Commit d41639a9 authored by Vladimir's avatar Vladimir

Merge branch 'master' into Itseez/master

parents e18103e2 c11abeb7
......@@ -48,7 +48,7 @@ namespace cv
{
namespace tld
{
CV_EXPORTS cv::Rect2d tld_InitDataset(int datasetInd, const char* rootPath = "TLD_dataset");
CV_EXPORTS cv::Rect2d tld_InitDataset(int videoInd, const char* rootPath = "TLD_dataset", int datasetInd = 0);
CV_EXPORTS cv::Mat tld_getNextDatasetFrame();
}
}
......
......@@ -49,6 +49,7 @@
#include "onlineBoosting.hpp"
#include <iostream>
#define BOILERPLATE_CODE(name,classname) \
static Ptr<classname> createTracker(const classname::Params &parameters=classname::Params());\
virtual ~classname(){};
......@@ -564,6 +565,11 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
virtual void read( const FileNode& fn )=0;
virtual void write( FileStorage& fs ) const=0;
Ptr<TrackerModel> getModel()
{
return model;
}
protected:
virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0;
......@@ -576,6 +582,7 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
Ptr<TrackerModel> model;
};
/************************************ Specific TrackerStateEstimator Classes ************************************/
/** @brief TrackerStateEstimator based on Boosting
......@@ -1243,6 +1250,85 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
BOILERPLATE_CODE("KCF",TrackerKCF);
};
/************************************ Multi-Tracker Classes ************************************/
/** @brief Base abstract class for the long-term Multi Object Trackers:
@sa Tracker, MultiTrackerTLD
*/
class CV_EXPORTS_W MultiTracker
{
public:
/** @brief Constructor for Multitracker
*/
MultiTracker()
{
targetNum = 0;
}
/** @brief Add a new target to a tracking-list and initialize the tracker with a know bounding box that surrounding the target
@param image The initial frame
@param boundingBox The initial boundig box of target
@param tracker_algorithm_name Multi-tracker algorithm name
@return True if new target initialization went succesfully, false otherwise
*/
bool addTarget(const Mat& image, const Rect2d& boundingBox, char* tracker_algorithm_name);
/** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets
@param image The current frame
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool update(const Mat& image);
/** @brief Current number of targets in tracking-list
*/
int targetNum;
/** @brief Trackers list for Multi-Object-Tracker
*/
std::vector <Ptr<Tracker> > trackers;
/** @brief Bounding Boxes list for Multi-Object-Tracker
*/
std::vector <Rect2d> boundingBoxes;
/** @brief List of randomly generated colors for bounding boxes display
*/
std::vector<Scalar> colors;
};
/** @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
the long-term tracking task into tracking, learning and detection.
The tracker follows the object from frame to frame. The detector localizes all appearances that
have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
occlusions, object absence etc.
@sa Tracker, MultiTracker, TrackerTLD
*/
class CV_EXPORTS_W MultiTrackerTLD : public MultiTracker
{
public:
/** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets by
optimized update method using some techniques to speedup calculations specifically for MO TLD. The only limitation
is that all target bounding boxes should have approximately same aspect ratios. Speed boost is around 20%
@param image The current frame.
@return True means that all targets were located and false means that tracker couldn't locate one of the targets in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
bool update_opt(const Mat& image);
};
//! @}
} /* namespace cv */
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace std;
using namespace cv;
#define NUM_TEST_FRAMES 100
#define TEST_VIDEO_INDEX 15 //TLD Dataset Video Index from 1-10 for TLD and 1-60 for VOT
//#define RECORD_VIDEO_FLG
static Mat image;
static bool paused;
static bool selectObject = false;
static bool startSelection = false;
Rect2d boundingBox;
static void onMouse(int event, int x, int y, int, void*)
{
if (!selectObject)
{
switch (event)
{
case EVENT_LBUTTONDOWN:
//set origin of the bounding box
startSelection = true;
boundingBox.x = x;
boundingBox.y = y;
boundingBox.width = boundingBox.height = 0;
break;
case EVENT_LBUTTONUP:
//sei with and height of the bounding box
boundingBox.width = std::abs(x - boundingBox.x);
boundingBox.height = std::abs(y - boundingBox.y);
paused = false;
selectObject = true;
break;
case EVENT_MOUSEMOVE:
if (startSelection && !selectObject)
{
//draw the bounding box
Mat currentFrame;
image.copyTo(currentFrame);
rectangle(currentFrame, Point((int)boundingBox.x, (int)boundingBox.y), Point(x, y), Scalar(255, 0, 0), 2, 1);
imshow("Tracking API", currentFrame);
}
break;
}
}
}
int main()
{
//
// "MIL", "BOOSTING", "MEDIANFLOW", "TLD"
//
char* tracker_algorithm_name = (char*)"TLD";
Mat frame;
paused = false;
namedWindow("Tracking API", 0);
setMouseCallback("Tracking API", onMouse, 0);
MultiTrackerTLD mt;
//Get the first frame
////Open the capture
// VideoCapture cap(0);
// if( !cap.isOpened() )
// {
// cout << "Video stream error";
// return;
// }
//cap >> frame;
//From TLD dataset
selectObject = true;
Rect2d boundingBox1 = tld::tld_InitDataset(TEST_VIDEO_INDEX, "D:/opencv/VOT 2015", 1);
Rect2d boundingBox2(470, 490, 50, 120);
frame = tld::tld_getNextDatasetFrame();
frame.copyTo(image);
// Setup output video
#ifdef RECORD_VIDEO_FLG
String outputFilename = "test.avi";
VideoWriter outputVideo;
outputVideo.open(outputFilename, -1, 15, Size(image.cols, image.rows));
if (!outputVideo.isOpened())
{
std::cout << "!!! Output video could not be opened" << std::endl;
getchar();
return 0;
}
#endif
rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
imshow("Tracking API", image);
bool initialized = false;
int frameCounter = 0;
//Time measurment
int64 e3 = getTickCount();
for (;;)
{
//Time measurment
int64 e1 = getTickCount();
//Frame num
frameCounter++;
if (frameCounter == NUM_TEST_FRAMES) break;
char c = (char)waitKey(2);
if (c == 'q' || c == 27)
break;
if (c == 'p')
paused = !paused;
if (!paused)
{
//cap >> frame;
frame = tld::tld_getNextDatasetFrame();
if (frame.empty())
{
break;
}
frame.copyTo(image);
if (selectObject)
{
if (!initialized)
{
//initializes the tracker
mt.addTarget(frame, boundingBox1, tracker_algorithm_name);
rectangle(frame, boundingBox1, mt.colors[0], 2, 1);
mt.addTarget(frame, boundingBox2, tracker_algorithm_name);
rectangle(frame, boundingBox2, mt.colors[1], 2, 1);
initialized = true;
}
else
{
//updates the tracker
if (mt.update(frame))
{
for (int i = 0; i < mt.targetNum; i++)
rectangle(frame, mt.boundingBoxes[i], mt.colors[i], 2, 1);
}
}
}
imshow("Tracking API", frame);
#ifdef RECORD_VIDEO_FLG
outputVideo << frame;
#endif
//Time measurment
int64 e2 = getTickCount();
double t1 = (e2 - e1) / getTickFrequency();
cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl;
//waitKey(0);
}
}
//Time measurment
int64 e4 = getTickCount();
double t2 = (e4 - e3) / getTickFrequency();
cout << "Average Time for Frame: " << t2 * 1000.0 / frameCounter << "ms" << endl;
cout << "Average FPS: " << 1.0 / t2*frameCounter << endl;
waitKey(0);
return 0;
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "multiTracker.hpp"
namespace cv
{
//Multitracker
bool MultiTracker::addTarget(const Mat& image, const Rect2d& boundingBox, char* tracker_algorithm_name)
{
Ptr<Tracker> tracker = Tracker::create(tracker_algorithm_name);
if (tracker == NULL)
return false;
if (!tracker->init(image, boundingBox))
return false;
//Add BB of target
boundingBoxes.push_back(boundingBox);
//Add Tracker to stack
trackers.push_back(tracker);
//Assign a random color to target
if (targetNum == 1)
colors.push_back(Scalar(0, 0, 255));
else
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256));
//Target counter
targetNum++;
return true;
}
bool MultiTracker::update(const Mat& image)
{
for (int i = 0; i < (int)trackers.size(); i++)
if (!trackers[i]->update(image, boundingBoxes[i]))
return false;
return true;
}
//Multitracker TLD
/*Optimized update method for TLD Multitracker */
bool MultiTrackerTLD::update_opt(const Mat& image)
{
//Get parameters from first object
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[0];
tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Ptr<tld::Data> data = tracker->data;
double scale = data->getScale();
Mat image_gray, image_blurred, imageForDetector;
cvtColor(image, image_gray, COLOR_BGR2GRAY);
if (scale > 1.0)
resize(image_gray, imageForDetector, Size(cvRound(image.cols*scale), cvRound(image.rows*scale)), 0, 0, tld::DOWNSCALE_MODE);
else
imageForDetector = image_gray;
GaussianBlur(imageForDetector, image_blurred, tld::GaussBlurKernelSize, 0.0);
//best overlap around 92%
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
std::vector<std::vector<tld::TLDDetector::LabeledPatch> > detectorResults(targetNum);
std::vector<std::vector<Rect2d> > candidates(targetNum);
std::vector<std::vector<double> > candidatesRes(targetNum);
std::vector<Rect2d> tmpCandidates(targetNum);
std::vector<bool> detect_flgs(targetNum);
std::vector<bool> trackerNeedsReInit(targetNum);
bool DETECT_FLG = false;
//Detect all
for (int k = 0; k < targetNum; k++)
tmpCandidates[k] = boundingBoxes[k];
if (ocl::haveOpenCL())
ocl_detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers);
else
detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers);
for (int k = 0; k < targetNum; k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
data = tracker->data;
data->frameNum++;
for (int i = 0; i < 2; i++)
{
Rect2d tmpCandid = boundingBoxes[k];
//if (i == 1)
{
DETECT_FLG = detect_flgs[k];
tmpCandid = tmpCandidates[k];
}
if (((i == 0) && !data->failedLastTime && tracker->trackerProxy->update(image, tmpCandid)) || (DETECT_FLG))
{
candidates[k].push_back(tmpCandid);
if (i == 0)
tld::resample(image_gray, tmpCandid, standardPatch);
else
tld::resample(imageForDetector, tmpCandid, standardPatch);
candidatesRes[k].push_back(tldModel->detector->Sc(standardPatch));
}
else
{
if (i == 0)
trackerNeedsReInit[k] = true;
else
trackerNeedsReInit[k] = false;
}
}
std::vector<double>::iterator it = std::max_element(candidatesRes[k].begin(), candidatesRes[k].end());
if (it == candidatesRes[k].end())
{
data->confident = false;
data->failedLastTime = true;
return false;
}
else
{
boundingBoxes[k] = candidates[k][it - candidatesRes[k].begin()];
data->failedLastTime = false;
if (trackerNeedsReInit[k] || it != candidatesRes[k].begin())
tracker->trackerProxy->init(image, boundingBoxes[k]);
}
#if 1
if (it != candidatesRes[k].end())
tld::resample(imageForDetector, candidates[k][it - candidatesRes[k].begin()], standardPatch);
#endif
if (*it > tld::CORE_THRESHOLD)
data->confident = true;
if (data->confident)
{
tld::TrackerTLDImpl::Pexpert pExpert(imageForDetector, image_blurred, boundingBoxes[k], tldModel->detector, tracker->params, data->getMinSize());
tld::TrackerTLDImpl::Nexpert nExpert(imageForDetector, boundingBoxes[k], tldModel->detector, tracker->params);
std::vector<Mat_<uchar> > examplesForModel, examplesForEnsemble;
examplesForModel.reserve(100); examplesForEnsemble.reserve(100);
int negRelabeled = 0;
for (int i = 0; i < (int)detectorResults[k].size(); i++)
{
bool expertResult;
if (detectorResults[k][i].isObject)
{
expertResult = nExpert(detectorResults[k][i].rect);
if (expertResult != detectorResults[k][i].isObject)
negRelabeled++;
}
else
{
expertResult = pExpert(detectorResults[k][i].rect);
}
detectorResults[k][i].shouldBeIntegrated = detectorResults[k][i].shouldBeIntegrated || (detectorResults[k][i].isObject != expertResult);
detectorResults[k][i].isObject = expertResult;
}
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults[k]);
pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
else
tldModel->integrateAdditional(examplesForModel, examplesForEnsemble, true);
examplesForModel.clear(); examplesForEnsemble.clear();
nExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, false);
else
tldModel->integrateAdditional(examplesForModel, examplesForEnsemble, false);
}
else
{
#ifdef CLOSED_LOOP
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
#endif
}
}
return true;
}
void detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches, std::vector<bool> &detect_flgs,
std::vector<Ptr<Tracker> > &trackers)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[0];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Size initSize = tldModel->getMinSize();
for (int k = 0; k < (int)trackers.size(); k++)
patches[k].clear();
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
Mat tmp;
int dx = initSize.width / 10, dy = initSize.height / 10;
Size2d size = img.size();
double scale = 1.0;
int npos = 0, nneg = 0;
double maxSc = -5.0;
Rect2d maxScRect;
int scaleID;
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <std::vector <Point> > varBuffer(trackers.size()), ensBuffer(trackers.size());
std::vector <std::vector <int> > varScaleIDs(trackers.size()), ensScaleIDs(trackers.size());
std::vector <Point> tmpP;
std::vector <int> tmpI;
//Detection part
//Generate windows and filter by variance
scaleID = 0;
resized_imgs.push_back(img);
blurred_imgs.push_back(imgBlurred);
do
{
Mat_<double> intImgP, intImgP2;
tld::TLDDetector::computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
{
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
{
//Optimized variance calculation
int x = dx * i,
y = dy * j,
width = initSize.width,
height = initSize.height;
double p = 0, p2 = 0;
double A, B, C, D;
A = intImgP(y, x);
B = intImgP(y, x + width);
C = intImgP(y + height, x);
D = intImgP(y + height, x + width);
p = (A + D - B - C) / (width * height);
A = intImgP2(y, x);
B = intImgP2(y, x + width);
C = intImgP2(y + height, x);
D = intImgP2(y + height, x + width);
p2 = (A + D - B - C) / (width * height);
double windowVar = p2 - p * p;
//Loop for on all objects
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
//Optimized variance calculation
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
if (!varPass)
continue;
varBuffer[k].push_back(Point(dx * i, dy * j));
varScaleIDs[k].push_back(scaleID);
}
}
}
scaleID++;
size.width /= tld::SCALE_STEP;
size.height /= tld::SCALE_STEP;
scale *= tld::SCALE_STEP;
resize(img, tmp, size, 0, 0, tld::DOWNSCALE_MODE);
resized_imgs.push_back(tmp);
GaussianBlur(resized_imgs[scaleID], tmp, tld::GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
//Encsemble classification
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
double ensRes = 0;
uchar* data = &blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x);
for (int x = 0; x < (int)tldModel->detector->classifiers.size(); x++)
{
int position = 0;
for (int n = 0; n < (int)tldModel->detector->classifiers[x].measurements.size(); n++)
{
position = position << 1;
if (data[tldModel->detector->classifiers[x].offset[n].x] < data[tldModel->detector->classifiers[x].offset[n].y])
position++;
}
double posNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].x;
double negNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].y;
if (posNum == 0.0 && negNum == 0.0)
continue;
else
ensRes += posNum / (posNum + negNum);
}
ensRes /= tldModel->detector->classifiers.size();
ensRes = tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x));
if ( ensRes <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
}
//NN classification
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
npos = 0;
nneg = 0;
maxSc = -5.0;
for (int i = 0; i < (int)ensBuffer[k].size(); i++)
{
tld::TLDDetector::LabeledPatch labPatch;
double curScale = pow(tld::SCALE_STEP, ensScaleIDs[k][i]);
labPatch.rect = Rect2d(ensBuffer[k][i].x*curScale, ensBuffer[k][i].y*curScale, initSize.width * curScale, initSize.height * curScale);
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
double srValue, scValue;
srValue = tldModel->detector->Sr(standardPatch);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = srValue > tld::THETA_NN;
labPatch.shouldBeIntegrated = abs(srValue - tld::THETA_NN) < 0.1;
patches[k].push_back(labPatch);
//
if (!labPatch.isObject)
{
nneg++;
continue;
}
else
{
npos++;
}
scValue = tldModel->detector->Sc(standardPatch);
if (scValue > maxSc)
{
maxSc = scValue;
maxScRect = labPatch.rect;
}
}
if (maxSc < 0)
detect_flgs[k] = false;
else
{
res[k] = maxScRect;
detect_flgs[k] = true;
}
}
}
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches, std::vector<bool> &detect_flgs,
std::vector<Ptr<Tracker> > &trackers)
{
//TLD Tracker data extraction
Tracker* trackerPtr = trackers[0];
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
Size initSize = tldModel->getMinSize();
for (int k = 0; k < (int)trackers.size(); k++)
patches[k].clear();
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
Mat tmp;
int dx = initSize.width / 10, dy = initSize.height / 10;
Size2d size = img.size();
double scale = 1.0;
int npos = 0, nneg = 0;
double maxSc = -5.0;
Rect2d maxScRect;
int scaleID;
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <std::vector <Point> > varBuffer(trackers.size()), ensBuffer(trackers.size());
std::vector <std::vector <int> > varScaleIDs(trackers.size()), ensScaleIDs(trackers.size());
std::vector <Point> tmpP;
std::vector <int> tmpI;
//Detection part
//Generate windows and filter by variance
scaleID = 0;
resized_imgs.push_back(img);
blurred_imgs.push_back(imgBlurred);
do
{
Mat_<double> intImgP, intImgP2;
tld::TLDDetector::computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
{
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
{
//Optimized variance calculation
int x = dx * i,
y = dy * j,
width = initSize.width,
height = initSize.height;
double p = 0, p2 = 0;
double A, B, C, D;
A = intImgP(y, x);
B = intImgP(y, x + width);
C = intImgP(y + height, x);
D = intImgP(y + height, x + width);
p = (A + D - B - C) / (width * height);
A = intImgP2(y, x);
B = intImgP2(y, x + width);
C = intImgP2(y + height, x);
D = intImgP2(y + height, x + width);
p2 = (A + D - B - C) / (width * height);
double windowVar = p2 - p * p;
//Loop for on all objects
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
//Optimized variance calculation
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
if (!varPass)
continue;
varBuffer[k].push_back(Point(dx * i, dy * j));
varScaleIDs[k].push_back(scaleID);
}
}
}
scaleID++;
size.width /= tld::SCALE_STEP;
size.height /= tld::SCALE_STEP;
scale *= tld::SCALE_STEP;
resize(img, tmp, size, 0, 0, tld::DOWNSCALE_MODE);
resized_imgs.push_back(tmp);
GaussianBlur(resized_imgs[scaleID], tmp, tld::GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
//Encsemble classification
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
double ensRes = 0;
uchar* data = &blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x);
for (int x = 0; x < (int)tldModel->detector->classifiers.size(); x++)
{
int position = 0;
for (int n = 0; n < (int)tldModel->detector->classifiers[x].measurements.size(); n++)
{
position = position << 1;
if (data[tldModel->detector->classifiers[x].offset[n].x] < data[tldModel->detector->classifiers[x].offset[n].y])
position++;
}
double posNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].x;
double negNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].y;
if (posNum == 0.0 && negNum == 0.0)
continue;
else
ensRes += posNum / (posNum + negNum);
}
ensRes /= tldModel->detector->classifiers.size();
ensRes = tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x));
if (ensRes <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
}
//NN classification
for (int k = 0; k < (int)trackers.size(); k++)
{
//TLD Tracker data extraction
trackerPtr = trackers[k];
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->getModel()));
npos = 0;
nneg = 0;
maxSc = -5.0;
//Prepare batch of patches
int numOfPatches = (int)ensBuffer[k].size();
Mat_<uchar> stdPatches(numOfPatches, 225);
double *resultSr = new double[numOfPatches];
double *resultSc = new double[numOfPatches];
uchar *patchesData = stdPatches.data;
for (int i = 0; i < (int)ensBuffer.size(); i++)
{
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
uchar *stdPatchData = standardPatch.data;
for (int j = 0; j < 225; j++)
patchesData[225 * i + j] = stdPatchData[j];
}
//Calculate Sr and Sc batches
tldModel->detector->ocl_batchSrSc(stdPatches, resultSr, resultSc, numOfPatches);
for (int i = 0; i < (int)ensBuffer[k].size(); i++)
{
tld::TLDDetector::LabeledPatch labPatch;
standardPatch.data = &stdPatches.data[225 * i];
double curScale = pow(tld::SCALE_STEP, ensScaleIDs[k][i]);
labPatch.rect = Rect2d(ensBuffer[k][i].x*curScale, ensBuffer[k][i].y*curScale, initSize.width * curScale, initSize.height * curScale);
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
double srValue, scValue;
srValue = resultSr[i];
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = srValue > tld::THETA_NN;
labPatch.shouldBeIntegrated = abs(srValue - tld::THETA_NN) < 0.1;
patches[k].push_back(labPatch);
//
if (!labPatch.isObject)
{
nneg++;
continue;
}
else
{
npos++;
}
scValue = resultSc[i];
if (scValue > maxSc)
{
maxSc = scValue;
maxScRect = labPatch.rect;
}
}
if (maxSc < 0)
detect_flgs[k] = false;
else
{
res[k] = maxScRect;
detect_flgs[k] = true;
}
}
}
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_MULTITRACKER
#define OPENCV_MULTITRACKER
#include "precomp.hpp"
#include "tldTracker.hpp"
#include "tldUtils.hpp"
#include <math.h>
namespace cv
{
void detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches,
std::vector<bool>& detect_flgs, std::vector<Ptr<Tracker> >& trackers);
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches,
std::vector<bool>& detect_flgs, std::vector<Ptr<Tracker> >& trackers);
}
#endif
\ No newline at end of file
......@@ -48,69 +48,107 @@ namespace cv
char tldRootPath[100];
int frameNum = 0;
bool flagPNG = false;
bool flagVOT = false;
cv::Rect2d tld_InitDataset(int datasetInd,const char* rootPath)
//TLD Dataset Parameters
const char* tldFolderName[10] = {
"01_david",
"02_jumping",
"03_pedestrian1",
"04_pedestrian2",
"05_pedestrian3",
"06_car",
"07_motocross",
"08_volkswagen",
"09_carchase",
"10_panda"
};
const char* votFolderName[60] = {
"bag", "ball1", "ball2", "basketball", "birds1", "birds2", "blanket", "bmx", "bolt1", "bolt2",
"book", "butterfly", "car1", "car2", "crossing", "dinosaur", "fernando", "fish1", "fish2", "fish3",
"fish4", "girl", "glove", "godfather", "graduate", "gymnastics1", "gymnastics2 ", "gymnastics3", "gymnastics4", "hand",
"handball1", "handball2", "helicopter", "iceskater1", "iceskater2", "leaves", "marching", "matrix", "motocross1", "motocross2",
"nature", "octopus", "pedestrian1", "pedestrian2", "rabbit", "racing", "road", "shaking", "sheep", "singer1",
"singer2", "singer3", "soccer1", "soccer2", "soldier", "sphere", "tiger", "traffic", "tunnel", "wiper"
};
const Rect2d tldInitBB[10] = {
Rect2d(165, 93, 51, 54), Rect2d(147, 110, 33, 32), Rect2d(47, 51, 21, 36), Rect2d(130, 134, 21, 53), Rect2d(154, 102, 24, 52),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(337, 219, 54, 37), Rect2d(58, 100, 27, 22)
};
const Rect2d votInitBB[60] = {
Rect2d(142, 125, 90, 39), Rect2d(490, 400, 40, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(450, 380, 60, 60), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(225, 175, 50, 50), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(560, 460, 50, 120),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
};
int tldFrameOffset[10] = { 100, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int votFrameOffset[60] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
bool tldFlagPNG[10] = { 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 };
bool votFlagPNG[60] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
cv::Rect2d tld_InitDataset(int videoInd, const char* rootPath, int datasetInd)
{
char* folderName = (char *)"";
int x = 0;
int y = 0;
int w = 0;
int h = 0;
flagPNG = false;
frameNum = 1;
if (datasetInd == 1) {
folderName = (char *)"01_david";
x = 165, y = 83;
w = 51; h = 54;
frameNum = 100;
}
if (datasetInd == 2) {
folderName = (char *)"02_jumping";
x = 147, y = 110;
w = 33; h = 32;
}
if (datasetInd == 3) {
folderName = (char *)"03_pedestrian1";
x = 47, y = 51;
w = 21; h = 36;
}
if (datasetInd == 4) {
folderName = (char *)"04_pedestrian2";
x = 130, y = 134;
w = 21; h = 53;
}
if (datasetInd == 5) {
folderName = (char *)"05_pedestrian3";
x = 154, y = 102;
w = 24; h = 52;
}
if (datasetInd == 6) {
folderName = (char *)"06_car";
x = 142, y = 125;
w = 90; h = 39;
}
if (datasetInd == 7) {
folderName = (char *)"07_motocross";
x = 290, y = 43;
w = 23; h = 40;
flagPNG = true;
}
if (datasetInd == 8) {
folderName = (char *)"08_volkswagen";
x = 273, y = 77;
w = 27; h = 25;
}
if (datasetInd == 9) {
folderName = (char *)"09_carchase";
x = 145, y = 84;
w = 54; h = 37;
double x = 0,
y = 0,
w = 0,
h = 0;
//Index range
// 1-10 TLD Dataset
// 1-60 VOT 2015 Dataset
int id = videoInd - 1;
if (datasetInd == 0)
{
folderName = (char*)tldFolderName[id];
x = tldInitBB[id].x;
y = tldInitBB[id].y;
w = tldInitBB[id].width;
h = tldInitBB[id].height;
frameNum = tldFrameOffset[id];
flagPNG = tldFlagPNG[id];
flagVOT = false;
}
if (datasetInd == 10){
folderName = (char *)"10_panda";
x = 58, y = 100;
w = 27; h = 22;
if (datasetInd == 1)
{
folderName = (char*)votFolderName[id];
x = votInitBB[id].x;
y = votInitBB[id].y;
w = votInitBB[id].width;
h = votInitBB[id].height;
frameNum = votFrameOffset[id];
flagPNG = votFlagPNG[id];
flagVOT = true;
}
strcpy(tldRootPath, rootPath);
......@@ -127,6 +165,8 @@ namespace cv
char numStr[10];
strcpy(fullPath, tldRootPath);
strcat(fullPath, "\\");
if (flagVOT)
strcat(fullPath, "000");
if (frameNum < 10) strcat(fullPath, "0000");
else if (frameNum < 100) strcat(fullPath, "000");
else if (frameNum < 1000) strcat(fullPath, "00");
......
......@@ -65,25 +65,6 @@ namespace cv
// Calculate Relative similarity of the patch (NN-Model)
double TLDDetector::Sr(const Mat_<uchar>& patch)
{
/*
int64 e1, e2;
float t;
e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
for (int i = 0; i < (int)(*positiveExamples).size(); i++)
splus = std::max(splus, 0.5 * (NCC((*positiveExamples)[i], patch) + 1.0));
for (int i = 0; i < (int)(*negativeExamples).size(); i++)
sminus = std::max(sminus, 0.5 * (NCC((*negativeExamples)[i], patch) + 1.0));
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sr: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
*/
//int64 e1, e2;
//float t;
//e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
for (int i = 0; i < *posNum; i++)
......@@ -96,9 +77,7 @@ namespace cv
modelSample.data = &(negExp->data[i * 225]);
sminus = std::max(sminus, 0.5 * (NCC(modelSample, patch) + 1.0));
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr CPU: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
......@@ -106,10 +85,6 @@ namespace cv
double TLDDetector::ocl_Sr(const Mat_<uchar>& patch)
{
//int64 e1, e2, e3, e4;
//double t;
//e1 = getTickCount();
//e3 = getTickCount();
double splus = 0.0, sminus = 0.0;
......@@ -131,41 +106,15 @@ namespace cv
ocl::KernelArg::PtrReadOnly(devPositiveSamples),
ocl::KernelArg::PtrReadOnly(devNegativeSamples),
ocl::KernelArg::PtrWriteOnly(devNCC),
posNum,
negNum);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
*posNum,
*negNum);
size_t globSize = 1000;
//e3 = getTickCount();
if (!k.run(1, &globSize, NULL, false))
printf("Kernel Run Error!!!");
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat resNCC = devNCC.getMat(ACCESS_READ);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
////Compare
//Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
//for (int i = 0; i < 200; i+=17)
//{
// modelSample.data = &(posExp->data[i * 225]);
// printf("%f\t%f\n\n", resNCC.at<float>(i), NCC(modelSample, patch));
//}
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
for (int i = 0; i < *posNum; i++)
splus = std::max(splus, 0.5 * (resNCC.at<float>(i) + 1.0));
......@@ -173,10 +122,6 @@ namespace cv
for (int i = 0; i < *negNum; i++)
sminus = std::max(sminus, 0.5 * (resNCC.at<float>(i+500) +1.0));
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr GPU: %f\n\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
......@@ -184,11 +129,6 @@ namespace cv
void TLDDetector::ocl_batchSrSc(const Mat_<uchar>& patches, double *resultSr, double *resultSc, int numOfPatches)
{
//int64 e1, e2, e3, e4;
//double t;
//e1 = getTickCount();
//e3 = getTickCount();
UMat devPatches = patches.getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devPositiveSamples = posExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devNegativeSamples = negExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
......@@ -208,29 +148,17 @@ namespace cv
ocl::KernelArg::PtrReadOnly(devNegativeSamples),
ocl::KernelArg::PtrWriteOnly(devPosNCC),
ocl::KernelArg::PtrWriteOnly(devNegNCC),
posNum,
negNum,
*posNum,
*negNum,
numOfPatches);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
// 2 -> Pos&Neg
size_t globSize = 2 * numOfPatches*MAX_EXAMPLES_IN_MODEL;
//e3 = getTickCount();
if (!k.run(1, &globSize, NULL, false))
if (!k.run(1, &globSize, NULL, true))
printf("Kernel Run Error!!!");
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat posNCC = devPosNCC.getMat(ACCESS_READ);
Mat negNCC = devNegNCC.getMat(ACCESS_READ);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
//Calculate Srs
for (int id = 0; id < numOfPatches; id++)
......@@ -256,62 +184,11 @@ namespace cv
else
resultSc[id] = spc / (smc + spc);
}
////Compare positive NCCs
/*Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
Mat_<uchar> patch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
for (int j = 0; j < numOfPatches; j++)
{
for (int i = 0; i < 1; i++)
{
modelSample.data = &(posExp->data[i * 225]);
patch.data = &(patches.data[j * 225]);
printf("%f\t%f\n", resultSr[j], Sr(patch));
printf("%f\t%f\n", resultSc[j], Sc(patch));
}
}*/
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr GPU: %f\n\n", t);
}
// Calculate Conservative similarity of the patch (NN-Model)
double TLDDetector::Sc(const Mat_<uchar>& patch)
{
/*
int64 e1, e2;
float t;
e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
int med = getMedian((*timeStampsPositive));
for (int i = 0; i < (int)(*positiveExamples).size(); i++)
{
if ((int)(*timeStampsPositive)[i] <= med)
splus = std::max(splus, 0.5 * (NCC((*positiveExamples)[i], patch) + 1.0));
}
for (int i = 0; i < (int)(*negativeExamples).size(); i++)
sminus = std::max(sminus, 0.5 * (NCC((*negativeExamples)[i], patch) + 1.0));
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sc: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
*/
//int64 e1, e2;
//double t;
//e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
int med = getMedian((*timeStampsPositive));
......@@ -328,9 +205,7 @@ namespace cv
modelSample.data = &(negExp->data[i * 225]);
sminus = std::max(sminus, 0.5 * (NCC(modelSample, patch) + 1.0));
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sc: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
......@@ -339,13 +214,8 @@ namespace cv
double TLDDetector::ocl_Sc(const Mat_<uchar>& patch)
{
//int64 e1, e2, e3, e4;
//float t;
//e1 = getTickCount();
double splus = 0.0, sminus = 0.0;
//e3 = getTickCount();
UMat devPatch = patch.getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devPositiveSamples = posExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devNegativeSamples = negExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
......@@ -364,40 +234,15 @@ namespace cv
ocl::KernelArg::PtrReadOnly(devPositiveSamples),
ocl::KernelArg::PtrReadOnly(devNegativeSamples),
ocl::KernelArg::PtrWriteOnly(devNCC),
posNum,
negNum);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
*posNum,
*negNum);
size_t globSize = 1000;
//e3 = getTickCount();
if (!k.run(1, &globSize, NULL, false))
printf("Kernel Run Error!!!");
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
//e3 = getTickCount();
Mat resNCC = devNCC.getMat(ACCESS_READ);
//e4 = getTickCount();
//t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
////Compare
//Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
//for (int i = 0; i < 200; i+=17)
//{
// modelSample.data = &(posExp->data[i * 225]);
// printf("%f\t%f\n\n", resNCC.at<float>(i), NCC(modelSample, patch));
//}
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
int med = getMedian((*timeStampsPositive));
for (int i = 0; i < *posNum; i++)
......@@ -407,10 +252,6 @@ namespace cv
for (int i = 0; i < *negNum; i++)
sminus = std::max(sminus, 0.5 * (resNCC.at<float>(i + 500) + 1.0));
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sc GPU: %f\n\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
......@@ -449,7 +290,6 @@ namespace cv
break;
}
}
//dprintf(("%d rects in res\n", (int)res.size()));
}
//Detection - returns most probable new target location (Max Sc)
......@@ -469,10 +309,6 @@ namespace cv
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <Point> varBuffer, ensBuffer;
std::vector <int> varScaleIDs, ensScaleIDs;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Generate windows and filter by variance
......@@ -502,12 +338,8 @@ namespace cv
GaussianBlur(resized_imgs[scaleID], tmp, GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
//e1 = getTickCount();
for (int i = 0; i < (int)varBuffer.size(); i++)
{
prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[i]].step[0]));
......@@ -516,12 +348,8 @@ namespace cv
ensBuffer.push_back(varBuffer[i]);
ensScaleIDs.push_back(varScaleIDs[i]);
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//NN classification
//e1 = getTickCount();
for (int i = 0; i < (int)ensBuffer.size(); i++)
{
LabeledPatch labPatch;
......@@ -555,15 +383,15 @@ namespace cv
maxScRect = labPatch.rect;
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if (maxSc < 0)
return false;
else
{
res = maxScRect;
return true;
}
}
bool TLDDetector::ocl_detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize)
{
......@@ -580,10 +408,7 @@ namespace cv
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <Point> varBuffer, ensBuffer;
std::vector <int> varScaleIDs, ensScaleIDs;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Generate windows and filter by variance
scaleID = 0;
......@@ -612,12 +437,8 @@ namespace cv
GaussianBlur(resized_imgs[scaleID], tmp, GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
//e1 = getTickCount();
for (int i = 0; i < (int)varBuffer.size(); i++)
{
prepareClassifiers((int)blurred_imgs[varScaleIDs[i]].step[0]);
......@@ -626,12 +447,8 @@ namespace cv
ensBuffer.push_back(varBuffer[i]);
ensScaleIDs.push_back(varScaleIDs[i]);
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//NN classification
//e1 = getTickCount();
//Prepare batch of patches
int numOfPatches = (int)ensBuffer.size();
Mat_<uchar> stdPatches(numOfPatches, 225);
......@@ -661,9 +478,6 @@ namespace cv
srValue = resultSr[i];
//srValue = Sr(standardPatch);
//printf("%f\t%f\t\n", srValue, resultSr[i]);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = srValue > THETA_NN;
......@@ -687,9 +501,6 @@ namespace cv
maxScRect = labPatch.rect;
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if (maxSc < 0)
return false;
......
......@@ -66,13 +66,15 @@ namespace cv
static const cv::Size GaussBlurKernelSize(3, 3);
class TLDDetector
{
public:
TLDDetector(){}
~TLDDetector(){}
inline double ensembleClassifierNum(const uchar* data);
inline void prepareClassifiers(int rowstep);
double ensembleClassifierNum(const uchar* data);
void prepareClassifiers(int rowstep);
double Sr(const Mat_<uchar>& patch);
double ocl_Sr(const Mat_<uchar>& patch);
double Sc(const Mat_<uchar>& patch);
......@@ -94,14 +96,13 @@ namespace cv
};
bool detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize);
bool ocl_detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize);
protected:
friend class MyMouseCallbackDEBUG;
void computeIntegralImages(const Mat& img, Mat_<double>& intImgP, Mat_<double>& intImgP2){ integral(img, intImgP, intImgP2, CV_64F); }
inline bool patchVariance(Mat_<double>& intImgP, Mat_<double>& intImgP2, double *originalVariance, Point pt, Size size);
static void computeIntegralImages(const Mat& img, Mat_<double>& intImgP, Mat_<double>& intImgP2){ integral(img, intImgP, intImgP2, CV_64F); }
static inline bool patchVariance(Mat_<double>& intImgP, Mat_<double>& intImgP2, double *originalVariance, Point pt, Size size);
};
}
}
......
......@@ -54,7 +54,7 @@ namespace cv
double posteriorProbability(const uchar* data, int rowstep) const;
double posteriorProbabilityFast(const uchar* data) const;
void prepareClassifier(int rowstep);
private:
TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end);
static void stepPrefSuff(std::vector<Vec4b> & arr, int pos, int len, int gridSize);
int code(const uchar* data, int rowstep) const;
......
......@@ -140,7 +140,6 @@ namespace cv
detector->classifiers[k].integrate(blurredPatch, false);
}
}
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
}
......@@ -180,16 +179,6 @@ namespace cv
detector->classifiers[i].integrate(blurredPatch, patches[k].isObject);
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
......@@ -198,9 +187,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
for (int k = 0; k < (int)eForModel.size(); k++)
{
double sr = detector->Sr(eForModel[k]);
......@@ -231,19 +217,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive)
......@@ -251,10 +224,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Prepare batch of patches
int numOfPatches = (int)eForModel.size();
Mat_<uchar> stdPatches(numOfPatches, 225);
......@@ -301,19 +270,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
}
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional OCL: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
//Push the patch to the model
......
......@@ -45,6 +45,13 @@
namespace cv
{
TrackerTLD::Params::Params(){}
void TrackerTLD::Params::read(const cv::FileNode& /*fn*/){}
void TrackerTLD::Params::write(cv::FileStorage& /*fs*/) const {}
Ptr<TrackerTLD> TrackerTLD::createTracker(const TrackerTLD::Params &parameters)
{
return Ptr<tld::TrackerTLDImpl>(new tld::TrackerTLDImpl(parameters));
......@@ -112,7 +119,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
std::vector<TLDDetector::LabeledPatch> detectorResults;
//best overlap around 92%
std::vector<Rect2d> candidates;
std::vector<double> candidatesRes;
bool trackerNeedsReInit = false;
......@@ -128,7 +134,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
else
DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
}
if( ( (i == 0) && !data->failedLastTime && trackerProxy->update(image, tmpCandid) ) || ( DETECT_FLG))
{
candidates.push_back(tmpCandid);
......@@ -144,15 +149,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
trackerNeedsReInit = true;
}
}
std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
//data->printme();
//tldModel->printme(stdout);
if( it == candidatesRes.end() )
{
data->confident = false;
......@@ -169,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
#if 1
if( it != candidatesRes.end() )
{
resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif
if( *it > CORE_THRESHOLD )
......@@ -209,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
detectorResults[i].isObject = expertResult;
}
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
......@@ -296,7 +284,6 @@ Data::Data(Rect2d initBox)
minSize.width = (int)(initBox.width * 20.0 / minDim);
minSize.height = (int)(initBox.height * 20.0 / minDim);
frameNum = 0;
//dprintf(("minSize = %dx%d\n", minSize.width, minSize.height));
}
void Data::printme(FILE* port)
......
......@@ -52,12 +52,6 @@
namespace cv
{
TrackerTLD::Params::Params(){}
void TrackerTLD::Params::read(const cv::FileNode& /*fn*/){}
void TrackerTLD::Params::write(cv::FileStorage& /*fs*/) const {}
namespace tld
{
class TrackerProxy
......@@ -128,7 +122,6 @@ public:
void read(const FileNode& fn);
void write(FileStorage& fs) const;
protected:
class Pexpert
{
public:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment