Commit cfc338b8 authored by jaco's avatar jaco

Merge branch 'motionAlgorithmDevelopment' into saliencyModuleDevelop

Conflicts:
	modules/saliency/src/saliency_init.cpp
parents 0936ddad 38a84215
...@@ -86,11 +86,86 @@ class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency ...@@ -86,11 +86,86 @@ class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
/************************************ Specific Motion Saliency Specialized Classes ************************************/ /************************************ Specific Motion Saliency Specialized Classes ************************************/
/*!
* A Fast Self-tuning Background Subtraction Algorithm.
*
* This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
* [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
*
*/
class CV_EXPORTS_W MotionSaliencyBinWangApr2014 : public MotionSaliency
{
public:
MotionSaliencyBinWangApr2014();
~MotionSaliencyBinWangApr2014();
typedef Ptr<Size> (Algorithm::*SizeGetter)();
typedef void (Algorithm::*SizeSetter)( const Ptr<Size> & );
Ptr<Size> getWsize();
void setWsize( const Ptr<Size> &newSize );
bool init();
protected:
bool computeSaliencyImpl( const InputArray image, OutputArray saliencyMap );
AlgorithmInfo* info() const;
private:
// classification (and adaptation) functions
bool fullResolutionDetection( const Mat& image, Mat& highResBFMask );
bool lowResolutionDetection( const Mat& image, Mat& lowResBFMask );
//bool templateUpdate( Mat highResBFMask );
// Background model maintenance functions
bool templateOrdering();
bool templateReplacement( const Mat& finalBFMask, const Mat& image );
// Decision threshold adaptation and Activity control function
//bool activityControl(vector<Mat> noisePixelMask);
//bool decisionThresholdAdaptation();
// changing structure
vector<Ptr<Mat> > backgroundModel; // The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat potentialBackground; // Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value.
Mat epslonPixelsValue; // epslon threshold
//Mat activityPixelsValue; // Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
// detection process,however, after the low resolution detection, it has become a
// background pixel. In a noise-pixel mask, the identified noise-pixels are set to 1 while other pixels are 0;
//fixed parameter
bool neighborhoodCheck;
int N_DS; // Number of template to be downsampled and used in lowResolutionDetection function
Ptr<Size> imgSize; // Size of input image
int K; // Number of background model template
int N; // NxN is the size of the block for downsampling in the lowlowResolutionDetection
float alpha; // Learning rate
int L0, L1; // Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
int thetaL; // T0, T1 swap threshold
int thetaA; // Potential background value threshold
int gamma; // Parameter that controls the time that the newly updated long-term background value will remain in the
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts.
//int Ainc; // Activity Incrementation;
//int Bmax; // Upper-bound value for pixel activity
//int Bth; // Max activity threshold
//int Binc, Bdec; // Threshold for pixel-level decision threshold (epslon) adaptation
//int deltaINC, deltaDEC; // Increment-decrement value for epslon adaptation
//int epslonMIN, epslonMAX; // Range values for epslon threshold
};
/************************************ Specific Objectness Specialized Classes ************************************/ /************************************ Specific Objectness Specialized Classes ************************************/
/** /**
* \brief Objectness algorithms based on [4] * \brief Objectness algorithms based on [3]
* [4] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014. * [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
*/ */
class CV_EXPORTS_W ObjectnessBING : public Objectness class CV_EXPORTS_W ObjectnessBING : public Objectness
{ {
......
...@@ -141,7 +141,7 @@ int main( int argc, char** argv ) ...@@ -141,7 +141,7 @@ int main( int argc, char** argv )
vector<Vec4i> saliencyMap; vector<Vec4i> saliencyMap;
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path ); saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path );
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir(training_path + "/Results" ); saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( training_path + "/Results" );
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{ {
...@@ -154,6 +154,40 @@ int main( int argc, char** argv ) ...@@ -154,6 +154,40 @@ int main( int argc, char** argv )
} }
} }
else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 )
{
Ptr<Size> size = Ptr<Size>( new Size( image.cols, image.rows ) );
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setWsize( size );
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init();
bool paused=false;
while ( true )
{
if( !paused )
{
cap >> frame;
cvtColor(frame, frame, COLOR_BGR2GRAY);
Mat saliencyMap;
if( saliencyAlgorithm->computeSaliency( frame, saliencyMap ) )
{
//std::cout << "motion saliency done" << std::endl;
}
imshow( "image", frame );
imshow( "saliencyMap", saliencyMap * 255 );
}
char c = (char) waitKey( 2 );
if( c == 'q' )
break;
if( c == 'p' )
paused = !paused;
}
}
return 0; return 0;
} }
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
//TODO delete highgui include
//#include <opencv2/highgui.hpp>
#define thetaA_VAL 200
#define thetaL_VAL 250
namespace cv
{
cv::Ptr<Size> MotionSaliencyBinWangApr2014::getWsize()
{
return imgSize;
}
void MotionSaliencyBinWangApr2014::setWsize( const cv::Ptr<Size>& newSize )
{
imgSize = newSize;
}
MotionSaliencyBinWangApr2014::MotionSaliencyBinWangApr2014()
{
N_DS = 2; // Number of template to be downsampled and used in lowResolutionDetection function
K = 3; // Number of background model template
N = 4; // NxN is the size of the block for downsampling in the lowlowResolutionDetection
alpha = 0.01; // Learning rate
L0 = 300; // Upper-bound values for C0 (efficacy of the first template (matrices) of backgroundModel
L1 = 200; // Upper-bound values for C1 (efficacy of the second template (matrices) of backgroundModel
thetaL = thetaL_VAL; // T0, T1 swap threshold
thetaA = thetaA_VAL;
gamma = 3;
neighborhoodCheck = true;
className = "BinWangApr2014";
}
bool MotionSaliencyBinWangApr2014::init()
{
epslonPixelsValue = Mat( imgSize->height, imgSize->width, CV_32F, Scalar( 20 ) );
// Median of range [18, 80] advised in reference paper.
// Since data is even, the median is estimated using two values ​​that occupy
// the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean).
potentialBackground = Mat( imgSize->height, imgSize->width, CV_32FC2, Scalar( NAN, 0 ) );
//backgroundModel = std::vector<Mat>( K + 1, Mat::zeros( imgSize->height, imgSize->width, CV_32FC2 ) );
backgroundModel.resize( K + 1 );
for ( int i = 0; i < K + 1; i++ )
{
Mat* tmpm = new Mat;
tmpm->create( imgSize->height, imgSize->width, CV_32FC2 );
tmpm->setTo( Scalar( NAN, 0 ) );
Ptr<Mat> tmp = Ptr<Mat>( tmpm );
backgroundModel[i] = tmp;
}
return true;
}
MotionSaliencyBinWangApr2014::~MotionSaliencyBinWangApr2014()
{
}
// classification (and adaptation) functions
bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, Mat& highResBFMask )
{
Mat image = image2.clone();
float currentPixelValue;
float currentEpslonValue;
bool backgFlag = false;
/* for ( int i = 0; i <= K; i++ )
{
vector<Mat> spl;
split( * ( backgroundModel[i] ), spl );
stringstream windowTitle;
windowTitle << "TEST_t" << i << "B";
Mat convert;
spl[0].convertTo( convert, CV_8UC1 );
imshow( windowTitle.str().c_str(), convert );
}*/
// Initially, all pixels are considered as foreground and then we evaluate with the background model
highResBFMask.create( image.rows, image.cols, CV_32F );
highResBFMask.setTo( 1 );
uchar* pImage;
float* pEpslon;
float* pMask;
// Scan all pixels of image
for ( int i = 0; i < image.rows; i++ )
{
pImage = image.ptr<uchar>( i );
pEpslon = epslonPixelsValue.ptr<float>( i );
pMask = highResBFMask.ptr<float>( i );
for ( int j = 0; j < image.cols; j++ )
{
backgFlag = false;
currentPixelValue = pImage[j];
currentEpslonValue = pEpslon[j];
int counter = 0;
for ( size_t z = 0; z < backgroundModel.size(); z++ )
{
counter += backgroundModel[z]->ptr<Vec2f>( i )[j][1];
}
if( counter != 0 ) //if at least the first template is activated / initialized
{
// scan background model vector
for ( size_t z = 0; z < backgroundModel.size(); z++ )
{
float* currentB;
float* currentC;
currentB = & ( backgroundModel[z]->ptr<Vec2f>( i )[j][0] );
currentC = & ( backgroundModel[z]->ptr<Vec2f>( i )[j][1] );
//continue;
if( ( *currentC ) > 0 ) //The current template is active
{
//cout<< "DIFFERENCE: "<<abs( currentPixelValue - ( *currentB ) )<<endl;
// If there is a match with a current background template
if( abs( currentPixelValue - ( *currentB ) ) < currentEpslonValue && !backgFlag )
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
//highResBFMask.at<uchar>( i, j ) = 0;
pMask[j] = 0;
if( ( *currentC < L0 && z == 0 ) || ( *currentC < L1 && z == 1 ) || ( z > 1 ) )
{
*currentC += 1; // increment the efficacy of this template
}
*currentB = ( ( 1 - alpha ) * ( *currentB ) ) + ( alpha * currentPixelValue ); // Update the template value
backgFlag = true;
//break;
}
else
{
*currentC -= 1; // decrement the efficacy of this template
}
}
} // end "for" cicle of template vector
}
else
{
pMask[j] = 1; //if the model of the current pixel is not yet initialized, we mark the pixels as foreground
}
}
} // end "for" cicle of all image's pixels
return true;
}
bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat& lowResBFMask )
{
std::vector<Mat> mv;
split( *backgroundModel[0], mv );
//if at least the first template is activated / initialized for all pixels
if( countNonZero( mv[1] ) > ( mv[1].cols * mv[1].rows ) / 2 )
{
float currentPixelValue;
float currentEpslonValue;
float currentB;
float currentC;
// Create a mask to select ROI in the original Image and Backgound model and at the same time compute the mean
Rect roi( Point( 0, 0 ), Size( N, N ) );
Scalar imageROImean;
Scalar backGModelROImean;
Mat currentModel;
// Initially, all pixels are considered as foreground and then we evaluate with the background model
lowResBFMask.create( image.rows, image.cols, CV_32F );
lowResBFMask.setTo( 1 );
// Scan all the ROI of original matrices
for ( int i = 0; i < ceil( (float) image.rows / N ); i++ )
{
if( ( roi.y + ( N - 1 ) ) <= ( image.rows - 1 ) )
{
// Reset original ROI dimension
roi = Rect( Point( roi.x, roi.y ), Size( N, N ) );
}
for ( int j = 0; j < ceil( (float) image.cols / N ); j++ )
{
// Compute the mean of image's block and epslonMatrix's block based on ROI
Mat roiImage = image( roi );
Mat roiEpslon = epslonPixelsValue( roi );
currentPixelValue = mean( roiImage ).val[0];
currentEpslonValue = mean( roiEpslon ).val[0];
// scan background model vector
for ( int z = 0; z < N_DS; z++ )
{
// Select the current template 2 channel matrix, select ROI and compute the mean for each channel separately
Mat roiTemplate = ( * ( backgroundModel[z] ) )( roi );
Scalar templateMean = mean( roiTemplate );
currentB = templateMean[0];
currentC = templateMean[1];
if( ( currentC ) > 0 ) //The current template is active
{
// If there is a match with a current background template
if( abs( currentPixelValue - ( currentB ) ) < currentEpslonValue )
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
rectangle( lowResBFMask, roi, Scalar( 0 ), FILLED );
break;
}
}
}
// Shift the ROI from left to right follow the block dimension
roi = roi + Point( N, 0 );
if( ( roi.x + ( roi.width - 1 ) ) > ( image.cols - 1 ) && ( roi.y + ( N - 1 ) ) <= ( image.rows - 1 ) )
{
roi = Rect( Point( roi.x, roi.y ), Size( abs( ( image.cols - 1 ) - roi.x ) + 1, N ) );
}
else if( ( roi.x + ( roi.width - 1 ) ) > ( image.cols - 1 ) && ( roi.y + ( N - 1 ) ) > ( image.rows - 1 ) )
{
roi = Rect( Point( roi.x, roi.y ), Size( abs( ( image.cols - 1 ) - roi.x ) + 1, abs( ( image.rows - 1 ) - roi.y ) + 1 ) );
}
}
//Shift the ROI from up to down follow the block dimension, also bringing it back to beginning of row
roi.x = 0;
roi.y += N;
if( ( roi.y + ( roi.height - 1 ) ) > ( image.rows - 1 ) )
{
roi = Rect( Point( roi.x, roi.y ), Size( N, abs( ( image.rows - 1 ) - roi.y ) + 1 ) );
}
}
return true;
}
else
{
lowResBFMask.create( image.rows, image.cols, CV_32F );
lowResBFMask.setTo( 1 );
return false;
}
}
bool inline pairCompare( pair<float, float> t, pair<float, float> t_plusOne )
{
return ( t.second > t_plusOne.second );
}
// Background model maintenance functions
bool MotionSaliencyBinWangApr2014::templateOrdering()
{
vector<pair<float, float> > pixelTemplates( backgroundModel.size() );
Vec2f* bgModel_0P;
Vec2f* bgModel_1P;
// Scan all pixels of image
for ( int i = 0; i < backgroundModel[0]->rows; i++ )
{
bgModel_0P = backgroundModel[0]->ptr<Vec2f>( i );
bgModel_1P = backgroundModel[1]->ptr<Vec2f>( i );
for ( int j = 0; j < backgroundModel[0]->cols; j++ )
{
// scan background model vector from T1 to Tk
for ( size_t z = 1; z < backgroundModel.size(); z++ )
{
Vec2f bgModel_zP = backgroundModel[z]->ptr<Vec2f>( i )[j];
// Fill vector of pairs
pixelTemplates[z - 1].first = bgModel_zP[0]; // Current B (background value)
pixelTemplates[z - 1].second = bgModel_zP[1]; // Current C (efficacy value)
}
//SORT template from T1 to Tk
std::sort( pixelTemplates.begin(), pixelTemplates.end(), pairCompare );
//REFILL CURRENT MODEL ( T1...Tk)
for ( size_t zz = 1; zz < backgroundModel.size(); zz++ )
{
backgroundModel[zz]->ptr<Vec2f>( i )[j][0] = pixelTemplates[zz - 1].first; // Replace previous B with new ordered B value
backgroundModel[zz]->ptr<Vec2f>( i )[j][1] = pixelTemplates[zz - 1].second; // Replace previous C with new ordered C value
}
// SORT Template T0 and T1
//if( backgroundModel[1]->at<Vec2f>( i, j )[1] > thetaL && backgroundModel[0]->at<Vec2f>( i, j )[1] < thetaL )
if( bgModel_1P[j][1] > thetaL && bgModel_0P[j][1] < thetaL )
{
// swap B value of T0 with B value of T1 (for current model)
swap( bgModel_0P[j][0], bgModel_1P[j][0] );
// set new C0 value for current model)
swap( bgModel_0P[j][1], bgModel_1P[j][1] );
bgModel_0P[j][1] = gamma * thetaL;
}
}
}
return true;
}
bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask, const Mat& image )
{
/* Mat test( image.rows, image.cols, CV_8U );
for ( int i = 0; i < test.rows; i++ )
{
for ( int j = 0; j < test.cols; j++ )
{
test.at<uchar>( i, j ) = (int) potentialBackground.at<Vec2f>( i, j )[0];
}
}
imshow( "test_BA", test );*/
std::vector<Mat> temp;
split( *backgroundModel[0], temp );
//if at least the first template is activated / initialized for all pixels
if( countNonZero( temp[1] ) <= ( temp[1].cols * temp[1].rows ) / 2 )
{
thetaA = 15;
thetaL = 40;
neighborhoodCheck = false;
}
else
{
thetaA = thetaA_VAL;
thetaL = thetaL_VAL;
neighborhoodCheck = true;
}
float roiSize = 3; // FIXED ROI SIZE, not change until you first appropriately adjust the following controls in the EVALUATION section!
int countNonZeroElements = 0;
std::vector<Mat> mv;
Mat replicateCurrentBAMat( roiSize, roiSize, CV_32FC1 );
Mat backgroundModelROI( roiSize, roiSize, CV_32FC1 );
Mat diffResult( roiSize, roiSize, CV_32FC1 );
// Scan all pixels of finalBFMask and all pixels of others models (the dimension are the same)
const float* finalBFMaskP;
Vec2f* pbgP;
const uchar* imageP;
float* epslonP;
for ( int i = 0; i < finalBFMask.rows; i++ )
{
finalBFMaskP = finalBFMask.ptr<float>( i );
pbgP = potentialBackground.ptr<Vec2f>( i );
imageP = image.ptr<uchar>( i );
epslonP = epslonPixelsValue.ptr<float>( i );
for ( int j = 0; j < finalBFMask.cols; j++ )
{
/////////////////// MAINTENANCE of potentialBackground model ///////////////////
if( finalBFMaskP[j] == 1 ) // i.e. the corresponding frame pixel has been market as foreground
{
/* For the pixels with CA= 0, if the current frame pixel has been classified as foreground, its value
* will be loaded into BA and CA will be set to 1*/
if( pbgP[j][1] == 0 )
{
pbgP[j][0] = (float) imageP[j];
pbgP[j][1] = 1;
}
/*the distance between this pixel value and BA is calculated, and if this distance is smaller than
the decision threshold epslon, then CA is increased by 1, otherwise is decreased by 1*/
else if( abs( (float) imageP[j] - pbgP[j][0] ) < epslonP[j] )
{
pbgP[j][1] += 1;
}
else
{
pbgP[j][1] -= 1;
}
/*}*/ /////////////////// END of potentialBackground model MAINTENANCE///////////////////
/////////////////// EVALUATION of potentialBackground values ///////////////////
if( pbgP[j][1] > thetaA )
{
if( neighborhoodCheck )
{
// replicate currentBA value
replicateCurrentBAMat.setTo( pbgP[j][0] );
for ( size_t z = 0; z < backgroundModel.size(); z++ )
{
// Neighborhood of current pixel in the current background model template.
// The ROI is centered in the pixel coordinates
/*if( ( i - floor( roiSize / 2 ) >= 0 ) && ( j - floor( roiSize / 2 ) >= 0 )
&& ( i + floor( roiSize / 2 ) <= ( backgroundModel[z].rows - 1 ) )
&& ( j + floor( roiSize / 2 ) <= ( backgroundModel[z].cols - 1 ) ) ) */
if( i > 0 && j > 0 && i < ( backgroundModel[z]->rows - 1 ) && j < ( backgroundModel[z]->cols - 1 ) )
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - floor( roiSize / 2 ), i - floor( roiSize / 2 ), roiSize, roiSize ) );
}
else if( i == 0 && j == 0 ) // upper left
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i, ceil( roiSize / 2 ), ceil( roiSize / 2 ) ) );
}
else if( j == 0 && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle left
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i - floor( roiSize / 2 ), ceil( roiSize / 2 ), roiSize ) );
}
else if( i == ( backgroundModel[z]->rows - 1 ) && j == 0 ) //down left
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i - floor( roiSize / 2 ), ceil( roiSize / 2 ), ceil( roiSize / 2 ) ) );
}
else if( i == 0 && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) // upper - middle
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( ( j - floor( roiSize / 2 ) ), i, roiSize, ceil( roiSize / 2 ) ) );
}
else if( i == ( backgroundModel[z]->rows - 1 ) && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) //down middle
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - floor( roiSize / 2 ), i - floor( roiSize / 2 ), roiSize, ceil( roiSize / 2 ) ) );
}
else if( i == 0 && j == ( backgroundModel[z]->cols - 1 ) ) // upper right
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - floor( roiSize / 2 ), i, ceil( roiSize / 2 ), ceil( roiSize / 2 ) ) );
}
else if( j == ( backgroundModel[z]->cols - 1 ) && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle - right
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - floor( roiSize / 2 ), i - floor( roiSize / 2 ), ceil( roiSize / 2 ), roiSize ) );
}
else if( i == ( backgroundModel[z]->rows - 1 ) && j == ( backgroundModel[z]->cols - 1 ) ) // down right
{
split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - floor( roiSize / 2 ), i - floor( roiSize / 2 ), ceil( roiSize / 2 ), ceil( roiSize / 2 ) ) );
}
/* Check if the value of current pixel BA in potentialBackground model is already contained in at least one of its neighbors'
* background model
*/
resize( replicateCurrentBAMat, replicateCurrentBAMat, Size( backgroundModelROI.cols, backgroundModelROI.rows ), 0, 0, INTER_LINEAR );
resize( diffResult, diffResult, Size( backgroundModelROI.cols, backgroundModelROI.rows ), 0, 0, INTER_LINEAR );
absdiff( replicateCurrentBAMat, backgroundModelROI, diffResult );
threshold( diffResult, diffResult, epslonP[j], 255, THRESH_BINARY_INV );
countNonZeroElements = countNonZero( diffResult );
if( countNonZeroElements > 0 )
{
/////////////////// REPLACEMENT of backgroundModel template ///////////////////
//replace TA with current TK
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = NAN;
potentialBackground.at<Vec2f>( i, j )[1] = 0;
break;
}
} // end for backgroundModel size
}
else
{
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = NAN;
potentialBackground.at<Vec2f>( i, j )[1] = 0;
}
} // close if of EVALUATION
} // end of if( finalBFMask.at<uchar>( i, j ) == 1 ) // i.e. the corresponding frame pixel has been market as foreground
} // end of second for
} // end of first for
return true;
}
bool MotionSaliencyBinWangApr2014::computeSaliencyImpl( const InputArray image, OutputArray saliencyMap )
{
Mat highResBFMask;
Mat lowResBFMask;
Mat not_lowResBFMask;
Mat noisePixelsMask;
fullResolutionDetection( image.getMat(), highResBFMask );
lowResolutionDetection( image.getMat(), lowResBFMask );
/*imshow( "highResBFMask", highResBFMask * 255 );
imshow( "lowResBFMask", lowResBFMask * 255 );
*/
// Compute the final background-foreground mask. One pixel is marked as foreground if and only if it is
// foreground in both masks (full and low)
bitwise_and( highResBFMask, lowResBFMask, saliencyMap );
// Detect the noise pixels (i.e. for a given pixel, fullRes(pixel) = foreground and lowRes(pixel)= background)
//bitwise_not( lowResBFMask, not_lowResBFMask );
//bitwise_and( highResBFMask, not_lowResBFMask, noisePixelsMask );
templateOrdering();
templateReplacement( saliencyMap.getMat(), image.getMat() );
templateOrdering();
/* Mat kernel = getStructuringElement( MORPH_RECT, Size( 3, 3 ));
Mat kernel2 = getStructuringElement( MORPH_RECT, Size( 3, 3 ));
morphologyEx(saliencyMap.getMat(), saliencyMap.getMat(), MORPH_OPEN, kernel);
morphologyEx(saliencyMap.getMat(), saliencyMap.getMat(), MORPH_CLOSE, kernel2);*/
return true;
}
} // namespace cv
...@@ -57,11 +57,19 @@ CV_INIT_ALGORITHM( ...@@ -57,11 +57,19 @@ CV_INIT_ALGORITHM(
ObjectnessBING, "SALIENCY.BING", ObjectnessBING, "SALIENCY.BING",
obj.info()->addParam(obj, "_base", obj._base); obj.info()->addParam(obj, "_NSS", obj._NSS); obj.info()->addParam(obj, "_W", obj._W) ); obj.info()->addParam(obj, "_base", obj._base); obj.info()->addParam(obj, "_NSS", obj._NSS); obj.info()->addParam(obj, "_W", obj._W) );
CV_INIT_ALGORITHM(
MotionSaliencyBinWangApr2014,
"SALIENCY.BinWangApr2014",
obj.info()->addParam( obj, "imgSize", obj.imgSize, false,
reinterpret_cast<SizeGetter>( &MotionSaliencyBinWangApr2014::getWsize ),
reinterpret_cast<SizeSetter>( &MotionSaliencyBinWangApr2014::setWsize ) ) );
bool initModule_saliency( void ) bool initModule_saliency( void )
{ {
bool all = true; bool all = true;
all &= !StaticSaliencySpectralResidual_info_auto.name().empty(); all &= !StaticSaliencySpectralResidual_info_auto.name().empty();
//all &= !MotionSaliencySuBSENSE_info_auto.name().empty();
all &= !MotionSaliencyBinWangApr2014_info_auto.name().empty();
all &= !ObjectnessBING_info_auto.name().empty(); all &= !ObjectnessBING_info_auto.name().empty();
return all; return all;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment