Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
d191729b
Commit
d191729b
authored
Jul 09, 2014
by
biagio montesano
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Matcher functionalities' tests completed
parent
3b207a77
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
1075 additions
and
102 deletions
+1075
-102
descriptor.hpp
...descriptor/include/opencv2/line_descriptor/descriptor.hpp
+85
-12
compute_descriptors.cpp
modules/line_descriptor/samples/compute_descriptors.cpp
+0
-2
cameraman.jpg
modules/line_descriptor/samples/images/cameraman.jpg
+0
-0
church.jpg
modules/line_descriptor/samples/images/church.jpg
+0
-0
church2.png
modules/line_descriptor/samples/images/church2.png
+0
-0
einstein.jpg
modules/line_descriptor/samples/images/einstein.jpg
+0
-0
stuff.jpg
modules/line_descriptor/samples/images/stuff.jpg
+0
-0
knn_matching.cpp
modules/line_descriptor/samples/knn_matching.cpp
+169
-0
lines_extraction.cpp
modules/line_descriptor/samples/lines_extraction.cpp
+0
-2
matching.cpp
modules/line_descriptor/samples/matching.cpp
+14
-69
radius_matching.cpp
modules/line_descriptor/samples/radius_matching.cpp
+111
-0
BinaryDescriptor.cpp
modules/line_descriptor/src/BinaryDescriptor.cpp
+40
-6
BinaryDescriptorMatcher.cpp
modules/line_descriptor/src/BinaryDescriptorMatcher.cpp
+512
-11
draw.cpp
modules/line_descriptor/src/draw.cpp
+142
-0
line_descriptor_init.cpp
modules/line_descriptor/src/line_descriptor_init.cpp
+2
-0
No files found.
modules/line_descriptor/include/opencv2/line_descriptor/descriptor.hpp
View file @
d191729b
...
...
@@ -55,7 +55,6 @@
#include "sparse_hashtable.hpp"
#include "types.hpp"
namespace
cv
{
...
...
@@ -195,17 +194,17 @@ namespace cv
protected
:
/* implementation of line detection */
virtual
void
detectImpl
(
const
Mat
&
image
,
virtual
void
detectImpl
(
const
Mat
&
image
Src
,
std
::
vector
<
KeyLine
>&
keylines
,
const
Mat
&
mask
=
Mat
()
)
const
;
/* implementation of descriptors' computation */
virtual
void
computeImpl
(
const
Mat
&
image
,
virtual
void
computeImpl
(
const
Mat
&
image
Src
,
std
::
vector
<
KeyLine
>&
keylines
,
Mat
&
descriptors
)
const
;
/* function inherited
by
Algorithm */
/* function inherited
from
Algorithm */
AlgorithmInfo
*
info
()
const
;
private
:
...
...
@@ -302,25 +301,99 @@ namespace cv
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
/* store new descriptors to be inserted in dataset */
void
add
(
const
std
::
vector
<
Mat
>&
descriptors
);
/* store new descriptors into dataset */
void
train
();
/* constructor with smart pointer */
static
Ptr
<
BinaryDescriptorMatcher
>
createBinaryDescriptorMatcher
();
/* write/read data to/from file */
virtual
void
read
(
const
FileNode
&
);
virtual
void
write
(
FileStorage
&
)
const
;
/* clear dataset and internal data */
void
clear
();
/* constructor */
BinaryDescriptorMatcher
()
{}
;
BinaryDescriptorMatcher
();
/* desctructor */
~
BinaryDescriptorMatcher
(){};
~
BinaryDescriptorMatcher
(){}
protected
:
/* function inherited from Algorithm */
AlgorithmInfo
*
info
()
const
;
private
:
/* vector to store new desciptors */
std
::
vector
<
Mat
>
descriptorsVector
;
/* retrieve Hamming distances */
void
checkKDistances
(
UINT32
*
numres
,
int
k
,
std
::
vector
<
int
>&
k_distances
,
int
row
,
int
string_length
)
const
;
/* matrix to store new descriptors */
Mat
descriptorsMat
;
/* map storing where each bunch of descriptors benins in DS */
std
::
map
<
int
,
int
>
indexesMap
;
/* internal MiHaser representing dataset */
Mihasher
*
dataset
;
/* index from which next added descriptors' bunch must begin */
int
nextAddedIndex
;
/* number of images whose descriptors are stored in DS */
int
numImages
;
/* number of descriptors in dataset */
int
descrInDS
;
};
/* --------------------------------------------------------------------------------------------
UTILITY FUNCTIONS
-------------------------------------------------------------------------------------------- */
/* struct for drawing options */
struct
CV_EXPORTS
DrawLinesMatchesFlags
{
enum
{
DEFAULT
=
0
,
// Output image matrix will be created (Mat::create),
// i.e. existing memory of output image may be reused.
// Two source images, matches, and single keylines
// will be drawn.
DRAW_OVER_OUTIMG
=
1
,
// Output image matrix will not be
// created (using Mat::create). Matches will be drawn
// on existing content of output image.
NOT_DRAW_SINGLE_LINES
=
2
// Single keylines will not be drawn.
};
};
/* draw matches between two images */
CV_EXPORTS_W
void
drawLineMatches
(
const
Mat
&
img1
,
const
std
::
vector
<
KeyLine
>&
keylines1
,
const
Mat
&
img2
,
const
std
::
vector
<
KeyLine
>&
keylines2
,
const
std
::
vector
<
DMatch
>&
matches1to2
,
Mat
&
outImg
,
const
Scalar
&
matchColor
=
Scalar
::
all
(
-
1
),
const
Scalar
&
singleLineColor
=
Scalar
::
all
(
-
1
),
const
std
::
vector
<
char
>&
matchesMask
=
std
::
vector
<
char
>
(),
int
flags
=
DrawLinesMatchesFlags
::
DEFAULT
);
/* draw extracted lines on original image */
CV_EXPORTS_W
void
drawKeylines
(
const
Mat
&
image
,
const
std
::
vector
<
KeyLine
>&
keylines
,
Mat
&
outImage
,
const
Scalar
&
color
=
Scalar
::
all
(
-
1
),
int
flags
=
DrawLinesMatchesFlags
::
DEFAULT
);
}
#endif
modules/line_descriptor/samples/compute_descriptors.cpp
View file @
d191729b
...
...
@@ -58,8 +58,6 @@ int main( int argc, char** argv )
}
/* create a random binary mask */
// cv::Mat mask(imageMat.size(), CV_8UC1);
// cv::randu(mask, Scalar::all(0), Scalar::all(1));
cv
::
Mat
mask
=
Mat
::
ones
(
imageMat
.
size
(),
CV_8UC1
);
/* create a pointer to a BinaryDescriptor object with default parameters */
...
...
modules/line_descriptor/samples/images/cameraman.jpg
0 → 100644
View file @
d191729b
23.4 KB
modules/line_descriptor/samples/images/church.jpg
0 → 100644
View file @
d191729b
26.5 KB
modules/line_descriptor/samples/images/church2.png
0 → 100644
View file @
d191729b
792 KB
modules/line_descriptor/samples/images/einstein.jpg
0 → 100644
View file @
d191729b
51.1 KB
modules/line_descriptor/samples/images/stuff.jpg
0 → 100644
View file @
d191729b
55.8 KB
modules/line_descriptor/samples/knn_matching.cpp
0 → 100644
View file @
d191729b
#include <opencv2/line_descriptor.hpp>
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <vector>
using
namespace
cv
;
static
const
char
*
keys
=
{
"{@image_path1 | | Image path 1 }"
"{@image_path2 | | Image path 2 }"
};
static
void
help
()
{
std
::
cout
<<
"
\n
This example shows the functionalities of descriptors matching
\n
"
<<
"Please, run this sample using a command in the form
\n
"
<<
"./example_line_descriptor_matching <path_to_input_image 1>"
<<
"<path_to_input_image 2>"
<<
std
::
endl
;
}
/* invert numBits bits in input char */
uchar
invertSingleBits
(
uchar
dividend_char
,
int
numBits
)
{
std
::
vector
<
int
>
bin_vector
;
long
dividend
;
long
bin_num
;
/* convert input char to a long */
dividend
=
(
long
)
dividend_char
;
/*if a 0 has been obtained, just generate a 8-bit long vector of zeros */
if
(
dividend
==
0
)
bin_vector
=
std
::
vector
<
int
>
(
8
,
0
);
/* else, apply classic decimal to binary conversion */
else
{
while
(
dividend
>=
1
)
{
bin_num
=
dividend
%
2
;
dividend
/=
2
;
bin_vector
.
push_back
(
bin_num
);
}
}
/* ensure that binary vector always has length 8 */
if
(
bin_vector
.
size
()
<
8
){
std
::
vector
<
int
>
zeros
(
8
-
bin_vector
.
size
(),
0
);
bin_vector
.
insert
(
bin_vector
.
end
(),
zeros
.
begin
(),
zeros
.
end
());
}
/* invert numBits bits */
for
(
int
index
=
0
;
index
<
numBits
;
index
++
)
{
if
(
bin_vector
[
index
]
==
0
)
bin_vector
[
index
]
=
1
;
else
bin_vector
[
index
]
=
0
;
}
/* reconvert to decimal */
uchar
result
;
for
(
int
i
=
(
int
)
bin_vector
.
size
()
-
1
;
i
>=
0
;
i
--
)
result
+=
bin_vector
[
i
]
*
pow
(
2
,
i
);
return
result
;
}
int
main
(
int
argc
,
char
**
argv
)
{
/* get parameters from comand line */
CommandLineParser
parser
(
argc
,
argv
,
keys
);
String
image_path1
=
parser
.
get
<
String
>
(
0
);
String
image_path2
=
parser
.
get
<
String
>
(
1
);
if
(
image_path1
.
empty
()
||
image_path2
.
empty
())
{
help
();
return
-
1
;
}
/* load image */
cv
::
Mat
imageMat1
=
imread
(
image_path1
,
1
);
cv
::
Mat
imageMat2
=
imread
(
image_path2
,
1
);
if
(
imageMat1
.
data
==
NULL
||
imageMat2
.
data
==
NULL
)
{
std
::
cout
<<
"Error, images could not be loaded. Please, check their paths"
<<
std
::
endl
;
}
/* create binary masks */
cv
::
Mat
mask1
=
Mat
::
ones
(
imageMat1
.
size
(),
CV_8UC1
);
cv
::
Mat
mask2
=
Mat
::
ones
(
imageMat2
.
size
(),
CV_8UC1
);
/* create a pointer to a BinaryDescriptor object with default parameters */
Ptr
<
BinaryDescriptor
>
bd
=
BinaryDescriptor
::
createBinaryDescriptor
();
/* compute lines */
std
::
vector
<
KeyLine
>
keylines1
,
keylines2
;
bd
->
detect
(
imageMat1
,
keylines1
,
mask1
);
bd
->
detect
(
imageMat2
,
keylines2
,
mask2
);
/* compute descriptors */
cv
::
Mat
descr1
,
descr2
;
bd
->
compute
(
imageMat1
,
keylines1
,
descr1
);
bd
->
compute
(
imageMat2
,
keylines2
,
descr2
);
/* create a BinaryDescriptorMatcher object */
Ptr
<
BinaryDescriptorMatcher
>
bdm
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
/* make a copy of descr2 mat */
Mat
descr2Copy
=
descr1
.
clone
();
/* randomly change some bits in original descriptors */
srand
(
time
(
NULL
));
for
(
int
j
=
0
;
j
<
descr1
.
rows
;
j
++
)
{
/* select a random column */
int
randCol
=
rand
()
%
32
;
/* get correspondent data */
uchar
u
=
descr1
.
at
<
uchar
>
(
j
,
randCol
);
/* change bits */
for
(
int
k
=
1
;
k
<=
5
;
k
++
)
{
/* copy current row to train matrix */
descr2Copy
.
push_back
(
descr1
.
row
(
j
));
/* invert k bits */
uchar
uc
=
invertSingleBits
(
u
,
k
);
/* update current row in train matrix */
descr2Copy
.
at
<
uchar
>
(
descr2Copy
.
rows
-
1
,
randCol
)
=
uc
;
}
}
/* prepare a structure to host matches */
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
/* require knn match */
bdm
->
knnMatch
(
descr1
,
descr2
,
matches
,
6
);
/* visualize matches and Hamming distances */
for
(
size_t
v
=
0
;
v
<
matches
.
size
();
v
++
)
{
for
(
size_t
m
=
0
;
m
<
matches
[
v
].
size
();
m
++
)
{
DMatch
dm
=
matches
[
v
][
m
];
std
::
cout
<<
dm
.
queryIdx
<<
" "
<<
dm
.
trainIdx
<<
" "
<<
dm
.
distance
<<
std
::
endl
;
}
}
}
modules/line_descriptor/samples/lines_extraction.cpp
View file @
d191729b
...
...
@@ -45,8 +45,6 @@ int main( int argc, char** argv )
}
/* create a ramdom binary mask */
// cv::Mat mask(imageMat.size(), CV_8UC1);
// cv::randu(mask, Scalar::all(0), Scalar::all(1));
cv
::
Mat
mask
=
Mat
::
ones
(
imageMat
.
size
(),
CV_8UC1
);
/* create a pointer to a BinaryDescriptor object with deafult parameters */
...
...
modules/line_descriptor/samples/matching.cpp
View file @
d191729b
...
...
@@ -26,19 +26,6 @@ static void help()
}
inline
void
writeMat
(
cv
::
Mat
m
,
std
::
string
name
,
int
n
)
{
std
::
stringstream
ss
;
std
::
string
s
;
ss
<<
n
;
ss
>>
s
;
std
::
string
fileNameConf
=
name
+
s
;
cv
::
FileStorage
fsConf
(
fileNameConf
,
cv
::
FileStorage
::
WRITE
);
fsConf
<<
"m"
<<
m
;
fsConf
.
release
();
}
int
main
(
int
argc
,
char
**
argv
)
{
/* get parameters from comand line */
...
...
@@ -54,8 +41,10 @@ int main( int argc, char** argv )
/* load image */
cv
::
Mat
imageMat1
=
imread
(
image_path1
,
0
);
cv
::
Mat
imageMat2
=
imread
(
image_path2
,
0
);
cv
::
Mat
imageMat1
=
imread
(
image_path1
,
1
);
cv
::
Mat
imageMat2
=
imread
(
image_path2
,
1
);
waitKey
();
if
(
imageMat1
.
data
==
NULL
||
imageMat2
.
data
==
NULL
)
{
std
::
cout
<<
"Error, images could not be loaded. Please, check their path"
...
...
@@ -74,9 +63,6 @@ int main( int argc, char** argv )
bd
->
detect
(
imageMat1
,
keylines1
,
mask1
);
bd
->
detect
(
imageMat2
,
keylines2
,
mask2
);
std
::
cout
<<
"lines "
<<
keylines1
.
size
()
<<
" "
<<
keylines2
.
size
()
<<
std
::
endl
;
/* compute descriptors */
cv
::
Mat
descr1
,
descr2
;
bd
->
compute
(
imageMat1
,
keylines1
,
descr1
);
...
...
@@ -88,58 +74,17 @@ int main( int argc, char** argv )
/* require match */
std
::
vector
<
DMatch
>
matches
;
bdm
->
match
(
descr1
,
descr2
,
matches
);
for
(
int
x
=
0
;
x
<
matches
.
size
();
x
++
)
std
::
cout
<<
matches
[
x
].
queryIdx
<<
" "
<<
matches
[
x
].
trainIdx
<<
std
::
endl
;
/* result checkout */
cv
::
Mat
result
(
descr1
.
size
(),
CV_8UC1
);
std
::
cout
<<
"size "
<<
descr1
.
rows
<<
" "
<<
descr1
.
cols
<<
" "
<<
descr2
.
rows
<<
" "
<<
descr2
.
cols
<<
std
::
endl
;
// for(size_t i = 0; i<matches.size(); i++){
// uchar* pointer = result.ptr(i);
// uchar* trainPointer = descr2.ptr(matches[i].trainIdx);
// *pointer = *trainPointer;
// pointer++;
// }
/* write matrices */
writeMat
(
descr1
,
"descr1"
,
0
);
writeMat
(
result
,
"result"
,
0
);
}
/* plot matches */
cv
::
Mat
outImg
;
std
::
vector
<
char
>
mask
(
matches
.
size
(),
1
);
drawLineMatches
(
imageMat1
,
keylines1
,
imageMat2
,
keylines2
,
matches
,
outImg
,
Scalar
::
all
(
-
1
),
Scalar
::
all
(
-
1
),
mask
,
DrawLinesMatchesFlags
::
DEFAULT
);
std
::
cout
<<
"num dmatch "
<<
matches
.
size
()
<<
std
::
endl
;
imshow
(
"Matches"
,
outImg
);
waitKey
();
}
modules/line_descriptor/samples/radius_matching.cpp
0 → 100644
View file @
d191729b
#include <opencv2/line_descriptor.hpp>
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <vector>
using
namespace
cv
;
static
const
std
::
string
images
[]
=
{
"cameraman.jpg"
,
"church.jpg"
,
"church2.png"
,
"einstein.jpg"
,
"stuff.jpg"
};
static
const
char
*
keys
=
{
"{@image_path | | Image path }"
};
static
void
help
()
{
std
::
cout
<<
"
\n
This example shows the functionalities of radius matching "
<<
"Please, run this sample using a command in the form
\n
"
<<
"./example_line_descriptor_radius_matching <path_to_input_images>/"
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
**
argv
)
{
/* get parameters from comand line */
CommandLineParser
parser
(
argc
,
argv
,
keys
);
String
pathToImages
=
parser
.
get
<
String
>
(
0
);
/* create structures for hosting KeyLines and descriptors */
int
num_elements
=
sizeof
(
images
)
/
sizeof
(
images
[
0
]
);
std
::
vector
<
Mat
>
descriptorsMat
;
std
::
vector
<
std
::
vector
<
KeyLine
>
>
linesMat
;
/*create a pointer to a BinaryDescriptor object */
Ptr
<
BinaryDescriptor
>
bd
=
BinaryDescriptor
::
createBinaryDescriptor
();
/* compute lines and descriptors */
for
(
int
i
=
0
;
i
<
num_elements
;
i
++
)
{
/* get path to image */
std
::
stringstream
image_path
;
image_path
<<
pathToImages
<<
images
[
i
];
/* load image */
Mat
loadedImage
=
imread
(
image_path
.
str
().
c_str
(),
1
);
if
(
loadedImage
.
data
==
NULL
)
{
std
::
cout
<<
"Could not load images."
<<
std
::
endl
;
help
();
exit
(
-
1
);
}
/* compute lines and descriptors */
std
::
vector
<
KeyLine
>
lines
;
Mat
computedDescr
;
bd
->
detect
(
loadedImage
,
lines
);
bd
->
compute
(
loadedImage
,
lines
,
computedDescr
);
descriptorsMat
.
push_back
(
computedDescr
);
linesMat
.
push_back
(
lines
);
}
/* compose a queries matrix */
Mat
queries
;
for
(
size_t
j
=
0
;
j
<
descriptorsMat
.
size
();
j
++
)
{
if
(
descriptorsMat
[
j
].
rows
>=
5
)
queries
.
push_back
(
descriptorsMat
[
j
].
rowRange
(
0
,
5
));
else
if
(
descriptorsMat
[
j
].
rows
>
0
&&
descriptorsMat
[
j
].
rows
<
5
)
queries
.
push_back
(
descriptorsMat
[
j
]);
}
std
::
cout
<<
"It has been generated a matrix of "
<<
queries
.
rows
<<
" descriptors"
<<
std
::
endl
;
/* create a BinaryDescriptorMatcher object */
Ptr
<
BinaryDescriptorMatcher
>
bdm
=
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
();
/* populate matcher */
bdm
->
add
(
descriptorsMat
);
/* compute matches */
std
::
vector
<
std
::
vector
<
DMatch
>
>
matches
;
bdm
->
radiusMatch
(
queries
,
matches
,
30
);
/* print matches */
for
(
size_t
q
=
0
;
q
<
matches
.
size
();
q
++
)
{
for
(
size_t
m
=
0
;
m
<
matches
[
q
].
size
();
m
++
)
{
DMatch
dm
=
matches
[
q
][
m
];
std
::
cout
<<
"Descriptor: "
<<
q
<<
" Image: "
<<
dm
.
imgIdx
<<
" Distance: "
<<
dm
.
distance
<<
std
::
endl
;
}
}
}
modules/line_descriptor/src/BinaryDescriptor.cpp
View file @
d191729b
...
...
@@ -306,6 +306,7 @@ void BinaryDescriptor::computeGaussianPyramid(const Mat& image)
/* clear class fields */
images_sizes
.
clear
();
octaveImages
.
clear
();
extractedLines
.
clear
();
/* insert input image into pyramid */
cv
::
Mat
currentMat
=
image
.
clone
();
...
...
@@ -330,6 +331,17 @@ void BinaryDescriptor::detect( const Mat& image,
CV_OUT
std
::
vector
<
KeyLine
>&
keylines
,
const
Mat
&
mask
)
{
if
(
mask
.
data
!=
NULL
&&
(
mask
.
size
()
!=
image
.
size
()
||
mask
.
type
()
!=
CV_8UC1
))
{
std
::
cout
<<
"Mask error while detecting lines: "
<<
"please check its dimensions and that data type is CV_8UC1"
<<
std
::
endl
;
CV_Assert
(
false
);
}
else
detectImpl
(
image
,
keylines
,
mask
);
}
...
...
@@ -342,15 +354,29 @@ void BinaryDescriptor::detect( const std::vector<Mat>& images,
/* detect lines from each image */
for
(
size_t
counter
=
0
;
counter
<
images
.
size
();
counter
++
)
{
if
(
masks
[
counter
].
data
!=
NULL
&&
(
masks
[
counter
].
size
()
!=
images
[
counter
].
size
()
||
masks
[
counter
].
type
()
!=
CV_8UC1
))
{
std
::
cout
<<
"Masks error while detecting lines: "
<<
"please check their dimensions and that data types are CV_8UC1"
<<
std
::
endl
;
CV_Assert
(
false
);
}
detectImpl
(
images
[
counter
],
keylines
[
counter
],
masks
[
counter
]);
}
}
void
BinaryDescriptor
::
detectImpl
(
const
Mat
&
image
,
void
BinaryDescriptor
::
detectImpl
(
const
Mat
&
image
Src
,
std
::
vector
<
KeyLine
>&
keylines
,
const
Mat
&
mask
)
const
{
cv
::
Mat
image
;
cvtColor
(
imageSrc
,
image
,
COLOR_BGR2GRAY
);
/*check whether image depth is different from 0 */
if
(
image
.
depth
()
!=
0
)
{
...
...
@@ -408,13 +434,16 @@ void BinaryDescriptor::detectImpl( const Mat& image,
/* delete undesired KeyLines, according to input mask */
if
(
!
mask
.
empty
()){
for
(
size_t
keyCounter
=
0
;
keyCounter
<
keylines
.
size
();
keyCounter
++
)
{
KeyLine
kl
=
keylines
[
keyCounter
];
if
(
mask
.
at
<
uchar
>
(
kl
.
startPointX
,
kl
.
startPointY
)
==
0
&&
mask
.
at
<
uchar
>
(
kl
.
endPointX
,
kl
.
endPointY
)
==
0
)
if
(
mask
.
at
<
uchar
>
(
kl
.
startPointY
,
kl
.
startPointX
)
==
0
&&
mask
.
at
<
uchar
>
(
kl
.
endPointY
,
kl
.
endPointX
)
==
0
)
keylines
.
erase
(
keylines
.
begin
()
+
keyCounter
);
}
}
}
...
...
@@ -438,10 +467,14 @@ void BinaryDescriptor::compute( const std::vector<Mat>& images,
}
/* implementation of descriptors computation */
void
BinaryDescriptor
::
computeImpl
(
const
Mat
&
image
,
void
BinaryDescriptor
::
computeImpl
(
const
Mat
&
image
Src
,
std
::
vector
<
KeyLine
>&
keylines
,
Mat
&
descriptors
)
const
{
/* convert input image to gray scale */
cv
::
Mat
image
;
cvtColor
(
imageSrc
,
image
,
COLOR_BGR2GRAY
);
/*check whether image's depth is different from 0 */
if
(
image
.
depth
()
!=
0
)
{
...
...
@@ -521,7 +554,7 @@ void BinaryDescriptor::computeImpl( const Mat& image,
/* compute Gaussian pyramid, if image is new or pyramid was not
computed before */
BinaryDescriptor
*
bn
=
const_cast
<
BinaryDescriptor
*>
(
this
);
if
(
octaveImages
.
size
()
==
0
||
cv
::
countNonZero
(
image
!=
octaveImages
[
0
])
!=
0
)
/* all structures cleared in computeGaussianPyramid */
bn
->
computeGaussianPyramid
(
image
);
/* compute Sobel's derivatives */
...
...
@@ -588,7 +621,7 @@ int BinaryDescriptor::OctaveKeyLines(ScaleLines &keyLines)
cv
::
Mat
currentScaledImage
=
octaveImages
[
scaleCounter
];
/* create an LSD detector and store a pointer to it */
cv
::
Ptr
<
cv
::
LineSegmentDetector
>
ls
=
cv
::
createLineSegmentDetector
(
cv
::
LSD_REFINE_
STD
);
cv
::
Ptr
<
cv
::
LineSegmentDetector
>
ls
=
cv
::
createLineSegmentDetector
(
cv
::
LSD_REFINE_
ADV
);
/* prepare a vector to host extracted segments */
std
::
vector
<
cv
::
Vec4i
>
lines_std
;
...
...
@@ -602,6 +635,7 @@ int BinaryDescriptor::OctaveKeyLines(ScaleLines &keyLines)
/* update lines counter */
numOfFinalLine
+=
lines_std
.
size
();
}
/* prepare a vector to store octave information associated to extracted lines */
...
...
modules/line_descriptor/src/BinaryDescriptorMatcher.cpp
View file @
d191729b
...
...
@@ -2,14 +2,154 @@
using
namespace
cv
;
/* constructor */
BinaryDescriptorMatcher
::
BinaryDescriptorMatcher
()
{
dataset
=
new
Mihasher
(
256
,
32
);
nextAddedIndex
=
0
;
numImages
=
0
;
descrInDS
=
0
;
}
/* constructor with smart pointer */
Ptr
<
BinaryDescriptorMatcher
>
BinaryDescriptorMatcher
::
createBinaryDescriptorMatcher
()
{
return
Ptr
<
BinaryDescriptorMatcher
>
(
new
BinaryDescriptorMatcher
());
}
void
BinaryDescriptorMatcher
::
read
(
const
FileNode
&
){}
void
BinaryDescriptorMatcher
::
write
(
FileStorage
&
)
const
{}
/* store new descriptors to be inserted in dataset */
void
BinaryDescriptorMatcher
::
add
(
const
std
::
vector
<
Mat
>&
descriptors
)
{
for
(
size_t
i
=
0
;
i
<
descriptors
.
size
();
i
++
)
{
descriptorsMat
.
push_back
(
descriptors
[
i
]);
indexesMap
.
insert
(
std
::
pair
<
int
,
int
>
(
nextAddedIndex
,
numImages
));
nextAddedIndex
+=
descriptors
[
i
].
rows
;
numImages
++
;
}
}
/* store new descriptors into dataset */
void
BinaryDescriptorMatcher
::
train
()
{
if
(
!
dataset
)
dataset
=
new
Mihasher
(
256
,
32
);
if
(
descriptorsMat
.
rows
>
0
)
dataset
->
populate
(
descriptorsMat
,
descriptorsMat
.
rows
,
descriptorsMat
.
cols
);
descrInDS
=
descriptorsMat
.
rows
;
descriptorsMat
.
release
();
}
/* clear dataset and internal data */
void
BinaryDescriptorMatcher
::
clear
()
{
descriptorsMat
.
release
();
indexesMap
.
clear
();
dataset
=
0
;
nextAddedIndex
=
0
;
numImages
=
0
;
descrInDS
=
0
;
}
/* retrieve Hamming distances */
void
BinaryDescriptorMatcher
::
checkKDistances
(
UINT32
*
numres
,
int
k
,
std
::
vector
<
int
>
&
k_distances
,
int
row
,
int
string_length
)
const
{
int
k_to_found
=
k
;
UINT32
*
numres_tmp
=
numres
+
((
string_length
+
1
)
*
row
);
for
(
int
j
=
0
;
j
<
(
string_length
+
1
)
&&
k_to_found
>
0
;
j
++
)
{
if
((
*
(
numres_tmp
+
j
))
>
0
)
{
for
(
int
i
=
0
;
i
<
(
*
(
numres_tmp
+
j
))
&&
k_to_found
>
0
;
i
++
)
{
k_distances
.
push_back
(
j
);
k_to_found
--
;
}
}
}
}
/* for every input descriptor,
find the best matching one (from one image to a set) */
void
BinaryDescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
)
{
/* check data validity */
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but match function received "
<<
masks
.
size
()
<<
" masks. Program will be terminated"
<<
std
::
endl
;
return
;
}
/* set number of requested matches to return for each query */
dataset
->
setK
(
1
);
/* add new descriptors to dataset, if needed */
train
();
/* prepare structures for query */
UINT32
*
results
=
new
UINT32
[
queryDescriptors
.
rows
];
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
dataset
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
/* create a map iterator */
std
::
map
<
int
,
int
>::
iterator
itup
;
/* get info about original image of each returned descriptor */
itup
=
indexesMap
.
upper_bound
(
results
[
counter
]
-
1
);
itup
--
;
/* data validity check */
if
(
!
masks
.
empty
()
&&
(
masks
[
itup
->
second
].
rows
!=
queryDescriptors
.
rows
||
masks
[
itup
->
second
].
cols
!=
1
))
{
std
::
cout
<<
"Error: mask "
<<
itup
->
second
<<
" in knnMatch function "
<<
"should have "
<<
queryDescriptors
.
rows
<<
" and "
<<
"1 column. Program will be terminated"
<<
std
::
endl
;
CV_Assert
(
false
);
}
/* create a DMatch object if required by mask of if there is
no mask at all */
else
if
(
masks
.
empty
()
||
masks
[
itup
->
second
].
at
<
uchar
>
(
counter
)
!=
0
)
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
1
,
k_distances
,
counter
,
256
);
DMatch
dm
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
counter
]
-
1
;
dm
.
imgIdx
=
itup
->
second
;
dm
.
distance
=
k_distances
[
0
];
matches
.
push_back
(
dm
);
}
}
/* delete data */
delete
results
;
delete
numres
;
}
/* for every input descriptor, find the best matching one (for a pair of images) */
void
BinaryDescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
...
...
@@ -17,6 +157,17 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors,
std
::
vector
<
DMatch
>&
matches
,
const
Mat
&
mask
)
const
{
/* check data validity */
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
))
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
return
;
}
/* create a new mihasher object */
Mihasher
*
mh
=
new
Mihasher
(
256
,
32
);
...
...
@@ -30,28 +181,378 @@ void BinaryDescriptorMatcher::match( const Mat& queryDescriptors,
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
mh
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
mh
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
for
(
size_
t
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
for
(
in
t
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
/* create a DMatch object if required by mask of if there is
no mask at all */
if
(
mask
.
empty
()
||
(
!
mask
.
empty
()
&&
mask
.
at
<
int
>
(
counter
)
!=
0
))
if
(
mask
.
empty
()
||
(
!
mask
.
empty
()
&&
mask
.
at
<
uchar
>
(
counter
)
!=
0
))
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
1
,
k_distances
,
counter
,
256
);
DMatch
dm
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
counter
];
dm
.
trainIdx
=
results
[
counter
]
-
1
;
dm
.
imgIdx
=
0
;
dm
.
distance
=
numres
[
counter
];
dm
.
distance
=
k_distances
[
0
];
matches
.
push_back
(
dm
);
}
}
/* delete data */
delete
mh
;
delete
results
;
delete
numres
;
}
/* for every input descriptor,
find the best k matching descriptors (for a pair of images) */
void
BinaryDescriptorMatcher
::
knnMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
Mat
&
mask
,
bool
compactResult
)
const
{
/* check data validity */
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
||
mask
.
cols
!=
1
))
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
return
;
}
/* create a new mihasher object */
Mihasher
*
mh
=
new
Mihasher
(
256
,
32
);
/* populate mihasher */
cv
::
Mat
copy
=
trainDescriptors
.
clone
();
mh
->
populate
(
copy
,
copy
.
rows
,
copy
.
cols
);
/* set K */
mh
->
setK
(
k
);
/* prepare structures for query */
UINT32
*
results
=
new
UINT32
[
k
*
queryDescriptors
.
rows
];
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
mh
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
int
index
=
0
;
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
/* initialize a vector of matches */
std
::
vector
<
DMatch
>
tempVec
;
/* chech whether query should be ignored */
if
(
!
mask
.
empty
()
&&
mask
.
at
<
uchar
>
(
counter
)
==
0
)
{
/* if compact result is not requested, add an empty vector */
if
(
!
compactResult
)
matches
.
push_back
(
tempVec
);
}
/* query matches must be considered */
else
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
k
,
k_distances
,
counter
,
256
);
for
(
int
j
=
index
;
j
<
index
+
k
;
j
++
)
{
DMatch
dm
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
imgIdx
=
0
;
dm
.
distance
=
k_distances
[
j
-
index
];
tempVec
.
push_back
(
dm
);
}
matches
.
push_back
(
tempVec
);
}
/* increment pointer */
index
+=
k
;
}
/* delete data */
delete
mh
;
delete
results
;
delete
numres
;
}
/* for every input descriptor,
find the best k matching descriptors (from one image to a set) */
void
BinaryDescriptorMatcher
::
knnMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
{
/* check data validity */
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but knnMatch function received "
<<
masks
.
size
()
<<
" masks. Program will be terminated"
<<
std
::
endl
;
return
;
}
/* set number of requested matches to return for each query */
dataset
->
setK
(
k
);
/* add new descriptors to dataset, if needed */
train
();
/* prepare structures for query */
UINT32
*
results
=
new
UINT32
[
k
*
queryDescriptors
.
rows
];
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
dataset
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
int
index
=
0
;
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
/* create a void vector of matches */
std
::
vector
<
DMatch
>
tempVector
;
/* loop over k results returned for every query */
for
(
int
j
=
index
;
j
<
index
+
k
;
j
++
)
{
/* retrieve which image returned index refers to */
int
currentIndex
=
results
[
j
]
-
1
;
std
::
map
<
int
,
int
>::
iterator
itup
;
itup
=
indexesMap
.
upper_bound
(
currentIndex
);
itup
--
;
/* data validity check */
if
(
!
masks
.
empty
()
&&
(
masks
[
itup
->
second
].
rows
!=
queryDescriptors
.
rows
||
masks
[
itup
->
second
].
cols
!=
1
))
{
std
::
cout
<<
"Error: mask "
<<
itup
->
second
<<
" in knnMatch function "
<<
"should have "
<<
queryDescriptors
.
rows
<<
" and "
<<
"1 column. Program will be terminated"
<<
std
::
endl
;
return
;
}
/* decide if, according to relative mask, returned match should be
considered */
else
if
(
masks
.
size
()
==
0
||
masks
[
itup
->
second
].
at
<
uchar
>
(
counter
)
!=
0
)
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
k
,
k_distances
,
counter
,
256
);
DMatch
dm
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
imgIdx
=
itup
->
second
;
dm
.
distance
=
k_distances
[
j
-
index
];
tempVector
.
push_back
(
dm
);
}
}
/* decide whether temporary vector should be saved */
if
((
tempVector
.
size
()
==
0
&&
!
compactResult
)
||
tempVector
.
size
()
>
0
)
matches
.
push_back
(
tempVector
);
/* increment pointer */
index
+=
k
;
}
/* delete data */
delete
results
;
delete
numres
;
}
/* for every input desciptor, find all the ones falling in a
certaing matching radius (for a pair of images) */
void
BinaryDescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
Mat
&
mask
,
bool
compactResult
)
const
{
/* check data validity */
if
(
!
mask
.
empty
()
&&
(
mask
.
rows
!=
queryDescriptors
.
rows
&&
mask
.
cols
!=
1
))
{
std
::
cout
<<
"Error: input mask should have "
<<
queryDescriptors
.
rows
<<
" rows and 1 column. "
<<
"Program will be terminated"
<<
std
::
endl
;
return
;
}
/* create a new Mihasher */
Mihasher
*
mh
=
new
Mihasher
(
256
,
32
);
/* populate Mihasher */
Mat
copy
=
queryDescriptors
.
clone
();
mh
->
populate
(
copy
,
copy
.
rows
,
copy
.
cols
);
/* set K */
mh
->
setK
(
trainDescriptors
.
rows
);
/* prepare structures for query */
UINT32
*
results
=
new
UINT32
[
trainDescriptors
.
rows
*
queryDescriptors
.
rows
];
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
mh
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
int
index
=
0
;
for
(
int
i
=
0
;
i
<
queryDescriptors
.
rows
;
i
++
)
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
trainDescriptors
.
rows
,
k_distances
,
i
,
256
);
std
::
vector
<
DMatch
>
tempVector
;
for
(
int
j
=
0
;
j
<
index
+
trainDescriptors
.
rows
;
j
++
)
{
if
(
numres
[
j
]
<=
maxDistance
)
{
if
(
mask
.
empty
()
||
mask
.
at
<
uchar
>
(
i
)
!=
0
){
DMatch
dm
;
dm
.
queryIdx
=
i
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
imgIdx
=
0
;
dm
.
distance
=
k_distances
[
j
-
index
];
tempVector
.
push_back
(
dm
);
}
}
}
/* decide whether temporary vector should be saved */
if
((
tempVector
.
size
()
==
0
&&
!
compactResult
)
||
tempVector
.
size
()
>
0
)
matches
.
push_back
(
tempVector
);
/* increment pointer */
index
+=
trainDescriptors
.
rows
;
}
/* delete data */
delete
mh
;
delete
results
;
delete
numres
;
}
/* for every input desciptor, find all the ones falling in a
certaing atching radius (from one image to a set) */
void
BinaryDescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
{
/* check data validity */
if
(
masks
.
size
()
!=
0
&&
(
int
)
masks
.
size
()
!=
numImages
)
{
std
::
cout
<<
"Error: the number of images in dataset is "
<<
numImages
<<
" but radiusMatch function received "
<<
masks
.
size
()
<<
" masks. Program will be terminated"
<<
std
::
endl
;
return
;
}
/* populate dataset */
train
();
/* set K */
dataset
->
setK
(
descrInDS
);
/* prepare structures for query */
UINT32
*
results
=
new
UINT32
[
descrInDS
*
queryDescriptors
.
rows
];
UINT32
*
numres
=
new
UINT32
[(
256
+
1
)
*
(
queryDescriptors
.
rows
)];
/* execute query */
dataset
->
batchquery
(
results
,
numres
,
queryDescriptors
,
queryDescriptors
.
rows
,
queryDescriptors
.
cols
);
/* compose matches */
int
index
=
0
;
for
(
int
counter
=
0
;
counter
<
queryDescriptors
.
rows
;
counter
++
)
{
std
::
vector
<
DMatch
>
tempVector
;
for
(
int
j
=
index
;
j
<
index
+
descrInDS
;
j
++
)
{
std
::
vector
<
int
>
k_distances
;
checkKDistances
(
numres
,
descrInDS
,
k_distances
,
counter
,
256
);
if
(
k_distances
[
j
-
index
]
<=
maxDistance
)
{
int
currentIndex
=
results
[
j
]
-
1
;
std
::
map
<
int
,
int
>::
iterator
itup
;
itup
=
indexesMap
.
upper_bound
(
currentIndex
);
itup
--
;
/* data validity check */
if
(
!
masks
.
empty
()
&&
(
masks
[
itup
->
second
].
rows
!=
queryDescriptors
.
rows
||
masks
[
itup
->
second
].
cols
!=
1
))
{
std
::
cout
<<
"Error: mask "
<<
itup
->
second
<<
" in radiusMatch function "
<<
"should have "
<<
queryDescriptors
.
rows
<<
" and "
<<
"1 column. Program will be terminated"
<<
std
::
endl
;
return
;
}
/* add match if necessary */
else
if
(
masks
.
empty
()
||
masks
[
itup
->
second
].
at
<
uchar
>
(
counter
)
!=
0
)
{
DMatch
dm
;
dm
.
queryIdx
=
counter
;
dm
.
trainIdx
=
results
[
j
]
-
1
;
dm
.
imgIdx
=
itup
->
second
;
dm
.
distance
=
k_distances
[
j
-
index
];
tempVector
.
push_back
(
dm
);
}
}
}
/* decide whether temporary vector should be saved */
if
((
tempVector
.
size
()
==
0
&&
!
compactResult
)
||
tempVector
.
size
()
>
0
)
matches
.
push_back
(
tempVector
);
/* increment pointer */
index
+=
descrInDS
;
}
/* delete data */
delete
results
;
delete
numres
;
}
modules/line_descriptor/src/draw.cpp
0 → 100644
View file @
d191729b
#include "precomp.hpp"
namespace
cv
{
/* draw matches between two images */
void
drawLineMatches
(
const
Mat
&
img1
,
const
std
::
vector
<
KeyLine
>&
keylines1
,
const
Mat
&
img2
,
const
std
::
vector
<
KeyLine
>&
keylines2
,
const
std
::
vector
<
DMatch
>&
matches1to2
,
Mat
&
outImg
,
const
Scalar
&
matchColor
,
const
Scalar
&
singleLineColor
,
const
std
::
vector
<
char
>&
matchesMask
,
int
flags
)
{
/* initialize output matrix (if necessary) */
if
(
flags
==
DrawLinesMatchesFlags
::
DEFAULT
)
{
/* check how many rows are necessary for output matrix */
int
totalRows
=
img1
.
rows
>=
img2
.
rows
?
img1
.
rows
:
img2
.
rows
;
/* initialize output matrix */
outImg
=
Mat
::
zeros
(
totalRows
,
img1
.
cols
+
img2
.
cols
,
img1
.
type
());
}
/* initialize random seed: */
srand
(
time
(
NULL
));
Scalar
singleLineColorRGB
;
if
(
singleLineColor
==
Scalar
::
all
(
-
1
))
{
int
R
=
(
rand
()
%
(
int
)(
255
+
1
));
int
G
=
(
rand
()
%
(
int
)(
255
+
1
));
int
B
=
(
rand
()
%
(
int
)(
255
+
1
));
singleLineColorRGB
=
Scalar
(
R
,
G
,
B
);
}
else
singleLineColorRGB
=
singleLineColor
;
/* copy input images to output images */
Mat
roi_left
(
outImg
,
Rect
(
0
,
0
,
img1
.
cols
,
img1
.
rows
));
Mat
roi_right
(
outImg
,
Rect
(
img1
.
cols
,
0
,
img2
.
cols
,
img2
.
rows
));
img1
.
copyTo
(
roi_left
);
img2
.
copyTo
(
roi_right
);
/* get columns offset */
int
offset
=
img1
.
cols
;
/* if requested, draw lines from both images */
if
(
flags
!=
DrawLinesMatchesFlags
::
NOT_DRAW_SINGLE_LINES
)
{
for
(
size_t
i
=
0
;
i
<
keylines1
.
size
();
i
++
)
{
KeyLine
k1
=
keylines1
[
i
];
line
(
outImg
,
Point
(
k1
.
startPointX
,
k1
.
startPointY
),
Point
(
k1
.
endPointX
,
k1
.
endPointY
),
singleLineColorRGB
,
2
);
}
for
(
size_t
j
=
0
;
j
<
keylines2
.
size
();
j
++
)
{
KeyLine
k2
=
keylines2
[
j
];
line
(
outImg
,
Point
(
k2
.
startPointX
+
offset
,
k2
.
startPointY
),
Point
(
k2
.
endPointX
+
offset
,
k2
.
endPointY
),
singleLineColorRGB
,
2
);
}
}
/* draw matches */
for
(
size_t
counter
=
0
;
counter
<
matches1to2
.
size
();
counter
++
)
{
if
(
matchesMask
[
counter
]
!=
0
)
{
DMatch
dm
=
matches1to2
[
counter
];
KeyLine
left
=
keylines1
[
dm
.
queryIdx
];
KeyLine
right
=
keylines2
[
dm
.
trainIdx
];
Scalar
matchColorRGB
;
if
(
matchColor
==
Scalar
::
all
(
-
1
))
{
int
R
=
(
rand
()
%
(
int
)(
255
+
1
));
int
G
=
(
rand
()
%
(
int
)(
255
+
1
));
int
B
=
(
rand
()
%
(
int
)(
255
+
1
));
matchColorRGB
=
Scalar
(
R
,
G
,
B
);
if
(
singleLineColor
==
Scalar
::
all
(
-
1
))
singleLineColorRGB
=
matchColorRGB
;
}
else
matchColorRGB
=
matchColor
;
/* draw lines if necessary */
line
(
outImg
,
Point
(
left
.
startPointX
,
left
.
startPointY
),
Point
(
left
.
endPointX
,
left
.
endPointY
),
singleLineColorRGB
,
2
);
line
(
outImg
,
Point
(
right
.
startPointX
+
offset
,
right
.
startPointY
),
Point
(
right
.
endPointX
+
offset
,
right
.
endPointY
),
singleLineColorRGB
,
2
);
/* link correspondent lines */
line
(
outImg
,
Point
(
left
.
startPointX
,
left
.
startPointY
),
Point
(
right
.
startPointX
+
offset
,
right
.
startPointY
),
matchColorRGB
,
1
);
}
}
}
/* draw extracted lines on original image */
void
drawKeylines
(
const
Mat
&
image
,
const
std
::
vector
<
KeyLine
>&
keylines
,
Mat
&
outImage
,
const
Scalar
&
color
,
int
flags
)
{
if
(
flags
==
DrawLinesMatchesFlags
::
DEFAULT
)
outImage
=
image
.
clone
();
for
(
size_t
i
=
0
;
i
<
keylines
.
size
();
i
++
)
{
/* decide lines' color */
Scalar
lineColor
;
if
(
color
!=
Scalar
::
all
(
-
1
))
{
int
R
=
(
rand
()
%
(
int
)(
255
+
1
));
int
G
=
(
rand
()
%
(
int
)(
255
+
1
));
int
B
=
(
rand
()
%
(
int
)(
255
+
1
));
lineColor
=
Scalar
(
R
,
G
,
B
);
}
else
lineColor
=
color
;
/* get line */
KeyLine
k
=
keylines
[
i
];
/* draw line */
line
(
outImage
,
Point
(
k
.
startPointX
,
k
.
startPointY
),
Point
(
k
.
endPointX
,
k
.
endPointY
),
lineColor
,
1
);
}
}
}
modules/line_descriptor/src/line_descriptor_init.cpp
View file @
d191729b
...
...
@@ -45,11 +45,13 @@ namespace cv
{
CV_INIT_ALGORITHM
(
BinaryDescriptor
,
"BINARY.DESCRIPTOR"
,);
CV_INIT_ALGORITHM
(
BinaryDescriptorMatcher
,
"BINARY.DESCRIPTOR.MATCHER"
,);
bool
initModule_line_descriptor
(
void
)
{
bool
all
=
true
;
all
&=
!
BinaryDescriptor_info_auto
.
name
().
empty
();
all
&=
!
BinaryDescriptorMatcher_info_auto
.
name
().
empty
();
return
all
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment