Commit d4011aae authored by Vladimir's avatar Vladimir

2-nd level of parallelization + detector remake

1. Added 2-nd level of parallelization of NN on OpenCL
2. Restructured detector - now all filters work independently:
Variance Filter->Ensemble->NN,  through "buffers"
parent 87190737
......@@ -48,8 +48,8 @@
using namespace std;
using namespace cv;
#define NUM_TEST_FRAMES 500
#define TEST_VIDEO_INDEX 1 //TLD Dataset Video Index from 1-10
#define NUM_TEST_FRAMES 100
#define TEST_VIDEO_INDEX 7 //TLD Dataset Video Index from 1-10
//#define RECORD_VIDEO_FLG
static Mat image;
......
......@@ -31,12 +31,11 @@ __kernel void NCC(__global const uchar *patch,
int s1 = 0, s2 = 0, n1 = 0, n2 = 0, prod = 0;
float sq1 = 0, sq2 = 0, ares = 0;
int N = 225;
//NCC with positive patch
//NCC with positive sample
if (posFlg && id < posNum)
{
for (int i = 0; i < N; i++)
{
s1 += positiveSamples[id * N + i];
s2 += patch[i];
n1 += positiveSamples[id * N + i] * positiveSamples[id * N + i];
......@@ -49,7 +48,7 @@ __kernel void NCC(__global const uchar *patch,
ncc[id] = ares;
}
//NCC with negative patch
//NCC with negative sample
if (!posFlg && id < negNum)
{
for (int i = 0; i < N; i++)
......@@ -67,3 +66,68 @@ __kernel void NCC(__global const uchar *patch,
ncc[id+500] = ares;
}
}
__kernel void batchNCC(__global const uchar *patches,
__global const uchar *positiveSamples,
__global const uchar *negativeSamples,
__global float *posNcc,
__global float *negNcc,
int posNum,
int negNum,
int patchNum)
{
int id = get_global_id(0);
bool posFlg;
if (id < 500*patchNum)
posFlg = true;
if (id >= 500*patchNum)
{
//Negative index
id = id - 500*patchNum;
posFlg = false;
}
int modelSampleID = id % 500;
int patchID = id / 500;
//Variables
int s1 = 0, s2 = 0, n1 = 0, n2 = 0, prod = 0;
float sq1 = 0, sq2 = 0, ares = 0;
int N = 225;
//NCC with positive sample
if (posFlg && modelSampleID < posNum)
{
for (int i = 0; i < N; i++)
{
s1 += positiveSamples[modelSampleID * N + i];
s2 += patches[patchID*N + i];
n1 += positiveSamples[modelSampleID * N + i] * positiveSamples[modelSampleID * N + i];
n2 += patches[patchID*N + i] * patches[patchID*N + i];
prod += positiveSamples[modelSampleID * N + i] * patches[patchID*N + i];
}
sq1 = sqrt(max(0.0, n1 - 1.0 * s1 * s1 / N));
sq2 = sqrt(max(0.0, n2 - 1.0 * s2 * s2 / N));
ares = (sq2 == 0) ? sq1 / fabs(sq1) : (prod - s1 * s2 / N) / sq1 / sq2;
posNcc[id] = ares;
}
//NCC with negative sample
if (!posFlg && modelSampleID < negNum)
{
for (int i = 0; i < N; i++)
{
s1 += negativeSamples[modelSampleID * N + i];
s2 += patches[patchID*N + i];
n1 += negativeSamples[modelSampleID * N + i] * negativeSamples[modelSampleID * N + i];
n2 += patches[patchID*N + i] * patches[patchID*N + i];
prod += negativeSamples[modelSampleID * N + i] * patches[patchID*N + i];
}
sq1 = sqrt(max(0.0, n1 - 1.0 * s1 * s1 / N));
sq2 = sqrt(max(0.0, n2 - 1.0 * s2 * s2 / N));
ares = (sq2 == 0) ? sq1 / fabs(sq1) : (prod - s1 * s2 / N) / sq1 / sq2;
negNcc[id] = ares;
}
}
......@@ -98,7 +98,7 @@ namespace cv
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sr CPU: %f\n", t);
//printf("Sr CPU: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
return splus / (sminus + splus);
......@@ -109,9 +109,9 @@ namespace cv
int64 e1, e2, e3, e4;
float t;
e1 = getTickCount();
e3 = getTickCount();
double splus = 0.0, sminus = 0.0;
e3 = getTickCount();
UMat devPatch = patch.getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devPositiveSamples = posExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
......@@ -183,6 +183,110 @@ namespace cv
return splus / (sminus + splus);
}
void TLDDetector::ocl_batchSrSc(const Mat_<uchar>& patches, double *resultSr, double *resultSc, int numOfPatches)
{
int64 e1, e2, e3, e4;
float t;
e1 = getTickCount();
e3 = getTickCount();
UMat devPatches = patches.getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devPositiveSamples = posExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devNegativeSamples = negExp->getUMat(ACCESS_READ, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devPosNCC(MAX_EXAMPLES_IN_MODEL, numOfPatches, CV_32FC1, ACCESS_RW, USAGE_ALLOCATE_DEVICE_MEMORY);
UMat devNegNCC(MAX_EXAMPLES_IN_MODEL, numOfPatches, CV_32FC1, ACCESS_RW, USAGE_ALLOCATE_DEVICE_MEMORY);
ocl::Kernel k;
ocl::ProgramSource src = ocl::tracking::tldDetector_oclsrc;
String error;
ocl::Program prog(src, NULL, error);
k.create("batchNCC", prog);
if (k.empty())
printf("Kernel create failed!!!\n");
k.args(
ocl::KernelArg::PtrReadOnly(devPatches),
ocl::KernelArg::PtrReadOnly(devPositiveSamples),
ocl::KernelArg::PtrReadOnly(devNegativeSamples),
ocl::KernelArg::PtrWriteOnly(devPosNCC),
ocl::KernelArg::PtrWriteOnly(devNegNCC),
posNum,
negNum,
numOfPatches);
e4 = getTickCount();
t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Mem Cpy GPU: %f\n", t);
// 2 -> Pos&Neg
size_t globSize = 2 * numOfPatches*MAX_EXAMPLES_IN_MODEL;
size_t localSize = 1024;
e3 = getTickCount();
if (!k.run(1, &globSize, &localSize, true))
printf("Kernel Run Error!!!");
e4 = getTickCount();
t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Kernel Run GPU: %f\n", t);
e3 = getTickCount();
Mat posNCC = devPosNCC.getMat(ACCESS_READ);
Mat negNCC = devNegNCC.getMat(ACCESS_READ);
e4 = getTickCount();
t = (e4 - e3) / getTickFrequency()*1000.0;
//printf("Read Mem GPU: %f\n", t);
//Calculate Srs
for (int k = 0; k < numOfPatches; k++)
{
double spr = 0.0, smr = 0.0, spc = 0.0, smc = 0;
int med = getMedian((*timeStampsPositive));
for (int i = 0; i < *posNum; i++)
{
spr = std::max(spr, 0.5 * (posNCC.at<float>(k * 500 + i) + 1.0));
if ((int)(*timeStampsPositive)[i] <= med)
spc = std::max(spr, 0.5 * (posNCC.at<float>(k * 500 + i) + 1.0));
}
for (int i = 0; i < *negNum; i++)
smc = smr = std::max(smr, 0.5 * (negNCC.at<float>(k * 500 + i) + 1.0));
if (spr + smr == 0.0)
resultSr[k] = 0.0;
else
resultSr[k] = spr / (smr + spr);
if (spc + smc == 0.0)
resultSc[k] = 0.0;
else
resultSc[k] = spc / (smc + spc);
}
////Compare positive NCCs
/*Mat_<uchar> modelSample(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
Mat_<uchar> patch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
for (int j = 0; j < numOfPatches; j++)
{
for (int i = 0; i < 1; i++)
{
modelSample.data = &(posExp->data[i * 225]);
patch.data = &(patches.data[j * 225]);
printf("%f\t%f\n", resultSr[j], Sr(patch));
printf("%f\t%f\n", resultSc[j], Sc(patch));
}
}*/
//for (int i = 0; i < 200; i+=23)
//{
// modelSample.data = &(negExp->data[i * 225]);
// printf("%f\t%f\n", resNCC.at<float>(500+i), NCC(modelSample, patch));
//}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Sr GPU: %f\n\n", t);
}
// Calculate Conservative similarity of the patch (NN-Model)
double TLDDetector::Sc(const Mat_<uchar>& patch)
{
......@@ -229,7 +333,7 @@ namespace cv
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
printf("Sc: %f\n", t);
//printf("Sc: %f\n", t);
if (splus + sminus == 0.0)
return 0.0;
......@@ -353,51 +457,89 @@ namespace cv
}
//Detection - returns most probable new target location (Max Sc)
bool TLDDetector::detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize)
{
patches.clear();
Mat resized_img, blurred_img;
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
img.copyTo(resized_img);
imgBlurred.copyTo(blurred_img);
Mat tmp;
int dx = initSize.width / 10, dy = initSize.height / 10;
Size2d size = img.size();
double scale = 1.0;
int total = 0, pass = 0;
int npos = 0, nneg = 0;
double tmp = 0, maxSc = -5.0;
double maxSc = -5.0;
Rect2d maxScRect;
int scaleID;
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <Point> varBuffer, ensBuffer;
std::vector <double> varScaleIDs, ensScaleIDs;
int64 e1, e2;
double t;
e1 = cvGetTickCount();
//Detection part
//To fix: use precalculated BB
//Generate windows and filter by variance
scaleID = 0;
resized_imgs.push_back(img);
blurred_imgs.push_back(imgBlurred);
do
{
Mat_<double> intImgP, intImgP2;
computeIntegralImages(resized_img, intImgP, intImgP2);
prepareClassifiers((int)blurred_img.step[0]);
for (int i = 0, imax = cvFloor((0.0 + resized_img.cols - initSize.width) / dx); i < imax; i++)
computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
{
for (int j = 0, jmax = cvFloor((0.0 + resized_img.rows - initSize.height) / dy); j < jmax; j++)
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
{
LabeledPatch labPatch;
total++;
if (!patchVariance(intImgP, intImgP2, originalVariancePtr, Point(dx * i, dy * j), initSize))
continue;
if (ensembleClassifierNum(&blurred_img.at<uchar>(dy * j, dx * i)) <= ENSEMBLE_THRESHOLD)
varBuffer.push_back(Point(dx * i, dy * j));
varScaleIDs.push_back(scaleID);
}
}
scaleID++;
size.width /= SCALE_STEP;
size.height /= SCALE_STEP;
scale *= SCALE_STEP;
resize(img, tmp, size, 0, 0, DOWNSCALE_MODE);
resized_imgs.push_back(tmp);
GaussianBlur(resized_imgs[scaleID], tmp, GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
e1 = cvGetTickCount();
for (int i = 0; i < varBuffer.size(); i++)
{
prepareClassifiers((int)blurred_imgs[varScaleIDs[i]].step[0]);
if (ensembleClassifierNum(&blurred_imgs[varScaleIDs[i]].at<uchar>(varBuffer[i].y, varBuffer[i].x)) <= ENSEMBLE_THRESHOLD)
continue;
pass++;
ensBuffer.push_back(varBuffer[i]);
ensScaleIDs.push_back(varScaleIDs[i]);
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
labPatch.rect = Rect2d(dx * i * scale, dy * j * scale, initSize.width * scale, initSize.height * scale);
resample(resized_img, Rect2d(Point(dx * i, dy * j), initSize), standardPatch);
//NN classification
e1 = getTickCount();
for (int i = 0; i < ensBuffer.size(); i++)
{
LabeledPatch labPatch;
double curScale = pow(SCALE_STEP, ensScaleIDs[i]);
labPatch.rect = Rect2d(ensBuffer[i].x*curScale, ensBuffer[i].y*curScale, initSize.width * curScale, initSize.height * curScale);
resample(resized_imgs[ensScaleIDs[i]], Rect2d(ensBuffer[i], initSize), standardPatch);
tmp = ocl_Sr(standardPatch);
double srValue, scValue;
srValue = Sr(standardPatch);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = tmp > THETA_NN;
labPatch.shouldBeIntegrated = abs(tmp - THETA_NN) < 0.1;
labPatch.isObject = srValue > THETA_NN;
labPatch.shouldBeIntegrated = abs(srValue - THETA_NN) < 0.1;
patches.push_back(labPatch);
//
......@@ -410,21 +552,149 @@ namespace cv
{
npos++;
}
tmp = ocl_Sc(standardPatch);
if (tmp > maxSc)
scValue = Sc(standardPatch);
if (scValue > maxSc)
{
maxSc = tmp;
maxSc = scValue;
maxScRect = labPatch.rect;
}
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if (maxSc < 0)
return false;
res = maxScRect;
return true;
}
bool TLDDetector::ocl_detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize)
{
patches.clear();
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
Mat tmp;
int dx = initSize.width / 10, dy = initSize.height / 10;
Size2d size = img.size();
double scale = 1.0;
int total = 0, pass = 0;
int npos = 0, nneg = 0;
double maxSc = -5.0;
Rect2d maxScRect;
int scaleID;
std::vector <Mat> resized_imgs, blurred_imgs;
std::vector <Point> varBuffer, ensBuffer;
std::vector <double> varScaleIDs, ensScaleIDs;
int64 e1, e2;
double t;
e1 = cvGetTickCount();
//Detection part
//Generate windows and filter by variance
scaleID = 0;
resized_imgs.push_back(img);
blurred_imgs.push_back(imgBlurred);
do
{
Mat_<double> intImgP, intImgP2;
computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
{
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
{
if (!patchVariance(intImgP, intImgP2, originalVariancePtr, Point(dx * i, dy * j), initSize))
continue;
varBuffer.push_back(Point(dx * i, dy * j));
varScaleIDs.push_back(scaleID);
}
}
scaleID++;
size.width /= SCALE_STEP;
size.height /= SCALE_STEP;
scale *= SCALE_STEP;
resize(img, resized_img, size, 0, 0, DOWNSCALE_MODE);
GaussianBlur(resized_img, blurred_img, GaussBlurKernelSize, 0.0f);
resize(img, tmp, size, 0, 0, DOWNSCALE_MODE);
resized_imgs.push_back(tmp);
GaussianBlur(resized_imgs[scaleID], tmp, GaussBlurKernelSize, 0.0f);
blurred_imgs.push_back(tmp);
} while (size.width >= initSize.width && size.height >= initSize.height);
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//Encsemble classification
e1 = cvGetTickCount();
for (int i = 0; i < varBuffer.size(); i++)
{
prepareClassifiers((int)blurred_imgs[varScaleIDs[i]].step[0]);
if (ensembleClassifierNum(&blurred_imgs[varScaleIDs[i]].at<uchar>(varBuffer[i].y, varBuffer[i].x)) <= ENSEMBLE_THRESHOLD)
continue;
ensBuffer.push_back(varBuffer[i]);
ensScaleIDs.push_back(varScaleIDs[i]);
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//NN classification
e1 = getTickCount();
//Prepare batch of patches
int numOfPatches = ensBuffer.size();
Mat_<uchar> stdPatches(numOfPatches, 225);
double *resultSr = new double[numOfPatches];
double *resultSc = new double[numOfPatches];
uchar *patchesData = stdPatches.data;
for (int i = 0; i < ensBuffer.size(); i++)
{
resample(resized_imgs[ensScaleIDs[i]], Rect2d(ensBuffer[i], initSize), standardPatch);
uchar *stdPatchData = standardPatch.data;
for (int j = 0; j < 225; j++)
patchesData[225*i+j] = stdPatchData[j];
}
//Calculate Sr and Sc batches
ocl_batchSrSc(stdPatches, resultSr, resultSc, numOfPatches);
for (int i = 0; i < ensBuffer.size(); i++)
{
LabeledPatch labPatch;
standardPatch.data = &stdPatches.data[225 * i];
double curScale = pow(SCALE_STEP, ensScaleIDs[i]);
labPatch.rect = Rect2d(ensBuffer[i].x*curScale, ensBuffer[i].y*curScale, initSize.width * curScale, initSize.height * curScale);
double srValue, scValue;
srValue = resultSr[i];
//srValue = Sr(standardPatch);
//printf("%f\t%f\t\n", srValue, resultSr[i]);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch.isObject = srValue > THETA_NN;
labPatch.shouldBeIntegrated = abs(srValue - THETA_NN) < 0.1;
patches.push_back(labPatch);
//
if (!labPatch.isObject)
{
nneg++;
continue;
}
else
{
npos++;
}
scValue = resultSc[i];
if (scValue > maxSc)
{
maxSc = scValue;
maxScRect = labPatch.rect;
}
}
e2 = getTickCount();
t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if (maxSc < 0)
return false;
......
......@@ -78,6 +78,7 @@ namespace cv
double ocl_Sr(const Mat_<uchar>& patch);
double Sc(const Mat_<uchar>& patch);
double ocl_Sc(const Mat_<uchar>& patch);
void ocl_batchSrSc(const Mat_<uchar>& patches, double *resultSr, double *resultSc, int numOfPatches);
std::vector<TLDEnsembleClassifier> classifiers;
Mat *posExp, *negExp;
......
......@@ -120,7 +120,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
{
Rect2d tmpCandid = boundingBox;
if( ( (i == 0) && !data->failedLastTime && trackerProxy->update(image, tmpCandid) ) ||
((i == 1) && (tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize()))))
((i == 1) && (tldModel->detector->ocl_detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize()))))
{
candidates.push_back(tmpCandid);
if( i == 0 )
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment