Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
d0a9683f
Commit
d0a9683f
authored
Jul 31, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Moving of Caffe loaders into separate file
parent
e713af1a
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
237 additions
and
189 deletions
+237
-189
layer_loaders.cpp
modules/dnn/src/caffe/layer_loaders.cpp
+129
-0
layer_loaders.hpp
modules/dnn/src/caffe/layer_loaders.hpp
+59
-0
init.cpp
modules/dnn/src/init.cpp
+13
-11
elementwise_layers.cpp
modules/dnn/src/layers/elementwise_layers.cpp
+0
-44
elementwise_layers.hpp
modules/dnn/src/layers/elementwise_layers.hpp
+2
-17
fully_connected_layer.cpp
modules/dnn/src/layers/fully_connected_layer.cpp
+0
-22
fully_connected_layer.hpp
modules/dnn/src/layers/fully_connected_layer.hpp
+0
-2
lrn_layer.cpp
modules/dnn/src/layers/lrn_layer.cpp
+0
-21
lrn_layer.hpp
modules/dnn/src/layers/lrn_layer.hpp
+16
-18
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+0
-27
pooling_layer.hpp
modules/dnn/src/layers/pooling_layer.hpp
+18
-19
softmax_layer.cpp
modules/dnn/src/layers/softmax_layer.cpp
+0
-6
softmax_layer.hpp
modules/dnn/src/layers/softmax_layer.hpp
+0
-2
No files found.
modules/dnn/src/caffe/layer_loaders.cpp
0 → 100644
View file @
d0a9683f
#include "../precomp.hpp"
#include "layer_loaders.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "../layers/layers_common.hpp"
namespace
cv
{
namespace
dnn
{
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
PoolingLayer
>
(
LayerParams
&
params
)
{
int
type
;
Size
kernel
,
stride
,
pad
;
if
(
params
.
has
(
"pool"
))
{
String
pool
=
params
.
get
<
String
>
(
"pool"
).
toLowerCase
();
if
(
pool
==
"max"
)
type
=
PoolingLayer
::
MAX
;
else
if
(
pool
==
"ave"
)
type
=
PoolingLayer
::
AVE
;
else
if
(
pool
==
"stochastic"
)
type
=
PoolingLayer
::
STOCHASTIC
;
else
CV_Error
(
Error
::
StsBadArg
,
"Unknown pooling type
\"
"
+
pool
+
"
\"
"
);
}
else
{
type
=
PoolingLayer
::
MAX
;
}
getCaffeConvParams
(
params
,
kernel
,
pad
,
stride
);
return
Ptr
<
Layer
>
(
PoolingLayer
::
create
(
type
,
kernel
,
stride
,
pad
));
}
template
<>
Ptr
<
Layer
>
createLayerFromCaffe
<
SoftmaxLayer
>
(
LayerParams
&
params
)
{
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
return
Ptr
<
Layer
>
(
SoftmaxLayer
::
create
(
axis
));
}
template
<>
//InnerProduct specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
InnerProductLayer
>
(
LayerParams
&
params
)
{
const
std
::
vector
<
Blob
>
&
blobs
=
params
.
blobs
;
CV_Assert
(
1
<=
blobs
.
size
()
&&
blobs
.
size
()
<=
2
);
int
numOutputs
=
params
.
get
<
int
>
(
"num_output"
);
int
innerSize
=
(
int
)
blobs
[
0
].
total
()
/
numOutputs
;
bool
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
CV_Assert
(
blobs
[
0
].
dims
()
>=
2
&&
(
size_t
)(
innerSize
*
numOutputs
)
==
blobs
[
0
].
total
());
CV_Assert
(
!
bias
||
(
blobs
.
size
()
==
2
&&
(
size_t
)
numOutputs
==
blobs
[
1
].
total
()));
Ptr
<
InnerProductLayer
>
l
=
InnerProductLayer
::
create
(
axis
);
l
->
setParamsFrom
(
params
);
l
->
blobs
[
0
].
reshape
(
Shape
(
numOutputs
,
innerSize
));
if
(
bias
)
l
->
blobs
[
1
].
reshape
(
Shape
(
1
,
numOutputs
));
return
Ptr
<
Layer
>
(
l
);
}
template
<>
//LRNLayer specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
LRNLayer
>
(
LayerParams
&
params
)
{
int
type
;
String
nrmType
=
params
.
get
<
String
>
(
"norm_region"
,
"ACROSS_CHANNELS"
);
if
(
nrmType
==
"ACROSS_CHANNELS"
)
type
=
LRNLayer
::
CHANNEL_NRM
;
else
if
(
nrmType
==
"WITHIN_CHANNEL"
)
type
=
LRNLayer
::
SPATIAL_NRM
;
else
CV_Error
(
Error
::
StsBadArg
,
"Unknown region type
\"
"
+
nrmType
+
"
\"
"
);
int
size
=
params
.
get
<
int
>
(
"local_size"
,
5
);
if
(
size
%
2
!=
1
||
size
<=
0
)
CV_Error
(
Error
::
StsBadArg
,
"LRN layer supports only positive odd values for local_size"
);
double
alpha
=
params
.
get
<
double
>
(
"alpha"
,
1
);
double
beta
=
params
.
get
<
double
>
(
"beta"
,
0.75
);
return
Ptr
<
Layer
>
(
LRNLayer
::
create
(
type
,
size
,
alpha
,
beta
));
}
//Activation layers
template
<
typename
ActivationLayer
>
//Intended for parameters-free activations
Ptr
<
Layer
>
createLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
ActivationLayer
::
create
());
}
template
<>
//ReLU specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
ReLULayer
>
(
LayerParams
&
params
)
{
float
negative_slope
=
params
.
get
<
float
>
(
"negative_slope"
,
0.
f
);
return
Ptr
<
Layer
>
(
ReLULayer
::
create
(
negative_slope
));
}
template
<>
//Power specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
PowerLayer
>
(
LayerParams
&
params
)
{
float
power
=
params
.
get
<
float
>
(
"power"
,
1.0
f
);
float
scale
=
params
.
get
<
float
>
(
"scale"
,
1.0
f
);
float
shift
=
params
.
get
<
float
>
(
"shift"
,
0.0
f
);
return
Ptr
<
Layer
>
(
PowerLayer
::
create
(
power
,
scale
,
shift
));
}
//Explicit instantiation
template
Ptr
<
Layer
>
createLayerFromCaffe
<
SoftmaxLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
InnerProductLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
LRNLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ReLULayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
SigmoidLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
TanHLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
AbsLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
BNLLLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
PowerLayer
>
(
LayerParams
&
);
}
}
\ No newline at end of file
modules/dnn/src/caffe/layer_loaders.hpp
0 → 100644
View file @
d0a9683f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_CAFFE_LAYER_LOADERS_HPP__
#define __OPENCV_DNN_CAFFE_LAYER_LOADERS_HPP__
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
//Common template for Caffe layer loaders
template
<
typename
PublicLayer
>
Ptr
<
Layer
>
createLayerFromCaffe
(
LayerParams
&
);
}
}
#endif
\ No newline at end of file
modules/dnn/src/init.cpp
View file @
d0a9683f
...
...
@@ -54,6 +54,8 @@
#include "layers/softmax_layer.hpp"
#include "layers/split_layer.hpp"
#include "caffe/layer_loaders.hpp"
namespace
cv
{
namespace
dnn
...
...
@@ -77,21 +79,21 @@ void initModule()
return
;
REG_RUNTIME_LAYER_CLASS
(
Slice
,
SliceLayer
)
REG_STATIC_LAYER_FUNC
(
Softmax
,
createSoftmaxLayerFromCaffe
)
REG_RUNTIME_LAYER_CLASS
(
Split
,
SplitLayer
)
REG_RUNTIME_LAYER_CLASS
(
Reshape
,
ReshapeLayer
)
REG_STATIC_LAYER_FUNC
(
Flatten
,
createFlattenLayer
)
REG_RUNTIME_LAYER_FUNC
(
Pooling
,
createPoolingLayerFromCaffe
)
REG_RUNTIME_LAYER_CLASS
(
MVN
,
MVNLayer
)
REG_RUNTIME_LAYER_FUNC
(
LRN
,
createLRNLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
InnerProduct
,
createInnerProductLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
Flatten
,
createFlattenLayer
);
REG_RUNTIME_LAYER_FUNC
(
Pooling
,
createLayerFromCaffe
<
PoolingLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
LRN
,
createLayerFromCaffe
<
LRNLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
InnerProduct
,
createLayerFromCaffe
<
InnerProductLayer
>
);
REG_STATIC_LAYER_FUNC
(
Softmax
,
createLayerFromCaffe
<
SoftmaxLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
ReLU
,
createReLULayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
Sigmoid
,
createSigmoidLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
TanH
,
createTanHLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createBNLLLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createAbsLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
Power
,
createPowerLayerFromCaffe
)
REG_RUNTIME_LAYER_FUNC
(
ReLU
,
createLayerFromCaffe
<
ReLULayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Sigmoid
,
createLayerFromCaffe
<
SigmoidLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
TanH
,
createLayerFromCaffe
<
TanHLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createLayerFromCaffe
<
BNLLLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createLayerFromCaffe
<
AbsLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Power
,
createLayerFromCaffe
<
PowerLayer
>
);
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
)
REG_RUNTIME_LAYER_FUNC
(
Convolution
,
createConvolutionLayerFromCaffe
)
...
...
modules/dnn/src/layers/elementwise_layers.cpp
View file @
d0a9683f
...
...
@@ -42,48 +42,5 @@ Ptr<PowerLayer> PowerLayer::create(double power /*= 1*/, double scale /*= 1*/, d
return
Ptr
<
PowerLayer
>
(
new
ElementWiseLayer
<
PowerFunctor
>
(
f
));
}
Ptr
<
Layer
>
createReLULayerFromCaffe
(
LayerParams
&
params
)
{
float
negative_slope
;
if
(
params
.
has
(
"negative_slope"
))
negative_slope
=
params
.
get
<
float
>
(
"negative_slope"
);
else
negative_slope
=
0.
f
;
return
Ptr
<
Layer
>
(
ReLULayer
::
create
(
negative_slope
));
}
Ptr
<
Layer
>
createSigmoidLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
SigmoidLayer
::
create
());
}
Ptr
<
Layer
>
createTanHLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
TanHLayer
::
create
());
}
Ptr
<
Layer
>
createAbsLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
AbsLayer
::
create
());
}
Ptr
<
Layer
>
createBNLLLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
BNLLLayer
::
create
());
}
Ptr
<
Layer
>
createPowerLayerFromCaffe
(
LayerParams
&
params
)
{
float
power
=
params
.
get
<
float
>
(
"power"
,
1.0
f
);
float
scale
=
params
.
get
<
float
>
(
"scale"
,
1.0
f
);
float
shift
=
params
.
get
<
float
>
(
"shift"
,
0.0
f
);
return
Ptr
<
Layer
>
(
PowerLayer
::
create
(
power
,
scale
,
shift
));
}
}
}
\ No newline at end of file
modules/dnn/src/layers/elementwise_layers.hpp
View file @
d0a9683f
...
...
@@ -164,10 +164,12 @@ public:
}
};
#ifdef HAVE_OPENCL
static
String
oclGetTMacro
(
const
UMat
&
m
)
{
return
String
(
"-DT="
)
+
ocl
::
typeToStr
(
m
.
type
())
+
String
(
" "
);
}
#endif
struct
ReLUFunctor
{
...
...
@@ -311,23 +313,6 @@ struct PowerFunctor
#endif
};
template
<
typename
ActivationLayer
>
Ptr
<
Layer
>
createLayerFromCaffe
(
LayerParams
&
)
{
return
Ptr
<
Layer
>
(
ActivationLayer
::
create
());
}
Ptr
<
Layer
>
createReLULayerFromCaffe
(
LayerParams
&
params
);
Ptr
<
Layer
>
createSigmoidLayerFromCaffe
(
LayerParams
&
);
Ptr
<
Layer
>
createTanHLayerFromCaffe
(
LayerParams
&
);
Ptr
<
Layer
>
createAbsLayerFromCaffe
(
LayerParams
&
);
Ptr
<
Layer
>
createBNLLLayerFromCaffe
(
LayerParams
&
);
Ptr
<
Layer
>
createPowerLayerFromCaffe
(
LayerParams
&
params
);
}
}
#endif
modules/dnn/src/layers/fully_connected_layer.cpp
View file @
d0a9683f
...
...
@@ -123,27 +123,5 @@ Ptr<InnerProductLayer> InnerProductLayer::create(int axis)
return
Ptr
<
InnerProductLayer
>
(
new
FullyConnectedLayerImpl
(
axis
));
}
Ptr
<
Layer
>
createInnerProductLayerFromCaffe
(
LayerParams
&
params
)
{
const
std
::
vector
<
Blob
>
&
blobs
=
params
.
blobs
;
CV_Assert
(
1
<=
blobs
.
size
()
&&
blobs
.
size
()
<=
2
);
int
numOutputs
=
params
.
get
<
int
>
(
"num_output"
);
int
innerSize
=
(
int
)
blobs
[
0
].
total
()
/
numOutputs
;
bool
bias
=
params
.
get
<
bool
>
(
"bias_term"
,
true
);
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
CV_Assert
(
blobs
[
0
].
dims
()
>=
2
&&
(
size_t
)(
innerSize
*
numOutputs
)
==
blobs
[
0
].
total
());
CV_Assert
(
!
bias
||
(
blobs
.
size
()
==
2
&&
(
size_t
)
numOutputs
==
blobs
[
1
].
total
()));
Ptr
<
InnerProductLayer
>
l
=
InnerProductLayer
::
create
(
axis
);
l
->
setParamsFrom
(
params
);
l
->
blobs
[
0
].
reshape
(
Shape
(
numOutputs
,
innerSize
));
if
(
bias
)
l
->
blobs
[
1
].
reshape
(
Shape
(
1
,
numOutputs
));
return
Ptr
<
Layer
>
(
l
);
}
}
}
modules/dnn/src/layers/fully_connected_layer.hpp
View file @
d0a9683f
...
...
@@ -66,8 +66,6 @@ public:
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
Ptr
<
Layer
>
createInnerProductLayerFromCaffe
(
LayerParams
&
params
);
}
}
#endif
modules/dnn/src/layers/lrn_layer.cpp
View file @
d0a9683f
...
...
@@ -245,26 +245,5 @@ Ptr<LRNLayer> LRNLayer::create(int type, int size, double alpha, double beta)
return
Ptr
<
LRNLayer
>
(
new
LRNLayerImpl
(
type
,
size
,
alpha
,
beta
));
}
Ptr
<
Layer
>
createLRNLayerFromCaffe
(
LayerParams
&
params
)
{
int
type
;
String
nrmType
=
params
.
get
<
String
>
(
"norm_region"
,
"ACROSS_CHANNELS"
);
if
(
nrmType
==
"ACROSS_CHANNELS"
)
type
=
LRNLayer
::
CHANNEL_NRM
;
else
if
(
nrmType
==
"WITHIN_CHANNEL"
)
type
=
LRNLayer
::
SPATIAL_NRM
;
else
CV_Error
(
Error
::
StsBadArg
,
"Unknown region type
\"
"
+
nrmType
+
"
\"
"
);
int
size
=
params
.
get
<
int
>
(
"local_size"
,
5
);
if
(
size
%
2
!=
1
||
size
<=
0
)
CV_Error
(
Error
::
StsBadArg
,
"LRN layer supports only positive odd values for local_size"
);
double
alpha
=
params
.
get
<
double
>
(
"alpha"
,
1
);
double
beta
=
params
.
get
<
double
>
(
"beta"
,
0.75
);
return
Ptr
<
Layer
>
(
LRNLayer
::
create
(
type
,
size
,
alpha
,
beta
));
}
}
}
modules/dnn/src/layers/lrn_layer.hpp
View file @
d0a9683f
...
...
@@ -48,29 +48,27 @@ namespace cv
{
namespace
dnn
{
class
LRNLayerImpl
:
public
LRNLayer
{
bool
useOpenCL
;
Blob
buf
;
void
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
void
channelNoramlization_
(
Blob
&
src
,
Blob
&
dst
);
bool
channelNoramlization_ocl
(
const
UMat
&
src
,
UMat
&
dst
);
void
spatialNormalization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
void
spatialNormalization_
(
Blob
&
src
,
Blob
&
dst
);
class
LRNLayerImpl
:
public
LRNLayer
{
bool
useOpenCL
;
Blob
buf
;
public
:
void
channelNoramlization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
void
channelNoramlization_
(
Blob
&
src
,
Blob
&
dst
);
bool
channelNoramlization_ocl
(
const
UMat
&
src
,
UMat
&
dst
);
LRNLayerImpl
(
int
type
=
CHANNEL_NRM
,
int
size
=
5
,
double
alpha
=
1
,
double
beta
=
0.75
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
void
spatialNormalization
(
Blob
&
src
,
Blob
&
dst
);
template
<
typename
XMat
>
void
spatialNormalization_
(
Blob
&
src
,
Blob
&
dst
);
public
:
Ptr
<
Layer
>
createLRNLayerFromCaffe
(
LayerParams
&
params
);
LRNLayerImpl
(
int
type
=
CHANNEL_NRM
,
int
size
=
5
,
double
alpha
=
1
,
double
beta
=
0.75
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
}
}
...
...
modules/dnn/src/layers/pooling_layer.cpp
View file @
d0a9683f
...
...
@@ -266,32 +266,5 @@ Ptr<PoolingLayer> PoolingLayer::create(int type, Size kernel, Size stride, Size
return
Ptr
<
PoolingLayer
>
(
new
PoolingLayerImpl
(
type
,
kernel
,
stride
,
pad
));
}
Ptr
<
Layer
>
createPoolingLayerFromCaffe
(
LayerParams
&
params
)
{
int
type
;
Size
kernel
,
stride
,
pad
;
if
(
params
.
has
(
"pool"
))
{
String
pool
=
params
.
get
<
String
>
(
"pool"
).
toLowerCase
();
if
(
pool
==
"max"
)
type
=
PoolingLayer
::
MAX
;
else
if
(
pool
==
"ave"
)
type
=
PoolingLayer
::
AVE
;
else
if
(
pool
==
"stochastic"
)
type
=
PoolingLayer
::
STOCHASTIC
;
else
CV_Error
(
Error
::
StsBadArg
,
"Unknown pooling type
\"
"
+
pool
+
"
\"
"
);
}
else
{
type
=
PoolingLayer
::
MAX
;
}
getCaffeConvParams
(
params
,
kernel
,
pad
,
stride
);
return
Ptr
<
Layer
>
(
new
PoolingLayerImpl
(
type
,
kernel
,
stride
,
pad
));
}
}
}
modules/dnn/src/layers/pooling_layer.hpp
View file @
d0a9683f
...
...
@@ -48,33 +48,32 @@ namespace cv
{
namespace
dnn
{
class
PoolingLayerImpl
:
public
PoolingLayer
{
bool
useOpenCL
;
Size
inp
,
out
;
void
computeOutputShape
(
Size
inpSz
);
class
PoolingLayerImpl
:
public
PoolingLayer
{
bool
useOpenCL
;
Size
inp
,
out
;
bool
pooling_ocl
(
const
char
*
kname
,
const
Blob
&
src
,
Blob
&
dst
,
Blob
*
mask
=
NULL
);
void
computeOutputShape
(
Size
inpSz
);
void
maxPooling
(
Blob
&
src
,
Blob
&
dst
);
void
maxPooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
bool
maxPooling_ocl
(
Blob
&
src
,
Blob
&
dst
);
bool
pooling_ocl
(
const
char
*
kname
,
const
Blob
&
src
,
Blob
&
dst
,
Blob
*
mask
=
NULL
);
void
ave
Pooling
(
Blob
&
src
,
Blob
&
dst
);
void
ave
Pooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
bool
ave
Pooling_ocl
(
Blob
&
src
,
Blob
&
dst
);
void
max
Pooling
(
Blob
&
src
,
Blob
&
dst
);
void
max
Pooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
bool
max
Pooling_ocl
(
Blob
&
src
,
Blob
&
dst
);
public
:
void
avePooling
(
Blob
&
src
,
Blob
&
dst
);
void
avePooling_cpu
(
Blob
&
src
,
Blob
&
dst
);
bool
avePooling_ocl
(
Blob
&
src
,
Blob
&
dst
);
PoolingLayerImpl
();
PoolingLayerImpl
(
int
type
,
Size
kernel
,
Size
stride
,
Size
pad
);
public
:
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
PoolingLayerImpl
();
PoolingLayerImpl
(
int
type
,
Size
kernel
,
Size
stride
,
Size
pad
);
Ptr
<
Layer
>
createPoolingLayerFromCaffe
(
LayerParams
&
params
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
}
}
...
...
modules/dnn/src/layers/softmax_layer.cpp
View file @
d0a9683f
...
...
@@ -220,11 +220,5 @@ Ptr<SoftmaxLayer> SoftmaxLayer::create(int axis)
return
Ptr
<
SoftmaxLayer
>
(
new
SoftMaxLayerImpl
(
axis
));
}
Ptr
<
Layer
>
createSoftmaxLayerFromCaffe
(
LayerParams
&
params
)
{
int
axis
=
params
.
get
<
int
>
(
"axis"
,
1
);
return
Ptr
<
Layer
>
(
SoftmaxLayer
::
create
(
axis
));
}
}
}
modules/dnn/src/layers/softmax_layer.hpp
View file @
d0a9683f
...
...
@@ -67,8 +67,6 @@ public:
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
Ptr
<
Layer
>
createSoftmaxLayerFromCaffe
(
LayerParams
&
params
);
}
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment