Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
d41639a9
Commit
d41639a9
authored
Aug 27, 2015
by
Vladimir
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into Itseez/master
parents
e18103e2
c11abeb7
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
1151 additions
and
343 deletions
+1151
-343
tldDataset.hpp
modules/tracking/include/opencv2/tracking/tldDataset.hpp
+1
-1
tracker.hpp
modules/tracking/include/opencv2/tracking/tracker.hpp
+86
-0
multiTracker_test.cpp
modules/tracking/samples/multiTracker_test.cpp
+227
-0
multiTracker.cpp
modules/tracking/src/multiTracker.cpp
+649
-0
multiTracker.hpp
modules/tracking/src/multiTracker.hpp
+58
-0
tldDataset.cpp
modules/tracking/src/tldDataset.cpp
+99
-59
tldDetector.cpp
modules/tracking/src/tldDetector.cpp
+15
-204
tldDetector.hpp
modules/tracking/src/tldDetector.hpp
+8
-7
tldEnsembleClassifier.hpp
modules/tracking/src/tldEnsembleClassifier.hpp
+1
-1
tldModel.cpp
modules/tracking/src/tldModel.cpp
+0
-44
tldTracker.cpp
modules/tracking/src/tldTracker.cpp
+7
-20
tldTracker.hpp
modules/tracking/src/tldTracker.hpp
+0
-7
No files found.
modules/tracking/include/opencv2/tracking/tldDataset.hpp
View file @
d41639a9
...
@@ -48,7 +48,7 @@ namespace cv
...
@@ -48,7 +48,7 @@ namespace cv
{
{
namespace
tld
namespace
tld
{
{
CV_EXPORTS
cv
::
Rect2d
tld_InitDataset
(
int
datasetInd
,
const
char
*
rootPath
=
"TLD_dataset"
);
CV_EXPORTS
cv
::
Rect2d
tld_InitDataset
(
int
videoInd
,
const
char
*
rootPath
=
"TLD_dataset"
,
int
datasetInd
=
0
);
CV_EXPORTS
cv
::
Mat
tld_getNextDatasetFrame
();
CV_EXPORTS
cv
::
Mat
tld_getNextDatasetFrame
();
}
}
}
}
...
...
modules/tracking/include/opencv2/tracking/tracker.hpp
View file @
d41639a9
...
@@ -49,6 +49,7 @@
...
@@ -49,6 +49,7 @@
#include "onlineBoosting.hpp"
#include "onlineBoosting.hpp"
#include <iostream>
#include <iostream>
#define BOILERPLATE_CODE(name,classname) \
#define BOILERPLATE_CODE(name,classname) \
static Ptr<classname> createTracker(const classname::Params ¶meters=classname::Params());\
static Ptr<classname> createTracker(const classname::Params ¶meters=classname::Params());\
virtual ~classname(){};
virtual ~classname(){};
...
@@ -564,6 +565,11 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
...
@@ -564,6 +565,11 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
virtual
void
read
(
const
FileNode
&
fn
)
=
0
;
virtual
void
read
(
const
FileNode
&
fn
)
=
0
;
virtual
void
write
(
FileStorage
&
fs
)
const
=
0
;
virtual
void
write
(
FileStorage
&
fs
)
const
=
0
;
Ptr
<
TrackerModel
>
getModel
()
{
return
model
;
}
protected
:
protected
:
virtual
bool
initImpl
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
)
=
0
;
virtual
bool
initImpl
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
)
=
0
;
...
@@ -576,6 +582,7 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
...
@@ -576,6 +582,7 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
Ptr
<
TrackerModel
>
model
;
Ptr
<
TrackerModel
>
model
;
};
};
/************************************ Specific TrackerStateEstimator Classes ************************************/
/************************************ Specific TrackerStateEstimator Classes ************************************/
/** @brief TrackerStateEstimator based on Boosting
/** @brief TrackerStateEstimator based on Boosting
...
@@ -1243,6 +1250,85 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
...
@@ -1243,6 +1250,85 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
BOILERPLATE_CODE
(
"KCF"
,
TrackerKCF
);
BOILERPLATE_CODE
(
"KCF"
,
TrackerKCF
);
};
};
/************************************ Multi-Tracker Classes ************************************/
/** @brief Base abstract class for the long-term Multi Object Trackers:
@sa Tracker, MultiTrackerTLD
*/
class
CV_EXPORTS_W
MultiTracker
{
public
:
/** @brief Constructor for Multitracker
*/
MultiTracker
()
{
targetNum
=
0
;
}
/** @brief Add a new target to a tracking-list and initialize the tracker with a know bounding box that surrounding the target
@param image The initial frame
@param boundingBox The initial boundig box of target
@param tracker_algorithm_name Multi-tracker algorithm name
@return True if new target initialization went succesfully, false otherwise
*/
bool
addTarget
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
char
*
tracker_algorithm_name
);
/** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets
@param image The current frame
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool
update
(
const
Mat
&
image
);
/** @brief Current number of targets in tracking-list
*/
int
targetNum
;
/** @brief Trackers list for Multi-Object-Tracker
*/
std
::
vector
<
Ptr
<
Tracker
>
>
trackers
;
/** @brief Bounding Boxes list for Multi-Object-Tracker
*/
std
::
vector
<
Rect2d
>
boundingBoxes
;
/** @brief List of randomly generated colors for bounding boxes display
*/
std
::
vector
<
Scalar
>
colors
;
};
/** @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
the long-term tracking task into tracking, learning and detection.
The tracker follows the object from frame to frame. The detector localizes all appearances that
have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
occlusions, object absence etc.
@sa Tracker, MultiTracker, TrackerTLD
*/
class
CV_EXPORTS_W
MultiTrackerTLD
:
public
MultiTracker
{
public
:
/** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets by
optimized update method using some techniques to speedup calculations specifically for MO TLD. The only limitation
is that all target bounding boxes should have approximately same aspect ratios. Speed boost is around 20%
@param image The current frame.
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool
update_opt
(
const
Mat
&
image
);
};
//! @}
//! @}
}
/* namespace cv */
}
/* namespace cv */
...
...
modules/tracking/samples/multiTracker_test.cpp
0 → 100644
View file @
d41639a9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using
namespace
std
;
using
namespace
cv
;
#define NUM_TEST_FRAMES 100
#define TEST_VIDEO_INDEX 15 //TLD Dataset Video Index from 1-10 for TLD and 1-60 for VOT
//#define RECORD_VIDEO_FLG
static
Mat
image
;
static
bool
paused
;
static
bool
selectObject
=
false
;
static
bool
startSelection
=
false
;
Rect2d
boundingBox
;
static
void
onMouse
(
int
event
,
int
x
,
int
y
,
int
,
void
*
)
{
if
(
!
selectObject
)
{
switch
(
event
)
{
case
EVENT_LBUTTONDOWN
:
//set origin of the bounding box
startSelection
=
true
;
boundingBox
.
x
=
x
;
boundingBox
.
y
=
y
;
boundingBox
.
width
=
boundingBox
.
height
=
0
;
break
;
case
EVENT_LBUTTONUP
:
//sei with and height of the bounding box
boundingBox
.
width
=
std
::
abs
(
x
-
boundingBox
.
x
);
boundingBox
.
height
=
std
::
abs
(
y
-
boundingBox
.
y
);
paused
=
false
;
selectObject
=
true
;
break
;
case
EVENT_MOUSEMOVE
:
if
(
startSelection
&&
!
selectObject
)
{
//draw the bounding box
Mat
currentFrame
;
image
.
copyTo
(
currentFrame
);
rectangle
(
currentFrame
,
Point
((
int
)
boundingBox
.
x
,
(
int
)
boundingBox
.
y
),
Point
(
x
,
y
),
Scalar
(
255
,
0
,
0
),
2
,
1
);
imshow
(
"Tracking API"
,
currentFrame
);
}
break
;
}
}
}
int
main
()
{
//
// "MIL", "BOOSTING", "MEDIANFLOW", "TLD"
//
char
*
tracker_algorithm_name
=
(
char
*
)
"TLD"
;
Mat
frame
;
paused
=
false
;
namedWindow
(
"Tracking API"
,
0
);
setMouseCallback
(
"Tracking API"
,
onMouse
,
0
);
MultiTrackerTLD
mt
;
//Get the first frame
////Open the capture
// VideoCapture cap(0);
// if( !cap.isOpened() )
// {
// cout << "Video stream error";
// return;
// }
//cap >> frame;
//From TLD dataset
selectObject
=
true
;
Rect2d
boundingBox1
=
tld
::
tld_InitDataset
(
TEST_VIDEO_INDEX
,
"D:/opencv/VOT 2015"
,
1
);
Rect2d
boundingBox2
(
470
,
490
,
50
,
120
);
frame
=
tld
::
tld_getNextDatasetFrame
();
frame
.
copyTo
(
image
);
// Setup output video
#ifdef RECORD_VIDEO_FLG
String
outputFilename
=
"test.avi"
;
VideoWriter
outputVideo
;
outputVideo
.
open
(
outputFilename
,
-
1
,
15
,
Size
(
image
.
cols
,
image
.
rows
));
if
(
!
outputVideo
.
isOpened
())
{
std
::
cout
<<
"!!! Output video could not be opened"
<<
std
::
endl
;
getchar
();
return
0
;
}
#endif
rectangle
(
image
,
boundingBox
,
Scalar
(
255
,
0
,
0
),
2
,
1
);
imshow
(
"Tracking API"
,
image
);
bool
initialized
=
false
;
int
frameCounter
=
0
;
//Time measurment
int64
e3
=
getTickCount
();
for
(;;)
{
//Time measurment
int64
e1
=
getTickCount
();
//Frame num
frameCounter
++
;
if
(
frameCounter
==
NUM_TEST_FRAMES
)
break
;
char
c
=
(
char
)
waitKey
(
2
);
if
(
c
==
'q'
||
c
==
27
)
break
;
if
(
c
==
'p'
)
paused
=
!
paused
;
if
(
!
paused
)
{
//cap >> frame;
frame
=
tld
::
tld_getNextDatasetFrame
();
if
(
frame
.
empty
())
{
break
;
}
frame
.
copyTo
(
image
);
if
(
selectObject
)
{
if
(
!
initialized
)
{
//initializes the tracker
mt
.
addTarget
(
frame
,
boundingBox1
,
tracker_algorithm_name
);
rectangle
(
frame
,
boundingBox1
,
mt
.
colors
[
0
],
2
,
1
);
mt
.
addTarget
(
frame
,
boundingBox2
,
tracker_algorithm_name
);
rectangle
(
frame
,
boundingBox2
,
mt
.
colors
[
1
],
2
,
1
);
initialized
=
true
;
}
else
{
//updates the tracker
if
(
mt
.
update
(
frame
))
{
for
(
int
i
=
0
;
i
<
mt
.
targetNum
;
i
++
)
rectangle
(
frame
,
mt
.
boundingBoxes
[
i
],
mt
.
colors
[
i
],
2
,
1
);
}
}
}
imshow
(
"Tracking API"
,
frame
);
#ifdef RECORD_VIDEO_FLG
outputVideo
<<
frame
;
#endif
//Time measurment
int64
e2
=
getTickCount
();
double
t1
=
(
e2
-
e1
)
/
getTickFrequency
();
cout
<<
frameCounter
<<
"
\t
frame : "
<<
t1
*
1000.0
<<
"ms"
<<
endl
;
//waitKey(0);
}
}
//Time measurment
int64
e4
=
getTickCount
();
double
t2
=
(
e4
-
e3
)
/
getTickFrequency
();
cout
<<
"Average Time for Frame: "
<<
t2
*
1000.0
/
frameCounter
<<
"ms"
<<
endl
;
cout
<<
"Average FPS: "
<<
1.0
/
t2
*
frameCounter
<<
endl
;
waitKey
(
0
);
return
0
;
}
\ No newline at end of file
modules/tracking/src/multiTracker.cpp
0 → 100644
View file @
d41639a9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "multiTracker.hpp"
namespace
cv
{
//Multitracker
bool
MultiTracker
::
addTarget
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
char
*
tracker_algorithm_name
)
{
Ptr
<
Tracker
>
tracker
=
Tracker
::
create
(
tracker_algorithm_name
);
if
(
tracker
==
NULL
)
return
false
;
if
(
!
tracker
->
init
(
image
,
boundingBox
))
return
false
;
//Add BB of target
boundingBoxes
.
push_back
(
boundingBox
);
//Add Tracker to stack
trackers
.
push_back
(
tracker
);
//Assign a random color to target
if
(
targetNum
==
1
)
colors
.
push_back
(
Scalar
(
0
,
0
,
255
));
else
colors
.
push_back
(
Scalar
(
rand
()
%
256
,
rand
()
%
256
,
rand
()
%
256
));
//Target counter
targetNum
++
;
return
true
;
}
bool
MultiTracker
::
update
(
const
Mat
&
image
)
{
for
(
int
i
=
0
;
i
<
(
int
)
trackers
.
size
();
i
++
)
if
(
!
trackers
[
i
]
->
update
(
image
,
boundingBoxes
[
i
]))
return
false
;
return
true
;
}
//Multitracker TLD
/*Optimized update method for TLD Multitracker */
bool
MultiTrackerTLD
::
update_opt
(
const
Mat
&
image
)
{
//Get parameters from first object
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
0
];
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
Ptr
<
tld
::
Data
>
data
=
tracker
->
data
;
double
scale
=
data
->
getScale
();
Mat
image_gray
,
image_blurred
,
imageForDetector
;
cvtColor
(
image
,
image_gray
,
COLOR_BGR2GRAY
);
if
(
scale
>
1.0
)
resize
(
image_gray
,
imageForDetector
,
Size
(
cvRound
(
image
.
cols
*
scale
),
cvRound
(
image
.
rows
*
scale
)),
0
,
0
,
tld
::
DOWNSCALE_MODE
);
else
imageForDetector
=
image_gray
;
GaussianBlur
(
imageForDetector
,
image_blurred
,
tld
::
GaussBlurKernelSize
,
0.0
);
//best overlap around 92%
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
>
detectorResults
(
targetNum
);
std
::
vector
<
std
::
vector
<
Rect2d
>
>
candidates
(
targetNum
);
std
::
vector
<
std
::
vector
<
double
>
>
candidatesRes
(
targetNum
);
std
::
vector
<
Rect2d
>
tmpCandidates
(
targetNum
);
std
::
vector
<
bool
>
detect_flgs
(
targetNum
);
std
::
vector
<
bool
>
trackerNeedsReInit
(
targetNum
);
bool
DETECT_FLG
=
false
;
//Detect all
for
(
int
k
=
0
;
k
<
targetNum
;
k
++
)
tmpCandidates
[
k
]
=
boundingBoxes
[
k
];
if
(
ocl
::
haveOpenCL
())
ocl_detect_all
(
imageForDetector
,
image_blurred
,
tmpCandidates
,
detectorResults
,
detect_flgs
,
trackers
);
else
detect_all
(
imageForDetector
,
image_blurred
,
tmpCandidates
,
detectorResults
,
detect_flgs
,
trackers
);
for
(
int
k
=
0
;
k
<
targetNum
;
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
data
=
tracker
->
data
;
data
->
frameNum
++
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
Rect2d
tmpCandid
=
boundingBoxes
[
k
];
//if (i == 1)
{
DETECT_FLG
=
detect_flgs
[
k
];
tmpCandid
=
tmpCandidates
[
k
];
}
if
(((
i
==
0
)
&&
!
data
->
failedLastTime
&&
tracker
->
trackerProxy
->
update
(
image
,
tmpCandid
))
||
(
DETECT_FLG
))
{
candidates
[
k
].
push_back
(
tmpCandid
);
if
(
i
==
0
)
tld
::
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
else
tld
::
resample
(
imageForDetector
,
tmpCandid
,
standardPatch
);
candidatesRes
[
k
].
push_back
(
tldModel
->
detector
->
Sc
(
standardPatch
));
}
else
{
if
(
i
==
0
)
trackerNeedsReInit
[
k
]
=
true
;
else
trackerNeedsReInit
[
k
]
=
false
;
}
}
std
::
vector
<
double
>::
iterator
it
=
std
::
max_element
(
candidatesRes
[
k
].
begin
(),
candidatesRes
[
k
].
end
());
if
(
it
==
candidatesRes
[
k
].
end
())
{
data
->
confident
=
false
;
data
->
failedLastTime
=
true
;
return
false
;
}
else
{
boundingBoxes
[
k
]
=
candidates
[
k
][
it
-
candidatesRes
[
k
].
begin
()];
data
->
failedLastTime
=
false
;
if
(
trackerNeedsReInit
[
k
]
||
it
!=
candidatesRes
[
k
].
begin
())
tracker
->
trackerProxy
->
init
(
image
,
boundingBoxes
[
k
]);
}
#if 1
if
(
it
!=
candidatesRes
[
k
].
end
())
tld
::
resample
(
imageForDetector
,
candidates
[
k
][
it
-
candidatesRes
[
k
].
begin
()],
standardPatch
);
#endif
if
(
*
it
>
tld
::
CORE_THRESHOLD
)
data
->
confident
=
true
;
if
(
data
->
confident
)
{
tld
::
TrackerTLDImpl
::
Pexpert
pExpert
(
imageForDetector
,
image_blurred
,
boundingBoxes
[
k
],
tldModel
->
detector
,
tracker
->
params
,
data
->
getMinSize
());
tld
::
TrackerTLDImpl
::
Nexpert
nExpert
(
imageForDetector
,
boundingBoxes
[
k
],
tldModel
->
detector
,
tracker
->
params
);
std
::
vector
<
Mat_
<
uchar
>
>
examplesForModel
,
examplesForEnsemble
;
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
int
negRelabeled
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
detectorResults
[
k
].
size
();
i
++
)
{
bool
expertResult
;
if
(
detectorResults
[
k
][
i
].
isObject
)
{
expertResult
=
nExpert
(
detectorResults
[
k
][
i
].
rect
);
if
(
expertResult
!=
detectorResults
[
k
][
i
].
isObject
)
negRelabeled
++
;
}
else
{
expertResult
=
pExpert
(
detectorResults
[
k
][
i
].
rect
);
}
detectorResults
[
k
][
i
].
shouldBeIntegrated
=
detectorResults
[
k
][
i
].
shouldBeIntegrated
||
(
detectorResults
[
k
][
i
].
isObject
!=
expertResult
);
detectorResults
[
k
][
i
].
isObject
=
expertResult
;
}
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
[
k
]);
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
if
(
ocl
::
haveOpenCL
())
tldModel
->
ocl_integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
true
);
else
tldModel
->
integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
true
);
examplesForModel
.
clear
();
examplesForEnsemble
.
clear
();
nExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
if
(
ocl
::
haveOpenCL
())
tldModel
->
ocl_integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
false
);
else
tldModel
->
integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
false
);
}
else
{
#ifdef CLOSED_LOOP
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
#endif
}
}
return
true
;
}
void
detect_all
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
std
::
vector
<
Rect2d
>&
res
,
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
>
&
patches
,
std
::
vector
<
bool
>
&
detect_flgs
,
std
::
vector
<
Ptr
<
Tracker
>
>
&
trackers
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
0
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
Size
initSize
=
tldModel
->
getMinSize
();
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
patches
[
k
].
clear
();
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
Mat
tmp
;
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
;
Size2d
size
=
img
.
size
();
double
scale
=
1.0
;
int
npos
=
0
,
nneg
=
0
;
double
maxSc
=
-
5.0
;
Rect2d
maxScRect
;
int
scaleID
;
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
std
::
vector
<
Point
>
>
varBuffer
(
trackers
.
size
()),
ensBuffer
(
trackers
.
size
());
std
::
vector
<
std
::
vector
<
int
>
>
varScaleIDs
(
trackers
.
size
()),
ensScaleIDs
(
trackers
.
size
());
std
::
vector
<
Point
>
tmpP
;
std
::
vector
<
int
>
tmpI
;
//Detection part
//Generate windows and filter by variance
scaleID
=
0
;
resized_imgs
.
push_back
(
img
);
blurred_imgs
.
push_back
(
imgBlurred
);
do
{
Mat_
<
double
>
intImgP
,
intImgP2
;
tld
::
TLDDetector
::
computeIntegralImages
(
resized_imgs
[
scaleID
],
intImgP
,
intImgP2
);
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
)
{
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
)
{
//Optimized variance calculation
int
x
=
dx
*
i
,
y
=
dy
*
j
,
width
=
initSize
.
width
,
height
=
initSize
.
height
;
double
p
=
0
,
p2
=
0
;
double
A
,
B
,
C
,
D
;
A
=
intImgP
(
y
,
x
);
B
=
intImgP
(
y
,
x
+
width
);
C
=
intImgP
(
y
+
height
,
x
);
D
=
intImgP
(
y
+
height
,
x
+
width
);
p
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
A
=
intImgP2
(
y
,
x
);
B
=
intImgP2
(
y
,
x
+
width
);
C
=
intImgP2
(
y
+
height
,
x
);
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
double
windowVar
=
p2
-
p
*
p
;
//Loop for on all objects
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
//Optimized variance calculation
bool
varPass
=
(
windowVar
>
tld
::
VARIANCE_THRESHOLD
*
*
tldModel
->
detector
->
originalVariancePtr
);
if
(
!
varPass
)
continue
;
varBuffer
[
k
].
push_back
(
Point
(
dx
*
i
,
dy
*
j
));
varScaleIDs
[
k
].
push_back
(
scaleID
);
}
}
}
scaleID
++
;
size
.
width
/=
tld
::
SCALE_STEP
;
size
.
height
/=
tld
::
SCALE_STEP
;
scale
*=
tld
::
SCALE_STEP
;
resize
(
img
,
tmp
,
size
,
0
,
0
,
tld
::
DOWNSCALE_MODE
);
resized_imgs
.
push_back
(
tmp
);
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
tld
::
GaussBlurKernelSize
,
0.0
f
);
blurred_imgs
.
push_back
(
tmp
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//Encsemble classification
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
[
k
].
size
();
i
++
)
{
tldModel
->
detector
->
prepareClassifiers
(
static_cast
<
int
>
(
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
step
[
0
]));
double
ensRes
=
0
;
uchar
*
data
=
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
);
for
(
int
x
=
0
;
x
<
(
int
)
tldModel
->
detector
->
classifiers
.
size
();
x
++
)
{
int
position
=
0
;
for
(
int
n
=
0
;
n
<
(
int
)
tldModel
->
detector
->
classifiers
[
x
].
measurements
.
size
();
n
++
)
{
position
=
position
<<
1
;
if
(
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
x
]
<
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
y
])
position
++
;
}
double
posNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
x
;
double
negNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
continue
;
else
ensRes
+=
posNum
/
(
posNum
+
negNum
);
}
ensRes
/=
tldModel
->
detector
->
classifiers
.
size
();
ensRes
=
tldModel
->
detector
->
ensembleClassifierNum
(
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
));
if
(
ensRes
<=
tld
::
ENSEMBLE_THRESHOLD
)
continue
;
ensBuffer
[
k
].
push_back
(
varBuffer
[
k
][
i
]);
ensScaleIDs
[
k
].
push_back
(
varScaleIDs
[
k
][
i
]);
}
}
//NN classification
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
npos
=
0
;
nneg
=
0
;
maxSc
=
-
5.0
;
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
[
k
].
size
();
i
++
)
{
tld
::
TLDDetector
::
LabeledPatch
labPatch
;
double
curScale
=
pow
(
tld
::
SCALE_STEP
,
ensScaleIDs
[
k
][
i
]);
labPatch
.
rect
=
Rect2d
(
ensBuffer
[
k
][
i
].
x
*
curScale
,
ensBuffer
[
k
][
i
].
y
*
curScale
,
initSize
.
width
*
curScale
,
initSize
.
height
*
curScale
);
tld
::
resample
(
resized_imgs
[
ensScaleIDs
[
k
][
i
]],
Rect2d
(
ensBuffer
[
k
][
i
],
initSize
),
standardPatch
);
double
srValue
,
scValue
;
srValue
=
tldModel
->
detector
->
Sr
(
standardPatch
);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch
.
isObject
=
srValue
>
tld
::
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
srValue
-
tld
::
THETA_NN
)
<
0.1
;
patches
[
k
].
push_back
(
labPatch
);
//
if
(
!
labPatch
.
isObject
)
{
nneg
++
;
continue
;
}
else
{
npos
++
;
}
scValue
=
tldModel
->
detector
->
Sc
(
standardPatch
);
if
(
scValue
>
maxSc
)
{
maxSc
=
scValue
;
maxScRect
=
labPatch
.
rect
;
}
}
if
(
maxSc
<
0
)
detect_flgs
[
k
]
=
false
;
else
{
res
[
k
]
=
maxScRect
;
detect_flgs
[
k
]
=
true
;
}
}
}
void
ocl_detect_all
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
std
::
vector
<
Rect2d
>&
res
,
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
>
&
patches
,
std
::
vector
<
bool
>
&
detect_flgs
,
std
::
vector
<
Ptr
<
Tracker
>
>
&
trackers
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
0
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
Size
initSize
=
tldModel
->
getMinSize
();
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
patches
[
k
].
clear
();
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
Mat
tmp
;
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
;
Size2d
size
=
img
.
size
();
double
scale
=
1.0
;
int
npos
=
0
,
nneg
=
0
;
double
maxSc
=
-
5.0
;
Rect2d
maxScRect
;
int
scaleID
;
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
std
::
vector
<
Point
>
>
varBuffer
(
trackers
.
size
()),
ensBuffer
(
trackers
.
size
());
std
::
vector
<
std
::
vector
<
int
>
>
varScaleIDs
(
trackers
.
size
()),
ensScaleIDs
(
trackers
.
size
());
std
::
vector
<
Point
>
tmpP
;
std
::
vector
<
int
>
tmpI
;
//Detection part
//Generate windows and filter by variance
scaleID
=
0
;
resized_imgs
.
push_back
(
img
);
blurred_imgs
.
push_back
(
imgBlurred
);
do
{
Mat_
<
double
>
intImgP
,
intImgP2
;
tld
::
TLDDetector
::
computeIntegralImages
(
resized_imgs
[
scaleID
],
intImgP
,
intImgP2
);
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
)
{
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
)
{
//Optimized variance calculation
int
x
=
dx
*
i
,
y
=
dy
*
j
,
width
=
initSize
.
width
,
height
=
initSize
.
height
;
double
p
=
0
,
p2
=
0
;
double
A
,
B
,
C
,
D
;
A
=
intImgP
(
y
,
x
);
B
=
intImgP
(
y
,
x
+
width
);
C
=
intImgP
(
y
+
height
,
x
);
D
=
intImgP
(
y
+
height
,
x
+
width
);
p
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
A
=
intImgP2
(
y
,
x
);
B
=
intImgP2
(
y
,
x
+
width
);
C
=
intImgP2
(
y
+
height
,
x
);
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
double
windowVar
=
p2
-
p
*
p
;
//Loop for on all objects
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
//Optimized variance calculation
bool
varPass
=
(
windowVar
>
tld
::
VARIANCE_THRESHOLD
*
*
tldModel
->
detector
->
originalVariancePtr
);
if
(
!
varPass
)
continue
;
varBuffer
[
k
].
push_back
(
Point
(
dx
*
i
,
dy
*
j
));
varScaleIDs
[
k
].
push_back
(
scaleID
);
}
}
}
scaleID
++
;
size
.
width
/=
tld
::
SCALE_STEP
;
size
.
height
/=
tld
::
SCALE_STEP
;
scale
*=
tld
::
SCALE_STEP
;
resize
(
img
,
tmp
,
size
,
0
,
0
,
tld
::
DOWNSCALE_MODE
);
resized_imgs
.
push_back
(
tmp
);
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
tld
::
GaussBlurKernelSize
,
0.0
f
);
blurred_imgs
.
push_back
(
tmp
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//Encsemble classification
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
[
k
].
size
();
i
++
)
{
tldModel
->
detector
->
prepareClassifiers
(
static_cast
<
int
>
(
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
step
[
0
]));
double
ensRes
=
0
;
uchar
*
data
=
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
);
for
(
int
x
=
0
;
x
<
(
int
)
tldModel
->
detector
->
classifiers
.
size
();
x
++
)
{
int
position
=
0
;
for
(
int
n
=
0
;
n
<
(
int
)
tldModel
->
detector
->
classifiers
[
x
].
measurements
.
size
();
n
++
)
{
position
=
position
<<
1
;
if
(
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
x
]
<
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
y
])
position
++
;
}
double
posNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
x
;
double
negNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
continue
;
else
ensRes
+=
posNum
/
(
posNum
+
negNum
);
}
ensRes
/=
tldModel
->
detector
->
classifiers
.
size
();
ensRes
=
tldModel
->
detector
->
ensembleClassifierNum
(
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
));
if
(
ensRes
<=
tld
::
ENSEMBLE_THRESHOLD
)
continue
;
ensBuffer
[
k
].
push_back
(
varBuffer
[
k
][
i
]);
ensScaleIDs
[
k
].
push_back
(
varScaleIDs
[
k
][
i
]);
}
}
//NN classification
for
(
int
k
=
0
;
k
<
(
int
)
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
trackerPtr
=
trackers
[
k
];
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
getModel
()));
npos
=
0
;
nneg
=
0
;
maxSc
=
-
5.0
;
//Prepare batch of patches
int
numOfPatches
=
(
int
)
ensBuffer
[
k
].
size
();
Mat_
<
uchar
>
stdPatches
(
numOfPatches
,
225
);
double
*
resultSr
=
new
double
[
numOfPatches
];
double
*
resultSc
=
new
double
[
numOfPatches
];
uchar
*
patchesData
=
stdPatches
.
data
;
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
.
size
();
i
++
)
{
tld
::
resample
(
resized_imgs
[
ensScaleIDs
[
k
][
i
]],
Rect2d
(
ensBuffer
[
k
][
i
],
initSize
),
standardPatch
);
uchar
*
stdPatchData
=
standardPatch
.
data
;
for
(
int
j
=
0
;
j
<
225
;
j
++
)
patchesData
[
225
*
i
+
j
]
=
stdPatchData
[
j
];
}
//Calculate Sr and Sc batches
tldModel
->
detector
->
ocl_batchSrSc
(
stdPatches
,
resultSr
,
resultSc
,
numOfPatches
);
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
[
k
].
size
();
i
++
)
{
tld
::
TLDDetector
::
LabeledPatch
labPatch
;
standardPatch
.
data
=
&
stdPatches
.
data
[
225
*
i
];
double
curScale
=
pow
(
tld
::
SCALE_STEP
,
ensScaleIDs
[
k
][
i
]);
labPatch
.
rect
=
Rect2d
(
ensBuffer
[
k
][
i
].
x
*
curScale
,
ensBuffer
[
k
][
i
].
y
*
curScale
,
initSize
.
width
*
curScale
,
initSize
.
height
*
curScale
);
tld
::
resample
(
resized_imgs
[
ensScaleIDs
[
k
][
i
]],
Rect2d
(
ensBuffer
[
k
][
i
],
initSize
),
standardPatch
);
double
srValue
,
scValue
;
srValue
=
resultSr
[
i
];
////To fix: Check the paper, probably this cause wrong learning
//
labPatch
.
isObject
=
srValue
>
tld
::
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
srValue
-
tld
::
THETA_NN
)
<
0.1
;
patches
[
k
].
push_back
(
labPatch
);
//
if
(
!
labPatch
.
isObject
)
{
nneg
++
;
continue
;
}
else
{
npos
++
;
}
scValue
=
resultSc
[
i
];
if
(
scValue
>
maxSc
)
{
maxSc
=
scValue
;
maxScRect
=
labPatch
.
rect
;
}
}
if
(
maxSc
<
0
)
detect_flgs
[
k
]
=
false
;
else
{
res
[
k
]
=
maxScRect
;
detect_flgs
[
k
]
=
true
;
}
}
}
}
\ No newline at end of file
modules/tracking/src/multiTracker.hpp
0 → 100644
View file @
d41639a9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_MULTITRACKER
#define OPENCV_MULTITRACKER
#include "precomp.hpp"
#include "tldTracker.hpp"
#include "tldUtils.hpp"
#include <math.h>
namespace
cv
{
void
detect_all
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
std
::
vector
<
Rect2d
>&
res
,
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
>
&
patches
,
std
::
vector
<
bool
>&
detect_flgs
,
std
::
vector
<
Ptr
<
Tracker
>
>&
trackers
);
void
ocl_detect_all
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
std
::
vector
<
Rect2d
>&
res
,
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
>
&
patches
,
std
::
vector
<
bool
>&
detect_flgs
,
std
::
vector
<
Ptr
<
Tracker
>
>&
trackers
);
}
#endif
\ No newline at end of file
modules/tracking/src/tldDataset.cpp
View file @
d41639a9
...
@@ -48,69 +48,107 @@ namespace cv
...
@@ -48,69 +48,107 @@ namespace cv
char
tldRootPath
[
100
];
char
tldRootPath
[
100
];
int
frameNum
=
0
;
int
frameNum
=
0
;
bool
flagPNG
=
false
;
bool
flagPNG
=
false
;
bool
flagVOT
=
false
;
cv
::
Rect2d
tld_InitDataset
(
int
datasetInd
,
const
char
*
rootPath
)
//TLD Dataset Parameters
const
char
*
tldFolderName
[
10
]
=
{
"01_david"
,
"02_jumping"
,
"03_pedestrian1"
,
"04_pedestrian2"
,
"05_pedestrian3"
,
"06_car"
,
"07_motocross"
,
"08_volkswagen"
,
"09_carchase"
,
"10_panda"
};
const
char
*
votFolderName
[
60
]
=
{
"bag"
,
"ball1"
,
"ball2"
,
"basketball"
,
"birds1"
,
"birds2"
,
"blanket"
,
"bmx"
,
"bolt1"
,
"bolt2"
,
"book"
,
"butterfly"
,
"car1"
,
"car2"
,
"crossing"
,
"dinosaur"
,
"fernando"
,
"fish1"
,
"fish2"
,
"fish3"
,
"fish4"
,
"girl"
,
"glove"
,
"godfather"
,
"graduate"
,
"gymnastics1"
,
"gymnastics2 "
,
"gymnastics3"
,
"gymnastics4"
,
"hand"
,
"handball1"
,
"handball2"
,
"helicopter"
,
"iceskater1"
,
"iceskater2"
,
"leaves"
,
"marching"
,
"matrix"
,
"motocross1"
,
"motocross2"
,
"nature"
,
"octopus"
,
"pedestrian1"
,
"pedestrian2"
,
"rabbit"
,
"racing"
,
"road"
,
"shaking"
,
"sheep"
,
"singer1"
,
"singer2"
,
"singer3"
,
"soccer1"
,
"soccer2"
,
"soldier"
,
"sphere"
,
"tiger"
,
"traffic"
,
"tunnel"
,
"wiper"
};
const
Rect2d
tldInitBB
[
10
]
=
{
Rect2d
(
165
,
93
,
51
,
54
),
Rect2d
(
147
,
110
,
33
,
32
),
Rect2d
(
47
,
51
,
21
,
36
),
Rect2d
(
130
,
134
,
21
,
53
),
Rect2d
(
154
,
102
,
24
,
52
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
337
,
219
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
)
};
const
Rect2d
votInitBB
[
60
]
=
{
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
490
,
400
,
40
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
450
,
380
,
60
,
60
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
225
,
175
,
50
,
50
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
560
,
460
,
50
,
120
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
Rect2d
(
142
,
125
,
90
,
39
),
Rect2d
(
290
,
43
,
23
,
40
),
Rect2d
(
273
,
77
,
27
,
25
),
Rect2d
(
145
,
84
,
54
,
37
),
Rect2d
(
58
,
100
,
27
,
22
),
};
int
tldFrameOffset
[
10
]
=
{
100
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
};
int
votFrameOffset
[
60
]
=
{
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
};
bool
tldFlagPNG
[
10
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
};
bool
votFlagPNG
[
60
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
};
cv
::
Rect2d
tld_InitDataset
(
int
videoInd
,
const
char
*
rootPath
,
int
datasetInd
)
{
{
char
*
folderName
=
(
char
*
)
""
;
char
*
folderName
=
(
char
*
)
""
;
int
x
=
0
;
double
x
=
0
,
int
y
=
0
;
y
=
0
,
int
w
=
0
;
w
=
0
,
int
h
=
0
;
h
=
0
;
flagPNG
=
false
;
//Index range
frameNum
=
1
;
// 1-10 TLD Dataset
// 1-60 VOT 2015 Dataset
if
(
datasetInd
==
1
)
{
int
id
=
videoInd
-
1
;
folderName
=
(
char
*
)
"01_david"
;
x
=
165
,
y
=
83
;
if
(
datasetInd
==
0
)
w
=
51
;
h
=
54
;
{
frameNum
=
100
;
folderName
=
(
char
*
)
tldFolderName
[
id
];
}
x
=
tldInitBB
[
id
].
x
;
if
(
datasetInd
==
2
)
{
y
=
tldInitBB
[
id
].
y
;
folderName
=
(
char
*
)
"02_jumping"
;
w
=
tldInitBB
[
id
].
width
;
x
=
147
,
y
=
110
;
h
=
tldInitBB
[
id
].
height
;
w
=
33
;
h
=
32
;
frameNum
=
tldFrameOffset
[
id
];
}
flagPNG
=
tldFlagPNG
[
id
];
if
(
datasetInd
==
3
)
{
flagVOT
=
false
;
folderName
=
(
char
*
)
"03_pedestrian1"
;
x
=
47
,
y
=
51
;
w
=
21
;
h
=
36
;
}
if
(
datasetInd
==
4
)
{
folderName
=
(
char
*
)
"04_pedestrian2"
;
x
=
130
,
y
=
134
;
w
=
21
;
h
=
53
;
}
if
(
datasetInd
==
5
)
{
folderName
=
(
char
*
)
"05_pedestrian3"
;
x
=
154
,
y
=
102
;
w
=
24
;
h
=
52
;
}
if
(
datasetInd
==
6
)
{
folderName
=
(
char
*
)
"06_car"
;
x
=
142
,
y
=
125
;
w
=
90
;
h
=
39
;
}
if
(
datasetInd
==
7
)
{
folderName
=
(
char
*
)
"07_motocross"
;
x
=
290
,
y
=
43
;
w
=
23
;
h
=
40
;
flagPNG
=
true
;
}
if
(
datasetInd
==
8
)
{
folderName
=
(
char
*
)
"08_volkswagen"
;
x
=
273
,
y
=
77
;
w
=
27
;
h
=
25
;
}
if
(
datasetInd
==
9
)
{
folderName
=
(
char
*
)
"09_carchase"
;
x
=
145
,
y
=
84
;
w
=
54
;
h
=
37
;
}
}
if
(
datasetInd
==
10
){
if
(
datasetInd
==
1
)
folderName
=
(
char
*
)
"10_panda"
;
{
x
=
58
,
y
=
100
;
folderName
=
(
char
*
)
votFolderName
[
id
];
w
=
27
;
h
=
22
;
x
=
votInitBB
[
id
].
x
;
y
=
votInitBB
[
id
].
y
;
w
=
votInitBB
[
id
].
width
;
h
=
votInitBB
[
id
].
height
;
frameNum
=
votFrameOffset
[
id
];
flagPNG
=
votFlagPNG
[
id
];
flagVOT
=
true
;
}
}
strcpy
(
tldRootPath
,
rootPath
);
strcpy
(
tldRootPath
,
rootPath
);
...
@@ -127,6 +165,8 @@ namespace cv
...
@@ -127,6 +165,8 @@ namespace cv
char
numStr
[
10
];
char
numStr
[
10
];
strcpy
(
fullPath
,
tldRootPath
);
strcpy
(
fullPath
,
tldRootPath
);
strcat
(
fullPath
,
"
\\
"
);
strcat
(
fullPath
,
"
\\
"
);
if
(
flagVOT
)
strcat
(
fullPath
,
"000"
);
if
(
frameNum
<
10
)
strcat
(
fullPath
,
"0000"
);
if
(
frameNum
<
10
)
strcat
(
fullPath
,
"0000"
);
else
if
(
frameNum
<
100
)
strcat
(
fullPath
,
"000"
);
else
if
(
frameNum
<
100
)
strcat
(
fullPath
,
"000"
);
else
if
(
frameNum
<
1000
)
strcat
(
fullPath
,
"00"
);
else
if
(
frameNum
<
1000
)
strcat
(
fullPath
,
"00"
);
...
...
modules/tracking/src/tldDetector.cpp
View file @
d41639a9
...
@@ -65,25 +65,6 @@ namespace cv
...
@@ -65,25 +65,6 @@ namespace cv
// Calculate Relative similarity of the patch (NN-Model)
// Calculate Relative similarity of the patch (NN-Model)
double
TLDDetector
::
Sr
(
const
Mat_
<
uchar
>&
patch
)
double
TLDDetector
::
Sr
(
const
Mat_
<
uchar
>&
patch
)
{
{
/*
int64 e1, e2;
float t;
e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
for (int i = 0; i < (int)(*positiveExamples).size(); i++)
splus = std::max(splus, 0.5 * (NCC((*positiveExamples)[i], patch) + 1.0));
for (int i = 0; i < (int)(*negativeExamples).size(); i++)
sminus = std::max(sminus, 0.5 * (NCC((*negativeExamples)[i], patch) + 1.0));
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sr: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
*/
//int64 e1, e2;
//float t;
//e1 = getTickCount();
double
splus
=
0.0
,
sminus
=
0.0
;
double
splus
=
0.0
,
sminus
=
0.0
;
Mat_
<
uchar
>
modelSample
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
Mat_
<
uchar
>
modelSample
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
...
@@ -96,9 +77,7 @@ namespace cv
...
@@ -96,9 +77,7 @@ namespace cv
modelSample
.
data
=
&
(
negExp
->
data
[
i
*
225
]);
modelSample
.
data
=
&
(
negExp
->
data
[
i
*
225
]);
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
modelSample
,
patch
)
+
1.0
));
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
modelSample
,
patch
)
+
1.0
));
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr CPU: %f\n", t);
if
(
splus
+
sminus
==
0.0
)
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
0.0
;
return
splus
/
(
sminus
+
splus
);
return
splus
/
(
sminus
+
splus
);
...
@@ -106,10 +85,6 @@ namespace cv
...
@@ -106,10 +85,6 @@ namespace cv
double
TLDDetector
::
ocl_Sr
(
const
Mat_
<
uchar
>&
patch
)
double
TLDDetector
::
ocl_Sr
(
const
Mat_
<
uchar
>&
patch
)
{
{
//int64 e1, e2, e3, e4;
//double t;
//e1 = getTickCount();
//e3 = getTickCount();
double
splus
=
0.0
,
sminus
=
0.0
;
double
splus
=
0.0
,
sminus
=
0.0
;
...
@@ -131,41 +106,15 @@ namespace cv
...
@@ -131,41 +106,15 @@ namespace cv
ocl
::
KernelArg
::
PtrReadOnly
(
devPositiveSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devPositiveSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNCC
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNCC
),
posNum
,
*
posNum
,
negNum
);
*
negNum
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
size_t
globSize
=
1000
;
size_t
globSize
=
1000
;
//e3 = getTickCount();
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
false
))
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
false
))
printf
(
"Kernel Run Error!!!"
);
printf
(
"Kernel Run Error!!!"
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat
resNCC
=
devNCC
.
getMat
(
ACCESS_READ
);
Mat
resNCC
=
devNCC
.
getMat
(
ACCESS_READ
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
////Compare
//Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
//for (int i = 0; i < 200; i+=17)
//{
// modelSample.data = &(posExp->data[i * 225]);
// printf("%f\t%f\n\n", resNCC.at<float>(i), NCC(modelSample, patch));
//}
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
splus
=
std
::
max
(
splus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
)
+
1.0
));
splus
=
std
::
max
(
splus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
)
+
1.0
));
...
@@ -173,10 +122,6 @@ namespace cv
...
@@ -173,10 +122,6 @@ namespace cv
for
(
int
i
=
0
;
i
<
*
negNum
;
i
++
)
for
(
int
i
=
0
;
i
<
*
negNum
;
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
+
500
)
+
1.0
));
sminus
=
std
::
max
(
sminus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
+
500
)
+
1.0
));
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr GPU: %f\n\n", t);
if
(
splus
+
sminus
==
0.0
)
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
0.0
;
return
splus
/
(
sminus
+
splus
);
return
splus
/
(
sminus
+
splus
);
...
@@ -184,11 +129,6 @@ namespace cv
...
@@ -184,11 +129,6 @@ namespace cv
void
TLDDetector
::
ocl_batchSrSc
(
const
Mat_
<
uchar
>&
patches
,
double
*
resultSr
,
double
*
resultSc
,
int
numOfPatches
)
void
TLDDetector
::
ocl_batchSrSc
(
const
Mat_
<
uchar
>&
patches
,
double
*
resultSr
,
double
*
resultSc
,
int
numOfPatches
)
{
{
//int64 e1, e2, e3, e4;
//double t;
//e1 = getTickCount();
//e3 = getTickCount();
UMat
devPatches
=
patches
.
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPatches
=
patches
.
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPositiveSamples
=
posExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPositiveSamples
=
posExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devNegativeSamples
=
negExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devNegativeSamples
=
negExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
...
@@ -208,29 +148,17 @@ namespace cv
...
@@ -208,29 +148,17 @@ namespace cv
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devPosNCC
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devPosNCC
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNegNCC
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNegNCC
),
posNum
,
*
posNum
,
negNum
,
*
negNum
,
numOfPatches
);
numOfPatches
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
// 2 -> Pos&Neg
size_t
globSize
=
2
*
numOfPatches
*
MAX_EXAMPLES_IN_MODEL
;
size_t
globSize
=
2
*
numOfPatches
*
MAX_EXAMPLES_IN_MODEL
;
//e3 = getTickCount();
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
fals
e
))
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
tru
e
))
printf
(
"Kernel Run Error!!!"
);
printf
(
"Kernel Run Error!!!"
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat
posNCC
=
devPosNCC
.
getMat
(
ACCESS_READ
);
Mat
posNCC
=
devPosNCC
.
getMat
(
ACCESS_READ
);
Mat
negNCC
=
devNegNCC
.
getMat
(
ACCESS_READ
);
Mat
negNCC
=
devNegNCC
.
getMat
(
ACCESS_READ
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
//Calculate Srs
//Calculate Srs
for
(
int
id
=
0
;
id
<
numOfPatches
;
id
++
)
for
(
int
id
=
0
;
id
<
numOfPatches
;
id
++
)
...
@@ -256,62 +184,11 @@ namespace cv
...
@@ -256,62 +184,11 @@ namespace cv
else
else
resultSc
[
id
]
=
spc
/
(
smc
+
spc
);
resultSc
[
id
]
=
spc
/
(
smc
+
spc
);
}
}
////Compare positive NCCs
/*Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
Mat_<uchar> patch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
for (int j = 0; j < numOfPatches; j++)
{
for (int i = 0; i < 1; i++)
{
modelSample.data = &(posExp->data[i * 225]);
patch.data = &(patches.data[j * 225]);
printf("%f\t%f\n", resultSr[j], Sr(patch));
printf("%f\t%f\n", resultSc[j], Sc(patch));
}
}*/
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr GPU: %f\n\n", t);
}
}
// Calculate Conservative similarity of the patch (NN-Model)
// Calculate Conservative similarity of the patch (NN-Model)
double
TLDDetector
::
Sc
(
const
Mat_
<
uchar
>&
patch
)
double
TLDDetector
::
Sc
(
const
Mat_
<
uchar
>&
patch
)
{
{
/*
int64 e1, e2;
float t;
e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
int med = getMedian((*timeStampsPositive));
for (int i = 0; i < (int)(*positiveExamples).size(); i++)
{
if ((int)(*timeStampsPositive)[i] <= med)
splus = std::max(splus, 0.5 * (NCC((*positiveExamples)[i], patch) + 1.0));
}
for (int i = 0; i < (int)(*negativeExamples).size(); i++)
sminus = std::max(sminus, 0.5 * (NCC((*negativeExamples)[i], patch) + 1.0));
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sc: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
*/
//int64 e1, e2;
//double t;
//e1 = getTickCount();
double
splus
=
0.0
,
sminus
=
0.0
;
double
splus
=
0.0
,
sminus
=
0.0
;
Mat_
<
uchar
>
modelSample
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
Mat_
<
uchar
>
modelSample
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
int
med
=
getMedian
((
*
timeStampsPositive
));
int
med
=
getMedian
((
*
timeStampsPositive
));
...
@@ -328,9 +205,7 @@ namespace cv
...
@@ -328,9 +205,7 @@ namespace cv
modelSample
.
data
=
&
(
negExp
->
data
[
i
*
225
]);
modelSample
.
data
=
&
(
negExp
->
data
[
i
*
225
]);
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
modelSample
,
patch
)
+
1.0
));
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
modelSample
,
patch
)
+
1.0
));
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sc: %f\n", t);
if
(
splus
+
sminus
==
0.0
)
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
0.0
;
...
@@ -339,13 +214,8 @@ namespace cv
...
@@ -339,13 +214,8 @@ namespace cv
double
TLDDetector
::
ocl_Sc
(
const
Mat_
<
uchar
>&
patch
)
double
TLDDetector
::
ocl_Sc
(
const
Mat_
<
uchar
>&
patch
)
{
{
//int64 e1, e2, e3, e4;
//float t;
//e1 = getTickCount();
double
splus
=
0.0
,
sminus
=
0.0
;
double
splus
=
0.0
,
sminus
=
0.0
;
//e3 = getTickCount();
UMat
devPatch
=
patch
.
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPatch
=
patch
.
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPositiveSamples
=
posExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devPositiveSamples
=
posExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devNegativeSamples
=
negExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
UMat
devNegativeSamples
=
negExp
->
getUMat
(
ACCESS_READ
,
USAGE_ALLOCATE_DEVICE_MEMORY
);
...
@@ -364,40 +234,15 @@ namespace cv
...
@@ -364,40 +234,15 @@ namespace cv
ocl
::
KernelArg
::
PtrReadOnly
(
devPositiveSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devPositiveSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrReadOnly
(
devNegativeSamples
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNCC
),
ocl
::
KernelArg
::
PtrWriteOnly
(
devNCC
),
posNum
,
*
posNum
,
negNum
);
*
negNum
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
size_t
globSize
=
1000
;
size_t
globSize
=
1000
;
//e3 = getTickCount();
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
false
))
if
(
!
k
.
run
(
1
,
&
globSize
,
NULL
,
false
))
printf
(
"Kernel Run Error!!!"
);
printf
(
"Kernel Run Error!!!"
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat
resNCC
=
devNCC
.
getMat
(
ACCESS_READ
);
Mat
resNCC
=
devNCC
.
getMat
(
ACCESS_READ
);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
////Compare
//Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
//for (int i = 0; i < 200; i+=17)
//{
// modelSample.data = &(posExp->data[i * 225]);
// printf("%f\t%f\n\n", resNCC.at<float>(i), NCC(modelSample, patch));
//}
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
int
med
=
getMedian
((
*
timeStampsPositive
));
int
med
=
getMedian
((
*
timeStampsPositive
));
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
for
(
int
i
=
0
;
i
<
*
posNum
;
i
++
)
...
@@ -407,10 +252,6 @@ namespace cv
...
@@ -407,10 +252,6 @@ namespace cv
for
(
int
i
=
0
;
i
<
*
negNum
;
i
++
)
for
(
int
i
=
0
;
i
<
*
negNum
;
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
+
500
)
+
1.0
));
sminus
=
std
::
max
(
sminus
,
0.5
*
(
resNCC
.
at
<
float
>
(
i
+
500
)
+
1.0
));
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sc GPU: %f\n\n", t);
if
(
splus
+
sminus
==
0.0
)
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
0.0
;
return
splus
/
(
sminus
+
splus
);
return
splus
/
(
sminus
+
splus
);
...
@@ -449,7 +290,6 @@ namespace cv
...
@@ -449,7 +290,6 @@ namespace cv
break
;
break
;
}
}
}
}
//dprintf(("%d rects in res\n", (int)res.size()));
}
}
//Detection - returns most probable new target location (Max Sc)
//Detection - returns most probable new target location (Max Sc)
...
@@ -469,10 +309,6 @@ namespace cv
...
@@ -469,10 +309,6 @@ namespace cv
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
Point
>
varBuffer
,
ensBuffer
;
std
::
vector
<
Point
>
varBuffer
,
ensBuffer
;
std
::
vector
<
int
>
varScaleIDs
,
ensScaleIDs
;
std
::
vector
<
int
>
varScaleIDs
,
ensScaleIDs
;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Detection part
//Generate windows and filter by variance
//Generate windows and filter by variance
...
@@ -502,12 +338,8 @@ namespace cv
...
@@ -502,12 +338,8 @@ namespace cv
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
GaussBlurKernelSize
,
0.0
f
);
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
GaussBlurKernelSize
,
0.0
f
);
blurred_imgs
.
push_back
(
tmp
);
blurred_imgs
.
push_back
(
tmp
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
//Encsemble classification
//e1 = getTickCount();
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
.
size
();
i
++
)
{
{
prepareClassifiers
(
static_cast
<
int
>
(
blurred_imgs
[
varScaleIDs
[
i
]].
step
[
0
]));
prepareClassifiers
(
static_cast
<
int
>
(
blurred_imgs
[
varScaleIDs
[
i
]].
step
[
0
]));
...
@@ -516,12 +348,8 @@ namespace cv
...
@@ -516,12 +348,8 @@ namespace cv
ensBuffer
.
push_back
(
varBuffer
[
i
]);
ensBuffer
.
push_back
(
varBuffer
[
i
]);
ensScaleIDs
.
push_back
(
varScaleIDs
[
i
]);
ensScaleIDs
.
push_back
(
varScaleIDs
[
i
]);
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//NN classification
//NN classification
//e1 = getTickCount();
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
.
size
();
i
++
)
{
{
LabeledPatch
labPatch
;
LabeledPatch
labPatch
;
...
@@ -555,15 +383,15 @@ namespace cv
...
@@ -555,15 +383,15 @@ namespace cv
maxScRect
=
labPatch
.
rect
;
maxScRect
=
labPatch
.
rect
;
}
}
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if
(
maxSc
<
0
)
if
(
maxSc
<
0
)
return
false
;
return
false
;
else
{
res
=
maxScRect
;
res
=
maxScRect
;
return
true
;
return
true
;
}
}
}
bool
TLDDetector
::
ocl_detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
)
bool
TLDDetector
::
ocl_detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
)
{
{
...
@@ -580,10 +408,7 @@ namespace cv
...
@@ -580,10 +408,7 @@ namespace cv
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
Point
>
varBuffer
,
ensBuffer
;
std
::
vector
<
Point
>
varBuffer
,
ensBuffer
;
std
::
vector
<
int
>
varScaleIDs
,
ensScaleIDs
;
std
::
vector
<
int
>
varScaleIDs
,
ensScaleIDs
;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Detection part
//Generate windows and filter by variance
//Generate windows and filter by variance
scaleID
=
0
;
scaleID
=
0
;
...
@@ -612,12 +437,8 @@ namespace cv
...
@@ -612,12 +437,8 @@ namespace cv
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
GaussBlurKernelSize
,
0.0
f
);
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
GaussBlurKernelSize
,
0.0
f
);
blurred_imgs
.
push_back
(
tmp
);
blurred_imgs
.
push_back
(
tmp
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
//Encsemble classification
//e1 = getTickCount();
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
.
size
();
i
++
)
{
{
prepareClassifiers
((
int
)
blurred_imgs
[
varScaleIDs
[
i
]].
step
[
0
]);
prepareClassifiers
((
int
)
blurred_imgs
[
varScaleIDs
[
i
]].
step
[
0
]);
...
@@ -626,12 +447,8 @@ namespace cv
...
@@ -626,12 +447,8 @@ namespace cv
ensBuffer
.
push_back
(
varBuffer
[
i
]);
ensBuffer
.
push_back
(
varBuffer
[
i
]);
ensScaleIDs
.
push_back
(
varScaleIDs
[
i
]);
ensScaleIDs
.
push_back
(
varScaleIDs
[
i
]);
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//NN classification
//NN classification
//e1 = getTickCount();
//Prepare batch of patches
//Prepare batch of patches
int
numOfPatches
=
(
int
)
ensBuffer
.
size
();
int
numOfPatches
=
(
int
)
ensBuffer
.
size
();
Mat_
<
uchar
>
stdPatches
(
numOfPatches
,
225
);
Mat_
<
uchar
>
stdPatches
(
numOfPatches
,
225
);
...
@@ -661,9 +478,6 @@ namespace cv
...
@@ -661,9 +478,6 @@ namespace cv
srValue
=
resultSr
[
i
];
srValue
=
resultSr
[
i
];
//srValue = Sr(standardPatch);
//printf("%f\t%f\t\n", srValue, resultSr[i]);
////To fix: Check the paper, probably this cause wrong learning
////To fix: Check the paper, probably this cause wrong learning
//
//
labPatch
.
isObject
=
srValue
>
THETA_NN
;
labPatch
.
isObject
=
srValue
>
THETA_NN
;
...
@@ -687,9 +501,6 @@ namespace cv
...
@@ -687,9 +501,6 @@ namespace cv
maxScRect
=
labPatch
.
rect
;
maxScRect
=
labPatch
.
rect
;
}
}
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if
(
maxSc
<
0
)
if
(
maxSc
<
0
)
return
false
;
return
false
;
...
...
modules/tracking/src/tldDetector.hpp
View file @
d41639a9
...
@@ -66,13 +66,15 @@ namespace cv
...
@@ -66,13 +66,15 @@ namespace cv
static
const
cv
::
Size
GaussBlurKernelSize
(
3
,
3
);
static
const
cv
::
Size
GaussBlurKernelSize
(
3
,
3
);
class
TLDDetector
class
TLDDetector
{
{
public
:
public
:
TLDDetector
(){}
TLDDetector
(){}
~
TLDDetector
(){}
~
TLDDetector
(){}
inline
double
ensembleClassifierNum
(
const
uchar
*
data
);
double
ensembleClassifierNum
(
const
uchar
*
data
);
inline
void
prepareClassifiers
(
int
rowstep
);
void
prepareClassifiers
(
int
rowstep
);
double
Sr
(
const
Mat_
<
uchar
>&
patch
);
double
Sr
(
const
Mat_
<
uchar
>&
patch
);
double
ocl_Sr
(
const
Mat_
<
uchar
>&
patch
);
double
ocl_Sr
(
const
Mat_
<
uchar
>&
patch
);
double
Sc
(
const
Mat_
<
uchar
>&
patch
);
double
Sc
(
const
Mat_
<
uchar
>&
patch
);
...
@@ -94,14 +96,13 @@ namespace cv
...
@@ -94,14 +96,13 @@ namespace cv
};
};
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
);
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
);
bool
ocl_detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
);
bool
ocl_detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
);
protected
:
friend
class
MyMouseCallbackDEBUG
;
friend
class
MyMouseCallbackDEBUG
;
void
computeIntegralImages
(
const
Mat
&
img
,
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
){
integral
(
img
,
intImgP
,
intImgP2
,
CV_64F
);
}
static
void
computeIntegralImages
(
const
Mat
&
img
,
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
){
integral
(
img
,
intImgP
,
intImgP2
,
CV_64F
);
}
inline
bool
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
*
originalVariance
,
Point
pt
,
Size
size
);
static
inline
bool
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
*
originalVariance
,
Point
pt
,
Size
size
);
};
};
}
}
}
}
...
...
modules/tracking/src/tldEnsembleClassifier.hpp
View file @
d41639a9
...
@@ -54,7 +54,7 @@ namespace cv
...
@@ -54,7 +54,7 @@ namespace cv
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
void
prepareClassifier
(
int
rowstep
);
void
prepareClassifier
(
int
rowstep
);
private
:
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
...
...
modules/tracking/src/tldModel.cpp
View file @
d41639a9
...
@@ -140,7 +140,6 @@ namespace cv
...
@@ -140,7 +140,6 @@ namespace cv
detector
->
classifiers
[
k
].
integrate
(
blurredPatch
,
false
);
detector
->
classifiers
[
k
].
integrate
(
blurredPatch
,
false
);
}
}
}
}
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
}
}
...
@@ -180,16 +179,6 @@ namespace cv
...
@@ -180,16 +179,6 @@ namespace cv
detector
->
classifiers
[
i
].
integrate
(
blurredPatch
,
patches
[
k
].
isObject
);
detector
->
classifiers
[
i
].
integrate
(
blurredPatch
,
patches
[
k
].
isObject
);
}
}
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
}
...
@@ -198,9 +187,6 @@ namespace cv
...
@@ -198,9 +187,6 @@ namespace cv
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
if
((
int
)
eForModel
.
size
()
==
0
)
return
;
if
((
int
)
eForModel
.
size
()
==
0
)
return
;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
for
(
int
k
=
0
;
k
<
(
int
)
eForModel
.
size
();
k
++
)
for
(
int
k
=
0
;
k
<
(
int
)
eForModel
.
size
();
k
++
)
{
{
double
sr
=
detector
->
Sr
(
eForModel
[
k
]);
double
sr
=
detector
->
Sr
(
eForModel
[
k
]);
...
@@ -231,19 +217,6 @@ namespace cv
...
@@ -231,19 +217,6 @@ namespace cv
detector
->
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
detector
->
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
}
}
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
}
void
TrackerTLDModel
::
ocl_integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
)
void
TrackerTLDModel
::
ocl_integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
)
...
@@ -251,10 +224,6 @@ namespace cv
...
@@ -251,10 +224,6 @@ namespace cv
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
if
((
int
)
eForModel
.
size
()
==
0
)
return
;
if
((
int
)
eForModel
.
size
()
==
0
)
return
;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Prepare batch of patches
//Prepare batch of patches
int
numOfPatches
=
(
int
)
eForModel
.
size
();
int
numOfPatches
=
(
int
)
eForModel
.
size
();
Mat_
<
uchar
>
stdPatches
(
numOfPatches
,
225
);
Mat_
<
uchar
>
stdPatches
(
numOfPatches
,
225
);
...
@@ -301,19 +270,6 @@ namespace cv
...
@@ -301,19 +270,6 @@ namespace cv
detector
->
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
detector
->
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
}
}
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional OCL: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
}
//Push the patch to the model
//Push the patch to the model
...
...
modules/tracking/src/tldTracker.cpp
View file @
d41639a9
...
@@ -45,6 +45,13 @@
...
@@ -45,6 +45,13 @@
namespace
cv
namespace
cv
{
{
TrackerTLD
::
Params
::
Params
(){}
void
TrackerTLD
::
Params
::
read
(
const
cv
::
FileNode
&
/*fn*/
){}
void
TrackerTLD
::
Params
::
write
(
cv
::
FileStorage
&
/*fs*/
)
const
{}
Ptr
<
TrackerTLD
>
TrackerTLD
::
createTracker
(
const
TrackerTLD
::
Params
&
parameters
)
Ptr
<
TrackerTLD
>
TrackerTLD
::
createTracker
(
const
TrackerTLD
::
Params
&
parameters
)
{
{
return
Ptr
<
tld
::
TrackerTLDImpl
>
(
new
tld
::
TrackerTLDImpl
(
parameters
));
return
Ptr
<
tld
::
TrackerTLDImpl
>
(
new
tld
::
TrackerTLDImpl
(
parameters
));
...
@@ -112,7 +119,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -112,7 +119,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
std
::
vector
<
TLDDetector
::
LabeledPatch
>
detectorResults
;
std
::
vector
<
TLDDetector
::
LabeledPatch
>
detectorResults
;
//best overlap around 92%
//best overlap around 92%
std
::
vector
<
Rect2d
>
candidates
;
std
::
vector
<
Rect2d
>
candidates
;
std
::
vector
<
double
>
candidatesRes
;
std
::
vector
<
double
>
candidatesRes
;
bool
trackerNeedsReInit
=
false
;
bool
trackerNeedsReInit
=
false
;
...
@@ -128,7 +134,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -128,7 +134,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
else
else
DETECT_FLG
=
tldModel
->
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
tldModel
->
getMinSize
());
DETECT_FLG
=
tldModel
->
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
tldModel
->
getMinSize
());
}
}
if
(
(
(
i
==
0
)
&&
!
data
->
failedLastTime
&&
trackerProxy
->
update
(
image
,
tmpCandid
)
)
||
(
DETECT_FLG
))
if
(
(
(
i
==
0
)
&&
!
data
->
failedLastTime
&&
trackerProxy
->
update
(
image
,
tmpCandid
)
)
||
(
DETECT_FLG
))
{
{
candidates
.
push_back
(
tmpCandid
);
candidates
.
push_back
(
tmpCandid
);
...
@@ -144,15 +149,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -144,15 +149,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
trackerNeedsReInit
=
true
;
trackerNeedsReInit
=
true
;
}
}
}
}
std
::
vector
<
double
>::
iterator
it
=
std
::
max_element
(
candidatesRes
.
begin
(),
candidatesRes
.
end
());
std
::
vector
<
double
>::
iterator
it
=
std
::
max_element
(
candidatesRes
.
begin
(),
candidatesRes
.
end
());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
//data->printme();
//tldModel->printme(stdout);
if
(
it
==
candidatesRes
.
end
()
)
if
(
it
==
candidatesRes
.
end
()
)
{
{
data
->
confident
=
false
;
data
->
confident
=
false
;
...
@@ -169,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -169,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
#if 1
#if 1
if
(
it
!=
candidatesRes
.
end
()
)
if
(
it
!=
candidatesRes
.
end
()
)
{
resample
(
imageForDetector
,
candidates
[
it
-
candidatesRes
.
begin
()],
standardPatch
);
resample
(
imageForDetector
,
candidates
[
it
-
candidatesRes
.
begin
()],
standardPatch
);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif
#endif
if
(
*
it
>
CORE_THRESHOLD
)
if
(
*
it
>
CORE_THRESHOLD
)
...
@@ -209,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -209,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
detectorResults
[
i
].
isObject
=
expertResult
;
detectorResults
[
i
].
isObject
=
expertResult
;
}
}
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
if
(
ocl
::
haveOpenCL
())
if
(
ocl
::
haveOpenCL
())
tldModel
->
ocl_integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
true
);
tldModel
->
ocl_integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
true
);
...
@@ -296,7 +284,6 @@ Data::Data(Rect2d initBox)
...
@@ -296,7 +284,6 @@ Data::Data(Rect2d initBox)
minSize
.
width
=
(
int
)(
initBox
.
width
*
20.0
/
minDim
);
minSize
.
width
=
(
int
)(
initBox
.
width
*
20.0
/
minDim
);
minSize
.
height
=
(
int
)(
initBox
.
height
*
20.0
/
minDim
);
minSize
.
height
=
(
int
)(
initBox
.
height
*
20.0
/
minDim
);
frameNum
=
0
;
frameNum
=
0
;
//dprintf(("minSize = %dx%d\n", minSize.width, minSize.height));
}
}
void
Data
::
printme
(
FILE
*
port
)
void
Data
::
printme
(
FILE
*
port
)
...
...
modules/tracking/src/tldTracker.hpp
View file @
d41639a9
...
@@ -52,12 +52,6 @@
...
@@ -52,12 +52,6 @@
namespace
cv
namespace
cv
{
{
TrackerTLD
::
Params
::
Params
(){}
void
TrackerTLD
::
Params
::
read
(
const
cv
::
FileNode
&
/*fn*/
){}
void
TrackerTLD
::
Params
::
write
(
cv
::
FileStorage
&
/*fs*/
)
const
{}
namespace
tld
namespace
tld
{
{
class
TrackerProxy
class
TrackerProxy
...
@@ -128,7 +122,6 @@ public:
...
@@ -128,7 +122,6 @@ public:
void
read
(
const
FileNode
&
fn
);
void
read
(
const
FileNode
&
fn
);
void
write
(
FileStorage
&
fs
)
const
;
void
write
(
FileStorage
&
fs
)
const
;
protected
:
class
Pexpert
class
Pexpert
{
{
public
:
public
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment