int weight_dy; // dy/(norm_sq))*4096
};
std::vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
DescriptionPair descriptionPairs[NB_PAIRS];
OrientationPair orientationPairs[NB_ORIENPAIRS];
};
/*!
The "Star" Detector.
The class implements the keypoint detector introduced by K. Konolige.
*/
class CV_EXPORTS_W StarDetector : public FeatureDetector
{
public:
//! the full constructor
CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
int _lineThresholdProjected=10,
int _lineThresholdBinarized=8,
int _suppressNonmaxSize=5);
//! finds the keypoints in the image
CV_WRAP_AS(detect) void operator()(const Mat& image,
CV_OUT std::vector<KeyPoint>& keypoints) const;
AlgorithmInfo* info() const;
protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
int maxSize;
int responseThreshold;
int lineThresholdProjected;
int lineThresholdBinarized;
int suppressNonmaxSize;
};
typedef StarDetector StarFeatureDetector;
/*
* BRIEF Descriptor
*/
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
{
public:
static const int PATCH_SIZE = 48;
static const int KERNEL_SIZE = 9;
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
BriefDescriptorExtractor( int bytes = 32 );
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
virtual int defaultNorm() const;
/// @todo read and write for brief
AlgorithmInfo* info() const;
protected:
virtual void computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const;
typedef void(*PixelTestFn)(InputArray, const std::vector<KeyPoint>&, OutputArray);
int bytes_;
PixelTestFn test_fn_;
};
}
}
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_NONFREE_CUDA_HPP__
#define __OPENCV_NONFREE_CUDA_HPP__
#include "opencv2/core/cuda.hpp"
namespace cv { namespace cuda {
class CV_EXPORTS SURF_CUDA
{
public:
enum KeypointLayout
{
X_ROW = 0,
Y_ROW,
LAPLACIAN_ROW,
OCTAVE_ROW,
SIZE_ROW,
ANGLE_ROW,
HESSIAN_ROW,
ROWS_COUNT
};
//! the default constructor
SURF_CUDA();
//! the full constructor taking all the necessary parameters
explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
//! returns the descriptor size in float's (64 or 128)
int descriptorSize() const;
//! returns the default norm type
int defaultNorm() const;
//! upload host keypoints to device memory
void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
//! download keypoints from device to host memory
void downloadKeypoints(const GpuMat& keypointsGPU, std::vector<KeyPoint>& keypoints);
//! download descriptors from device to host memory
void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector<float>& descriptors);
//! finds the keypoints using fast hessian detector used in SURF
//! supports CV_8UC1 images
//! keypoints will have nFeature cols and 6 rows
//! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature
//! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature
//! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature
//! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature
//! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature
//! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature
//! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
//! finds the keypoints and computes their descriptors.
//! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints = false);
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
bool useProvidedKeypoints = false);
void releaseMemory();
// SURF parameters
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
float keypointsRatio;
GpuMat sum, mask1, maskSum, intBuffer;
GpuMat det, trace;
GpuMat maxPosBuffer;
};
}} // namespace cv { namespace cuda {
#endif // __OPENCV_NONFREE_CUDA_HPP__
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_NONFREE_FEATURES_2D_HPP__
#define __OPENCV_NONFREE_FEATURES_2D_HPP__
#include "opencv2/features2d.hpp"
namespace cv
{
namespace xfeatures2d
{
/*!
SIFT implementation.
The class implements SIFT algorithm by D. Lowe.
*/
class CV_EXPORTS_W SIFT : public Feature2D
{
public:
CV_WRAP explicit SIFT( int nfeatures = 0, int nOctaveLayers = 3,
double contrastThreshold = 0.04, double edgeThreshold = 10,
double sigma = 1.6);
//! returns the descriptor size in floats (128)
CV_WRAP int descriptorSize() const;
//! returns the descriptor type
CV_WRAP int descriptorType() const;
//! returns the default norm type
CV_WRAP int defaultNorm() const;
//! finds the keypoints using SIFT algorithm
void operator()(InputArray img, InputArray mask,
std::vector<KeyPoint>& keypoints) const;
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
//! Optionally it can compute descriptors for the user-provided keypoints
void operator()(InputArray img, InputArray mask,
std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
bool useProvidedKeypoints = false) const;
AlgorithmInfo* info() const;
void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
std::vector<KeyPoint>& keypoints ) const;
protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
CV_PROP_RW int nfeatures;
CV_PROP_RW int nOctaveLayers;
CV_PROP_RW double contrastThreshold;
CV_PROP_RW double edgeThreshold;
CV_PROP_RW double sigma;
};
typedef SIFT SiftFeatureDetector;
typedef SIFT SiftDescriptorExtractor;
/*!
SURF implementation.
The class implements SURF algorithm by H. Bay et al.
*/
class CV_EXPORTS_W SURF : public Feature2D
{
public:
//! the default constructor
CV_WRAP SURF();
//! the full constructor taking all the necessary parameters
explicit CV_WRAP SURF(double hessianThreshold,
int nOctaves = 4, int nOctaveLayers = 2,
bool extended = true, bool upright = false);
//! returns the descriptor size in float's (64 or 128)
CV_WRAP int descriptorSize() const;
//! returns the descriptor type
CV_WRAP int descriptorType() const;
//! returns the descriptor type
CV_WRAP int defaultNorm() const;
//! finds the keypoints using fast hessian detector used in SURF
void operator()(InputArray img, InputArray mask,
CV_OUT std::vector<KeyPoint>& keypoints) const;
//! finds the keypoints and computes their descriptors. Optionally it can compute descriptors for the user-provided keypoints
void operator()(InputArray img, InputArray mask,
CV_OUT std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
bool useProvidedKeypoints = false) const;
AlgorithmInfo* info() const;
CV_PROP_RW double hessianThreshold;
CV_PROP_RW int nOctaves;
CV_PROP_RW int nOctaveLayers;
CV_PROP_RW bool extended;
CV_PROP_RW bool upright;
protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
};
typedef SURF SurfFeatureDetector;
typedef SURF SurfDescriptorExtractor;
}
} /* namespace cv */
#endif
#include "perf_precomp.hpp"
#include "opencv2/ts/cuda_perf.hpp"
static const char * impls[] = {
#ifdef HAVE_CUDA
"cuda",
#endif
"plain"
};
CV_PERF_TEST_MAIN_WITH_IMPLS(nonfree, impls, perf::printCudaInfo())
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include "cvconfig.h"
#include "opencv2/ts.hpp"
#include "opencv2/xfeatures2d.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_OCL
# include "opencv2/nonfree/ocl.hpp"
#endif
#ifdef HAVE_CUDA
# include "opencv2/nonfree/cuda.hpp"
#endif
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
typedef perf::TestBaseWithParam<std::string> surf;
#define SURF_IMAGES \
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
"stitching/a3.png"
PERF_TEST_P(surf, detect, testing::Values(SURF_IMAGES))
{
string filename = getDataPath(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
Mat mask;
declare.in(frame).time(90);
SURF detector;
vector<KeyPoint> points;
TEST_CYCLE() detector(frame, mask, points);
SANITY_CHECK_KEYPOINTS(points, 1e-3);
}
PERF_TEST_P(surf, extract, testing::Values(SURF_IMAGES))
{
string filename = getDataPath(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
Mat mask;
declare.in(frame).time(90);
SURF detector;
vector<KeyPoint> points;
vector<float> descriptors;
detector(frame, mask, points);
TEST_CYCLE() detector(frame, mask, points, descriptors, true);
SANITY_CHECK(descriptors, 1e-4);
}
PERF_TEST_P(surf, full, testing::Values(SURF_IMAGES))
{
string filename = getDataPath(GetParam());
Mat frame = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
Mat mask;
declare.in(frame).time(90);
SURF detector;
vector<KeyPoint> points;
vector<float> descriptors;
TEST_CYCLE() detector(frame, mask, points, descriptors, false);
SANITY_CHECK_KEYPOINTS(points, 1e-3);
SANITY_CHECK(descriptors, 1e-4);
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/ts/cuda_perf.hpp"
using namespace std;
using namespace testing;
using namespace perf;
//////////////////////////////////////////////////////////////////////
// SURF
#ifdef HAVE_OPENCV_CUDAARITHM
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, CUDA_SURF,
Values<std::string>("gpu/perf/aloe.png"))
{
declare.time(50.0);
const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
if (PERF_RUN_CUDA())
{
cv::cuda::SURF_CUDA d_surf;
const cv::cuda::GpuMat d_img(img);
cv::cuda::GpuMat d_keypoints, d_descriptors;
TEST_CYCLE() d_surf(d_img, cv::cuda::GpuMat(), d_keypoints, d_descriptors);
std::vector<cv::KeyPoint> gpu_keypoints;
d_surf.downloadKeypoints(d_keypoints, gpu_keypoints);
cv::Mat gpu_descriptors(d_descriptors);
sortKeyPoints(gpu_keypoints, gpu_descriptors);
SANITY_CHECK_KEYPOINTS(gpu_keypoints);
SANITY_CHECK(gpu_descriptors, 1e-3);
}
else
{
cv::SURF surf;
std::vector<cv::KeyPoint> cpu_keypoints;
cv::Mat cpu_descriptors;
TEST_CYCLE() surf(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
SANITY_CHECK(cpu_descriptors);
}
}
#endif // HAVE_OPENCV_CUDAARITHM
#endif // HAVE_CUDA
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_OPENCV_OCL
using namespace cv;
using namespace cv::ocl;
using namespace std;
typedef perf::TestBaseWithParam<std::string> OCL_SURF;
#define SURF_IMAGES \
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
"stitching/a3.png"
PERF_TEST_P(OCL_SURF, DISABLED_with_data_transfer, testing::Values(SURF_IMAGES))
{
string filename = getDataPath(GetParam());
Mat img = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
SURF_OCL d_surf;
oclMat d_keypoints;
oclMat d_descriptors;
Mat cpu_kp;
Mat cpu_dp;
declare.time(60);
TEST_CYCLE()
{
oclMat d_src(img);
d_surf(d_src, oclMat(), d_keypoints, d_descriptors);
d_keypoints.download(cpu_kp);
d_descriptors.download(cpu_dp);
}
SANITY_CHECK(cpu_kp, 1);
SANITY_CHECK(cpu_dp, 1);
}
PERF_TEST_P(OCL_SURF, DISABLED_without_data_transfer, testing::Values(SURF_IMAGES))
{
string filename = getDataPath(GetParam());
Mat img = imread(filename, IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
SURF_OCL d_surf;
oclMat d_keypoints;
oclMat d_descriptors;
oclMat d_src(img);
declare.time(60);
TEST_CYCLE() d_surf(d_src, oclMat(), d_keypoints, d_descriptors);
Mat cpu_kp;
Mat cpu_dp;
d_keypoints.download(cpu_kp);
d_descriptors.download(cpu_dp);
SANITY_CHECK(cpu_kp, 1);
SANITY_CHECK(cpu_dp, 1);
}
#endif // HAVE_OPENCV_OCL
This source diff could not be displayed because it is too large. You can view the blob instead.
/*
* shape_context.cpp -- Shape context demo for shape matching
*/
#include "opencv2/shape.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"
#include <opencv2/core/utility.hpp>
#include <iostream>
#include <string>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
static void help()
{
printf("\nThis program demonstrates how to use common interface for shape transformers\n"
"Call\n"
"shape_transformation [image1] [image2]\n");
}
int main(int argc, char** argv)
{
help();
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE);
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
if(img1.empty() || img2.empty() || argc<2)
{
printf("Can't read one of the images\n");
return -1;
}
// detecting keypoints
SurfFeatureDetector detector(5000);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
// matching descriptors
BFMatcher matcher(extractor.defaultNorm());
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
imshow("matches", img_matches);
// extract points
vector<Point2f> pts1, pts2;
for (size_t ii=0; ii<keypoints1.size(); ii++)
pts1.push_back( keypoints1[ii].pt );
for (size_t ii=0; ii<keypoints2.size(); ii++)
pts2.push_back( keypoints2[ii].pt );
// Apply TPS
Ptr<ThinPlateSplineShapeTransformer> mytps = createThinPlateSplineShapeTransformer(25000); //TPS with a relaxed constraint
mytps->estimateTransformation(pts1, pts2, matches);
mytps->warpImage(img2, img2);
imshow("Tranformed", img2);
waitKey(0);
return 0;
}
#include <iostream>
#include <stdio.h>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv;
using namespace cv::xfeatures2d;
const int LOOP_NUM = 10;
const int GOOD_PTS_MAX = 50;
const float GOOD_PORTION = 0.15f;
int64 work_begin = 0;
int64 work_end = 0;
static void workBegin()
{
work_begin = getTickCount();
}
static void workEnd()
{
work_end = getTickCount() - work_begin;
}
static double getTime()
{
return work_end /((double)getTickFrequency() )* 1000.;
}
template<class KPDetector>
struct SURFDetector
{
KPDetector surf;
SURFDetector(double hessian = 800.0)
:surf(hessian)
{
}
template<class T>
void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
{
surf(in, mask, pts, descriptors, useProvided);
}
};
template<class KPMatcher>
struct SURFMatcher
{
KPMatcher matcher;
template<class T>
void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches)
{
matcher.match(in1, in2, matches);
}
};
static Mat drawGoodMatches(
const Mat& img1,
const Mat& img2,
const std::vector<KeyPoint>& keypoints1,
const std::vector<KeyPoint>& keypoints2,
std::vector<DMatch>& matches,
std::vector<Point2f>& scene_corners_
)
{
//-- Sort matches and preserve top 10% matches
std::sort(matches.begin(), matches.end());
std::vector< DMatch > good_matches;
double minDist = matches.front().distance;
double maxDist = matches.back().distance;
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
for( int i = 0; i < ptsPairs; i++ )
{
good_matches.push_back( matches[i] );
}
std::cout << "\nMax distance: " << maxDist << std::endl;
std::cout << "Min distance: " << minDist << std::endl;
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;
// drawing the results
Mat img_matches;
drawMatches( img1, keypoints1, img2, keypoints2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( size_t i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
}
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = Point(0,0);
obj_corners[1] = Point( img1.cols, 0 );
obj_corners[2] = Point( img1.cols, img1.rows );
obj_corners[3] = Point( 0, img1.rows );
std::vector<Point2f> scene_corners(4);
Mat H = findHomography( obj, scene, RANSAC );
perspectiveTransform( obj_corners, scene_corners, H);
scene_corners_ = scene_corners;
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches,
scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0),
Scalar( 0, 255, 0), 2, LINE_AA );
line( img_matches,
scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0),
Scalar( 0, 255, 0), 2, LINE_AA );
line( img_matches,
scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0),
Scalar( 0, 255, 0), 2, LINE_AA );
line( img_matches,
scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0),
Scalar( 0, 255, 0), 2, LINE_AA );
return img_matches;
}
////////////////////////////////////////////////////
// This program demonstrates the usage of SURF_OCL.
// use cpu findHomography interface to calculate the transformation matrix
int main(int argc, char* argv[])
{
const char* keys =
"{ h help | false | print help message }"
"{ l left | box.png | specify left image }"
"{ r right | box_in_scene.png | specify right image }"
"{ o output | SURF_output.jpg | specify output save path }"
"{ m cpu_mode | false | run without OpenCL }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help"))
{
std::cout << "Usage: surf_matcher [options]" << std::endl;
std::cout << "Available options:" << std::endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
if (cmd.has("cpu_mode"))
{
ocl::setUseOpenCL(false);
std::cout << "OpenCL was disabled" << std::endl;
}
UMat img1, img2;
std::string outpath = cmd.get<std::string>("o");
std::string leftName = cmd.get<std::string>("l");
imread(leftName, IMREAD_GRAYSCALE).copyTo(img1);
if(img1.empty())
{
std::cout << "Couldn't load " << leftName << std::endl;
cmd.printMessage();
return EXIT_FAILURE;
}
std::string rightName = cmd.get<std::string>("r");
imread(rightName, IMREAD_GRAYSCALE).copyTo(img2);
if(img2.empty())
{
std::cout << "Couldn't load " << rightName << std::endl;
cmd.printMessage();
return EXIT_FAILURE;
}
double surf_time = 0.;
//declare input/output
std::vector<KeyPoint> keypoints1, keypoints2;
std::vector<DMatch> matches;
UMat _descriptors1, _descriptors2;
Mat descriptors1 = _descriptors1.getMat(ACCESS_RW),
descriptors2 = _descriptors2.getMat(ACCESS_RW);
//instantiate detectors/matchers
SURFDetector<SURF> surf;
SURFMatcher<BFMatcher> matcher;
//-- start of timing section
for (int i = 0; i <= LOOP_NUM; i++)
{
if(i == 1) workBegin();
surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1);
surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2);
matcher.match(descriptors1, descriptors2, matches);
}
workEnd();
std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
surf_time = getTime();
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
std::vector<Point2f> corner;
Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner);
//-- Show detected matches
namedWindow("surf matches", 0);
imshow("surf matches", img_matches);
imwrite(outpath, img_matches);
waitKey(0);
return EXIT_SUCCESS;
}
/*
* video_homography.cpp
*
* Created on: Oct 18, 2010
* Author: erublee
*/
#include "opencv2/calib3d.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"
#include <iostream>
#include <list>
#include <vector>
using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;
static void help(char **av)
{
cout << "\nThis program demonstrated the use of features2d with the Fast corner detector and brief descriptors\n"
<< "to track planar objects by computing their homography from the key (training) image to the query (test) image\n\n" << endl;
cout << "usage: " << av[0] << " <video device number>\n" << endl;
cout << "The following keys do stuff:" << endl;
cout << " t : grabs a reference frame to match against" << endl;
cout << " l : makes the reference frame new every frame" << endl;
cout << " q or escape: quit" << endl;
}
namespace
{
void drawMatchesRelative(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
std::vector<cv::DMatch>& matches, Mat& img, const vector<unsigned char>& mask = vector<
unsigned char> ())
{
for (int i = 0; i < (int)matches.size(); i++)
{
if (mask.empty() || mask[i])
{
Point2f pt_new = query[matches[i].queryIdx].pt;
Point2f pt_old = train[matches[i].trainIdx].pt;
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1);
cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1);
}
}
}
//Takes a descriptor and turns it into an xy point
void keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out)
{
out.clear();
out.reserve(in.size());
for (size_t i = 0; i < in.size(); ++i)
{
out.push_back(in[i].pt);
}
}
//Takes an xy point and appends that to a keypoint structure
void points2keypoints(const vector<Point2f>& in, vector<KeyPoint>& out)
{
out.clear();
out.reserve(in.size());
for (size_t i = 0; i < in.size(); ++i)
{
out.push_back(KeyPoint(in[i], 1));
}
}
//Uses computed homography H to warp original input points to new planar position
void warpKeypoints(const Mat& H, const vector<KeyPoint>& in, vector<KeyPoint>& out)
{
vector<Point2f> pts;
keypoints2points(in, pts);
vector<Point2f> pts_w(pts.size());
Mat m_pts_w(pts_w);
perspectiveTransform(Mat(pts), m_pts_w, H);
points2keypoints(pts_w, out);
}
//Converts matching indices to xy points
void matches2points(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
const std::vector<cv::DMatch>& matches, std::vector<cv::Point2f>& pts_train,
std::vector<Point2f>& pts_query)
{
pts_train.clear();
pts_query.clear();
pts_train.reserve(matches.size());
pts_query.reserve(matches.size());
size_t i = 0;
for (; i < matches.size(); i++)
{
const DMatch & dmatch = matches[i];
pts_query.push_back(query[dmatch.queryIdx].pt);
pts_train.push_back(train[dmatch.trainIdx].pt);
}
}
void resetH(Mat&H)
{
H = Mat::eye(3, 3, CV_32FC1);
}
}
int main(int ac, char ** av)
{
if (ac != 2)
{
help(av);
return 1;
}
BriefDescriptorExtractor brief(32);
VideoCapture capture;
capture.open(atoi(av[1]));
if (!capture.isOpened())
{
help(av);
cout << "capture device " << atoi(av[1]) << " failed to open!" << endl;
return 1;
}
cout << "following keys do stuff:" << endl;
cout << "t : grabs a reference frame to match against" << endl;
cout << "l : makes the reference frame new every frame" << endl;
cout << "q or escape: quit" << endl;
Mat frame;
vector<DMatch> matches;
BFMatcher desc_matcher(brief.defaultNorm());
vector<Point2f> train_pts, query_pts;
vector<KeyPoint> train_kpts, query_kpts;
vector<unsigned char> match_mask;
Mat gray;
bool ref_live = true;
Mat train_desc, query_desc;
FastFeatureDetector detector(10, true);
Mat H_prev = Mat::eye(3, 3, CV_32FC1);
for (;;)
{
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, gray, COLOR_RGB2GRAY);
detector.detect(gray, query_kpts); //Find interest points
brief.compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location
if (!train_kpts.empty())
{
vector<KeyPoint> test_kpts;
warpKeypoints(H_prev.inv(), query_kpts, test_kpts);
//Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25);
desc_matcher.match(query_desc, train_desc, matches, Mat());
drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG);
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts);
if (matches.size() > 5)
{
Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask);
if (countNonZero(Mat(match_mask)) > 15)
{
H_prev = H;
}
else
resetH(H_prev);
drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask);
}
else
resetH(H_prev);
}
else
{
H_prev = Mat::eye(3, 3, CV_32FC1);
Mat out;
drawKeypoints(gray, query_kpts, out);
frame = out;
}
imshow("frame", frame);
if (ref_live)
{
train_kpts = query_kpts;
query_desc.copyTo(train_desc);
}
char key = (char)waitKey(2);
switch (key)
{
case 'l':
ref_live = true;
resetH(H_prev);
break;
case 't':
ref_live = false;
train_kpts = query_kpts;
query_desc.copyTo(train_desc);
resetH(H_prev);
break;
case 27:
case 'q':
return 0;
break;
}
}
return 0;
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>
namespace cv
{
namespace xfeatures2d
{
inline int smoothedSum(const Mat& sum, const KeyPoint& pt, int y, int x)
{
static const int HALF_KERNEL = BriefDescriptorExtractor::KERNEL_SIZE / 2;
int img_y = (int)(pt.pt.y + 0.5) + y;
int img_x = (int)(pt.pt.x + 0.5) + x;
return sum.at<int>(img_y + HALF_KERNEL + 1, img_x + HALF_KERNEL + 1)
- sum.at<int>(img_y + HALF_KERNEL + 1, img_x - HALF_KERNEL)
- sum.at<int>(img_y - HALF_KERNEL, img_x + HALF_KERNEL + 1)
+ sum.at<int>(img_y - HALF_KERNEL, img_x - HALF_KERNEL);
}
static void pixelTests16(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
const KeyPoint& pt = keypoints[i];
#include "generated_16.i"
}
}
static void pixelTests32(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
const KeyPoint& pt = keypoints[i];
#include "generated_32.i"
}
}
static void pixelTests64(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
const KeyPoint& pt = keypoints[i];
#include "generated_64.i"
}
}
BriefDescriptorExtractor::BriefDescriptorExtractor(int bytes) :
bytes_(bytes), test_fn_(NULL)
{
switch (bytes)
{
case 16:
test_fn_ = pixelTests16;
break;
case 32:
test_fn_ = pixelTests32;
break;
case 64:
test_fn_ = pixelTests64;
break;
default:
CV_Error(Error::StsBadArg, "bytes must be 16, 32, or 64");
}
}
int BriefDescriptorExtractor::descriptorSize() const
{
return bytes_;
}
int BriefDescriptorExtractor::descriptorType() const
{
return CV_8UC1;
}
int BriefDescriptorExtractor::defaultNorm() const
{
return NORM_HAMMING;
}
void BriefDescriptorExtractor::read( const FileNode& fn)
{
int dSize = fn["descriptorSize"];
switch (dSize)
{
case 16:
test_fn_ = pixelTests16;
break;
case 32:
test_fn_ = pixelTests32;
break;
case 64:
test_fn_ = pixelTests64;
break;
default:
CV_Error(Error::StsBadArg, "descriptorSize must be 16, 32, or 64");
}
bytes_ = dSize;
}
void BriefDescriptorExtractor::write( FileStorage& fs) const
{
fs << "descriptorSize" << bytes_;
}
void BriefDescriptorExtractor::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
// Construct integral image for fast smoothing (box filter)
Mat sum;
Mat grayImage = image.getMat();
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
///TODO allow the user to pass in a precomputed integral image
//if(image.type() == CV_32S)
// sum = image;
//else
integral( grayImage, sum, CV_32S);
//Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2);
descriptors.create((int)keypoints.size(), bytes_, CV_8U);
descriptors.setTo(Scalar::all(0));
test_fn_(sum, keypoints, descriptors);
}
}
} // namespace cv
This diff is collapsed.
This diff is collapsed.
// Code generated with '$ scripts/generate_code.py src/test_pairs.txt 16'
#define SMOOTHED(y,x) smoothedSum(sum, pt, y, x)
desc[0] = (uchar)(((SMOOTHED(-2, -1) < SMOOTHED(7, -1)) << 7) + ((SMOOTHED(-14, -1) < SMOOTHED(-3, 3)) << 6) + ((SMOOTHED(1, -2) < SMOOTHED(11, 2)) << 5) + ((SMOOTHED(1, 6) < SMOOTHED(-10, -7)) << 4) + ((SMOOTHED(13, 2) < SMOOTHED(-1, 0)) << 3) + ((SMOOTHED(-14, 5) < SMOOTHED(5, -3)) << 2) + ((SMOOTHED(-2, 8) < SMOOTHED(2, 4)) << 1) + ((SMOOTHED(-11, 8) < SMOOTHED(-15, 5)) << 0));
desc[1] = (uchar)(((SMOOTHED(-6, -23) < SMOOTHED(8, -9)) << 7) + ((SMOOTHED(-12, 6) < SMOOTHED(-10, 8)) << 6) + ((SMOOTHED(-3, -1) < SMOOTHED(8, 1)) << 5) + ((SMOOTHED(3, 6) < SMOOTHED(5, 6)) << 4) + ((SMOOTHED(-7, -6) < SMOOTHED(5, -5)) << 3) + ((SMOOTHED(22, -2) < SMOOTHED(-11, -8)) << 2) + ((SMOOTHED(14, 7) < SMOOTHED(8, 5)) << 1) + ((SMOOTHED(-1, 14) < SMOOTHED(-5, -14)) << 0));
desc[2] = (uchar)(((SMOOTHED(-14, 9) < SMOOTHED(2, 0)) << 7) + ((SMOOTHED(7, -3) < SMOOTHED(22, 6)) << 6) + ((SMOOTHED(-6, 6) < SMOOTHED(-8, -5)) << 5) + ((SMOOTHED(-5, 9) < SMOOTHED(7, -1)) << 4) + ((SMOOTHED(-3, -7) < SMOOTHED(-10, -18)) << 3) + ((SMOOTHED(4, -5) < SMOOTHED(0, 11)) << 2) + ((SMOOTHED(2, 3) < SMOOTHED(9, 10)) << 1) + ((SMOOTHED(-10, 3) < SMOOTHED(4, 9)) << 0));
desc[3] = (uchar)(((SMOOTHED(0, 12) < SMOOTHED(-3, 19)) << 7) + ((SMOOTHED(1, 15) < SMOOTHED(-11, -5)) << 6) + ((SMOOTHED(14, -1) < SMOOTHED(7, 8)) << 5) + ((SMOOTHED(7, -23) < SMOOTHED(-5, 5)) << 4) + ((SMOOTHED(0, -6) < SMOOTHED(-10, 17)) << 3) + ((SMOOTHED(13, -4) < SMOOTHED(-3, -4)) << 2) + ((SMOOTHED(-12, 1) < SMOOTHED(-12, 2)) << 1) + ((SMOOTHED(0, 8) < SMOOTHED(3, 22)) << 0));
desc[4] = (uchar)(((SMOOTHED(-13, 13) < SMOOTHED(3, -1)) << 7) + ((SMOOTHED(-16, 17) < SMOOTHED(6, 10)) << 6) + ((SMOOTHED(7, 15) < SMOOTHED(-5, 0)) << 5) + ((SMOOTHED(2, -12) < SMOOTHED(19, -2)) << 4) + ((SMOOTHED(3, -6) < SMOOTHED(-4, -15)) << 3) + ((SMOOTHED(8, 3) < SMOOTHED(0, 14)) << 2) + ((SMOOTHED(4, -11) < SMOOTHED(5, 5)) << 1) + ((SMOOTHED(11, -7) < SMOOTHED(7, 1)) << 0));
desc[5] = (uchar)(((SMOOTHED(6, 12) < SMOOTHED(21, 3)) << 7) + ((SMOOTHED(-3, 2) < SMOOTHED(14, 1)) << 6) + ((SMOOTHED(5, 1) < SMOOTHED(-5, 11)) << 5) + ((SMOOTHED(3, -17) < SMOOTHED(-6, 2)) << 4) + ((SMOOTHED(6, 8) < SMOOTHED(5, -10)) << 3) + ((SMOOTHED(-14, -2) < SMOOTHED(0, 4)) << 2) + ((SMOOTHED(5, -7) < SMOOTHED(-6, 5)) << 1) + ((SMOOTHED(10, 4) < SMOOTHED(4, -7)) << 0));
desc[6] = (uchar)(((SMOOTHED(22, 0) < SMOOTHED(7, -18)) << 7) + ((SMOOTHED(-1, -3) < SMOOTHED(0, 18)) << 6) + ((SMOOTHED(-4, 22) < SMOOTHED(-5, 3)) << 5) + ((SMOOTHED(1, -7) < SMOOTHED(2, -3)) << 4) + ((SMOOTHED(19, -20) < SMOOTHED(17, -2)) << 3) + ((SMOOTHED(3, -10) < SMOOTHED(-8, 24)) << 2) + ((SMOOTHED(-5, -14) < SMOOTHED(7, 5)) << 1) + ((SMOOTHED(-2, 12) < SMOOTHED(-4, -15)) << 0));
desc[7] = (uchar)(((SMOOTHED(4, 12) < SMOOTHED(0, -19)) << 7) + ((SMOOTHED(20, 13) < SMOOTHED(3, 5)) << 6) + ((SMOOTHED(-8, -12) < SMOOTHED(5, 0)) << 5) + ((SMOOTHED(-5, 6) < SMOOTHED(-7, -11)) << 4) + ((SMOOTHED(6, -11) < SMOOTHED(-3, -22)) << 3) + ((SMOOTHED(15, 4) < SMOOTHED(10, 1)) << 2) + ((SMOOTHED(-7, -4) < SMOOTHED(15, -6)) << 1) + ((SMOOTHED(5, 10) < SMOOTHED(0, 24)) << 0));
desc[8] = (uchar)(((SMOOTHED(3, 6) < SMOOTHED(22, -2)) << 7) + ((SMOOTHED(-13, 14) < SMOOTHED(4, -4)) << 6) + ((SMOOTHED(-13, 8) < SMOOTHED(-18, -22)) << 5) + ((SMOOTHED(-1, -1) < SMOOTHED(-7, 3)) << 4) + ((SMOOTHED(-19, -12) < SMOOTHED(4, 3)) << 3) + ((SMOOTHED(8, 10) < SMOOTHED(13, -2)) << 2) + ((SMOOTHED(-6, -1) < SMOOTHED(-6, -5)) << 1) + ((SMOOTHED(2, -21) < SMOOTHED(-3, 2)) << 0));
desc[9] = (uchar)(((SMOOTHED(4, -7) < SMOOTHED(0, 16)) << 7) + ((SMOOTHED(-6, -5) < SMOOTHED(-12, -1)) << 6) + ((SMOOTHED(1, -1) < SMOOTHED(9, 18)) << 5) + ((SMOOTHED(-7, 10) < SMOOTHED(-11, 6)) << 4) + ((SMOOTHED(4, 3) < SMOOTHED(19, -7)) << 3) + ((SMOOTHED(-18, 5) < SMOOTHED(-4, 5)) << 2) + ((SMOOTHED(4, 0) < SMOOTHED(-20, 4)) << 1) + ((SMOOTHED(7, -11) < SMOOTHED(18, 12)) << 0));
desc[10] = (uchar)(((SMOOTHED(-20, 17) < SMOOTHED(-18, 7)) << 7) + ((SMOOTHED(2, 15) < SMOOTHED(19, -11)) << 6) + ((SMOOTHED(-18, 6) < SMOOTHED(-7, 3)) << 5) + ((SMOOTHED(-4, 1) < SMOOTHED(-14, 13)) << 4) + ((SMOOTHED(17, 3) < SMOOTHED(2, -8)) << 3) + ((SMOOTHED(-7, 2) < SMOOTHED(1, 6)) << 2) + ((SMOOTHED(17, -9) < SMOOTHED(-2, 8)) << 1) + ((SMOOTHED(-8, -6) < SMOOTHED(-1, 12)) << 0));
desc[11] = (uchar)(((SMOOTHED(-2, 4) < SMOOTHED(-1, 6)) << 7) + ((SMOOTHED(-2, 7) < SMOOTHED(6, 8)) << 6) + ((SMOOTHED(-8, -1) < SMOOTHED(-7, -9)) << 5) + ((SMOOTHED(8, -9) < SMOOTHED(15, 0)) << 4) + ((SMOOTHED(0, 22) < SMOOTHED(-4, -15)) << 3) + ((SMOOTHED(-14, -1) < SMOOTHED(3, -2)) << 2) + ((SMOOTHED(-7, -4) < SMOOTHED(17, -7)) << 1) + ((SMOOTHED(-8, -2) < SMOOTHED(9, -4)) << 0));
desc[12] = (uchar)(((SMOOTHED(5, -7) < SMOOTHED(7, 7)) << 7) + ((SMOOTHED(-5, 13) < SMOOTHED(-8, 11)) << 6) + ((SMOOTHED(11, -4) < SMOOTHED(0, 8)) << 5) + ((SMOOTHED(5, -11) < SMOOTHED(-9, -6)) << 4) + ((SMOOTHED(2, -6) < SMOOTHED(3, -20)) << 3) + ((SMOOTHED(-6, 2) < SMOOTHED(6, 10)) << 2) + ((SMOOTHED(-6, -6) < SMOOTHED(-15, 7)) << 1) + ((SMOOTHED(-6, -3) < SMOOTHED(2, 1)) << 0));
desc[13] = (uchar)(((SMOOTHED(11, 0) < SMOOTHED(-3, 2)) << 7) + ((SMOOTHED(7, -12) < SMOOTHED(14, 5)) << 6) + ((SMOOTHED(0, -7) < SMOOTHED(-1, -1)) << 5) + ((SMOOTHED(-16, 0) < SMOOTHED(6, 8)) << 4) + ((SMOOTHED(22, 11) < SMOOTHED(0, -3)) << 3) + ((SMOOTHED(19, 0) < SMOOTHED(5, -17)) << 2) + ((SMOOTHED(-23, -14) < SMOOTHED(-13, -19)) << 1) + ((SMOOTHED(-8, 10) < SMOOTHED(-11, -2)) << 0));
desc[14] = (uchar)(((SMOOTHED(-11, 6) < SMOOTHED(-10, 13)) << 7) + ((SMOOTHED(1, -7) < SMOOTHED(14, 0)) << 6) + ((SMOOTHED(-12, 1) < SMOOTHED(-5, -5)) << 5) + ((SMOOTHED(4, 7) < SMOOTHED(8, -1)) << 4) + ((SMOOTHED(-1, -5) < SMOOTHED(15, 2)) << 3) + ((SMOOTHED(-3, -1) < SMOOTHED(7, -10)) << 2) + ((SMOOTHED(3, -6) < SMOOTHED(10, -18)) << 1) + ((SMOOTHED(-7, -13) < SMOOTHED(-13, 10)) << 0));
desc[15] = (uchar)(((SMOOTHED(1, -1) < SMOOTHED(13, -10)) << 7) + ((SMOOTHED(-19, 14) < SMOOTHED(8, -14)) << 6) + ((SMOOTHED(-4, -13) < SMOOTHED(7, 1)) << 5) + ((SMOOTHED(1, -2) < SMOOTHED(12, -7)) << 4) + ((SMOOTHED(3, -5) < SMOOTHED(1, -5)) << 3) + ((SMOOTHED(-2, -2) < SMOOTHED(8, -10)) << 2) + ((SMOOTHED(2, 14) < SMOOTHED(8, 7)) << 1) + ((SMOOTHED(3, 9) < SMOOTHED(8, 2)) << 0));
#undef SMOOTHED
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/xfeatures2d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
//#include "opencv2/nonfree/cuda.hpp"
//#include "opencv2/core/private.cuda.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_CUDAARITHM
# include "opencv2/cudaarithm.hpp"
#endif
#include "opencv2/core/private.hpp"
#endif
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#include "test_precomp.hpp"
CV_TEST_MAIN("cv")
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment