Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
cfc338b8
Commit
cfc338b8
authored
Aug 08, 2014
by
jaco
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'motionAlgorithmDevelopment' into saliencyModuleDevelop
Conflicts: modules/saliency/src/saliency_init.cpp
parents
0936ddad
38a84215
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
686 additions
and
3 deletions
+686
-3
saliencySpecializedClasses.hpp
...y/include/opencv2/saliency/saliencySpecializedClasses.hpp
+77
-2
computeSaliency.cpp
modules/saliency/samples/computeSaliency.cpp
+35
-1
motionSaliencyBinWangApr2014.cpp
modules/saliency/src/motionSaliencyBinWangApr2014.cpp
+566
-0
saliency_init.cpp
modules/saliency/src/saliency_init.cpp
+8
-0
No files found.
modules/saliency/include/opencv2/saliency/saliencySpecializedClasses.hpp
View file @
cfc338b8
...
...
@@ -86,11 +86,86 @@ class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
/************************************ Specific Motion Saliency Specialized Classes ************************************/
/*!
* A Fast Self-tuning Background Subtraction Algorithm.
*
* This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
* [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
*
*/
class
CV_EXPORTS_W
MotionSaliencyBinWangApr2014
:
public
MotionSaliency
{
public
:
MotionSaliencyBinWangApr2014
();
~
MotionSaliencyBinWangApr2014
();
typedef
Ptr
<
Size
>
(
Algorithm
::*
SizeGetter
)();
typedef
void
(
Algorithm
::*
SizeSetter
)(
const
Ptr
<
Size
>
&
);
Ptr
<
Size
>
getWsize
();
void
setWsize
(
const
Ptr
<
Size
>
&
newSize
);
bool
init
();
protected
:
bool
computeSaliencyImpl
(
const
InputArray
image
,
OutputArray
saliencyMap
);
AlgorithmInfo
*
info
()
const
;
private
:
// classification (and adaptation) functions
bool
fullResolutionDetection
(
const
Mat
&
image
,
Mat
&
highResBFMask
);
bool
lowResolutionDetection
(
const
Mat
&
image
,
Mat
&
lowResBFMask
);
//bool templateUpdate( Mat highResBFMask );
// Background model maintenance functions
bool
templateOrdering
();
bool
templateReplacement
(
const
Mat
&
finalBFMask
,
const
Mat
&
image
);
// Decision threshold adaptation and Activity control function
//bool activityControl(vector<Mat> noisePixelMask);
//bool decisionThresholdAdaptation();
// changing structure
vector
<
Ptr
<
Mat
>
>
backgroundModel
;
// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat
potentialBackground
;
// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value.
Mat
epslonPixelsValue
;
// epslon threshold
//Mat activityPixelsValue; // Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
// detection process,however, after the low resolution detection, it has become a
// background pixel. In a noise-pixel mask, the identified noise-pixels are set to 1 while other pixels are 0;
//fixed parameter
bool
neighborhoodCheck
;
int
N_DS
;
// Number of template to be downsampled and used in lowResolutionDetection function
Ptr
<
Size
>
imgSize
;
// Size of input image
int
K
;
// Number of background model template
int
N
;
// NxN is the size of the block for downsampling in the lowlowResolutionDetection
float
alpha
;
// Learning rate
int
L0
,
L1
;
// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
int
thetaL
;
// T0, T1 swap threshold
int
thetaA
;
// Potential background value threshold
int
gamma
;
// Parameter that controls the time that the newly updated long-term background value will remain in the
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts.
//int Ainc; // Activity Incrementation;
//int Bmax; // Upper-bound value for pixel activity
//int Bth; // Max activity threshold
//int Binc, Bdec; // Threshold for pixel-level decision threshold (epslon) adaptation
//int deltaINC, deltaDEC; // Increment-decrement value for epslon adaptation
//int epslonMIN, epslonMAX; // Range values for epslon threshold
};
/************************************ Specific Objectness Specialized Classes ************************************/
/**
* \brief Objectness algorithms based on [
4
]
* [
4
] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
* \brief Objectness algorithms based on [
3
]
* [
3
] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
*/
class
CV_EXPORTS_W
ObjectnessBING
:
public
Objectness
{
...
...
modules/saliency/samples/computeSaliency.cpp
View file @
cfc338b8
...
...
@@ -141,7 +141,7 @@ int main( int argc, char** argv )
vector
<
Vec4i
>
saliencyMap
;
saliencyAlgorithm
.
dynamicCast
<
ObjectnessBING
>
()
->
setTrainingPath
(
training_path
);
saliencyAlgorithm
.
dynamicCast
<
ObjectnessBING
>
()
->
setBBResDir
(
training_path
+
"/Results"
);
saliencyAlgorithm
.
dynamicCast
<
ObjectnessBING
>
()
->
setBBResDir
(
training_path
+
"/Results"
);
if
(
saliencyAlgorithm
->
computeSaliency
(
image
,
saliencyMap
)
)
{
...
...
@@ -154,6 +154,40 @@ int main( int argc, char** argv )
}
}
else
if
(
saliency_algorithm
.
find
(
"BinWangApr2014"
)
==
0
)
{
Ptr
<
Size
>
size
=
Ptr
<
Size
>
(
new
Size
(
image
.
cols
,
image
.
rows
)
);
saliencyAlgorithm
.
dynamicCast
<
MotionSaliencyBinWangApr2014
>
()
->
setWsize
(
size
);
saliencyAlgorithm
.
dynamicCast
<
MotionSaliencyBinWangApr2014
>
()
->
init
();
bool
paused
=
false
;
while
(
true
)
{
if
(
!
paused
)
{
cap
>>
frame
;
cvtColor
(
frame
,
frame
,
COLOR_BGR2GRAY
);
Mat
saliencyMap
;
if
(
saliencyAlgorithm
->
computeSaliency
(
frame
,
saliencyMap
)
)
{
//std::cout << "motion saliency done" << std::endl;
}
imshow
(
"image"
,
frame
);
imshow
(
"saliencyMap"
,
saliencyMap
*
255
);
}
char
c
=
(
char
)
waitKey
(
2
);
if
(
c
==
'q'
)
break
;
if
(
c
==
'p'
)
paused
=
!
paused
;
}
}
return
0
;
}
modules/saliency/src/motionSaliencyBinWangApr2014.cpp
0 → 100644
View file @
cfc338b8
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
//TODO delete highgui include
//#include <opencv2/highgui.hpp>
#define thetaA_VAL 200
#define thetaL_VAL 250
namespace
cv
{
cv
::
Ptr
<
Size
>
MotionSaliencyBinWangApr2014
::
getWsize
()
{
return
imgSize
;
}
void
MotionSaliencyBinWangApr2014
::
setWsize
(
const
cv
::
Ptr
<
Size
>&
newSize
)
{
imgSize
=
newSize
;
}
MotionSaliencyBinWangApr2014
::
MotionSaliencyBinWangApr2014
()
{
N_DS
=
2
;
// Number of template to be downsampled and used in lowResolutionDetection function
K
=
3
;
// Number of background model template
N
=
4
;
// NxN is the size of the block for downsampling in the lowlowResolutionDetection
alpha
=
0.01
;
// Learning rate
L0
=
300
;
// Upper-bound values for C0 (efficacy of the first template (matrices) of backgroundModel
L1
=
200
;
// Upper-bound values for C1 (efficacy of the second template (matrices) of backgroundModel
thetaL
=
thetaL_VAL
;
// T0, T1 swap threshold
thetaA
=
thetaA_VAL
;
gamma
=
3
;
neighborhoodCheck
=
true
;
className
=
"BinWangApr2014"
;
}
bool
MotionSaliencyBinWangApr2014
::
init
()
{
epslonPixelsValue
=
Mat
(
imgSize
->
height
,
imgSize
->
width
,
CV_32F
,
Scalar
(
20
)
);
// Median of range [18, 80] advised in reference paper.
// Since data is even, the median is estimated using two values that occupy
// the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean).
potentialBackground
=
Mat
(
imgSize
->
height
,
imgSize
->
width
,
CV_32FC2
,
Scalar
(
NAN
,
0
)
);
//backgroundModel = std::vector<Mat>( K + 1, Mat::zeros( imgSize->height, imgSize->width, CV_32FC2 ) );
backgroundModel
.
resize
(
K
+
1
);
for
(
int
i
=
0
;
i
<
K
+
1
;
i
++
)
{
Mat
*
tmpm
=
new
Mat
;
tmpm
->
create
(
imgSize
->
height
,
imgSize
->
width
,
CV_32FC2
);
tmpm
->
setTo
(
Scalar
(
NAN
,
0
)
);
Ptr
<
Mat
>
tmp
=
Ptr
<
Mat
>
(
tmpm
);
backgroundModel
[
i
]
=
tmp
;
}
return
true
;
}
MotionSaliencyBinWangApr2014
::~
MotionSaliencyBinWangApr2014
()
{
}
// classification (and adaptation) functions
bool
MotionSaliencyBinWangApr2014
::
fullResolutionDetection
(
const
Mat
&
image2
,
Mat
&
highResBFMask
)
{
Mat
image
=
image2
.
clone
();
float
currentPixelValue
;
float
currentEpslonValue
;
bool
backgFlag
=
false
;
/* for ( int i = 0; i <= K; i++ )
{
vector<Mat> spl;
split( * ( backgroundModel[i] ), spl );
stringstream windowTitle;
windowTitle << "TEST_t" << i << "B";
Mat convert;
spl[0].convertTo( convert, CV_8UC1 );
imshow( windowTitle.str().c_str(), convert );
}*/
// Initially, all pixels are considered as foreground and then we evaluate with the background model
highResBFMask
.
create
(
image
.
rows
,
image
.
cols
,
CV_32F
);
highResBFMask
.
setTo
(
1
);
uchar
*
pImage
;
float
*
pEpslon
;
float
*
pMask
;
// Scan all pixels of image
for
(
int
i
=
0
;
i
<
image
.
rows
;
i
++
)
{
pImage
=
image
.
ptr
<
uchar
>
(
i
);
pEpslon
=
epslonPixelsValue
.
ptr
<
float
>
(
i
);
pMask
=
highResBFMask
.
ptr
<
float
>
(
i
);
for
(
int
j
=
0
;
j
<
image
.
cols
;
j
++
)
{
backgFlag
=
false
;
currentPixelValue
=
pImage
[
j
];
currentEpslonValue
=
pEpslon
[
j
];
int
counter
=
0
;
for
(
size_t
z
=
0
;
z
<
backgroundModel
.
size
();
z
++
)
{
counter
+=
backgroundModel
[
z
]
->
ptr
<
Vec2f
>
(
i
)[
j
][
1
];
}
if
(
counter
!=
0
)
//if at least the first template is activated / initialized
{
// scan background model vector
for
(
size_t
z
=
0
;
z
<
backgroundModel
.
size
();
z
++
)
{
float
*
currentB
;
float
*
currentC
;
currentB
=
&
(
backgroundModel
[
z
]
->
ptr
<
Vec2f
>
(
i
)[
j
][
0
]
);
currentC
=
&
(
backgroundModel
[
z
]
->
ptr
<
Vec2f
>
(
i
)[
j
][
1
]
);
//continue;
if
(
(
*
currentC
)
>
0
)
//The current template is active
{
//cout<< "DIFFERENCE: "<<abs( currentPixelValue - ( *currentB ) )<<endl;
// If there is a match with a current background template
if
(
abs
(
currentPixelValue
-
(
*
currentB
)
)
<
currentEpslonValue
&&
!
backgFlag
)
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
//highResBFMask.at<uchar>( i, j ) = 0;
pMask
[
j
]
=
0
;
if
(
(
*
currentC
<
L0
&&
z
==
0
)
||
(
*
currentC
<
L1
&&
z
==
1
)
||
(
z
>
1
)
)
{
*
currentC
+=
1
;
// increment the efficacy of this template
}
*
currentB
=
(
(
1
-
alpha
)
*
(
*
currentB
)
)
+
(
alpha
*
currentPixelValue
);
// Update the template value
backgFlag
=
true
;
//break;
}
else
{
*
currentC
-=
1
;
// decrement the efficacy of this template
}
}
}
// end "for" cicle of template vector
}
else
{
pMask
[
j
]
=
1
;
//if the model of the current pixel is not yet initialized, we mark the pixels as foreground
}
}
}
// end "for" cicle of all image's pixels
return
true
;
}
bool
MotionSaliencyBinWangApr2014
::
lowResolutionDetection
(
const
Mat
&
image
,
Mat
&
lowResBFMask
)
{
std
::
vector
<
Mat
>
mv
;
split
(
*
backgroundModel
[
0
],
mv
);
//if at least the first template is activated / initialized for all pixels
if
(
countNonZero
(
mv
[
1
]
)
>
(
mv
[
1
].
cols
*
mv
[
1
].
rows
)
/
2
)
{
float
currentPixelValue
;
float
currentEpslonValue
;
float
currentB
;
float
currentC
;
// Create a mask to select ROI in the original Image and Backgound model and at the same time compute the mean
Rect
roi
(
Point
(
0
,
0
),
Size
(
N
,
N
)
);
Scalar
imageROImean
;
Scalar
backGModelROImean
;
Mat
currentModel
;
// Initially, all pixels are considered as foreground and then we evaluate with the background model
lowResBFMask
.
create
(
image
.
rows
,
image
.
cols
,
CV_32F
);
lowResBFMask
.
setTo
(
1
);
// Scan all the ROI of original matrices
for
(
int
i
=
0
;
i
<
ceil
(
(
float
)
image
.
rows
/
N
);
i
++
)
{
if
(
(
roi
.
y
+
(
N
-
1
)
)
<=
(
image
.
rows
-
1
)
)
{
// Reset original ROI dimension
roi
=
Rect
(
Point
(
roi
.
x
,
roi
.
y
),
Size
(
N
,
N
)
);
}
for
(
int
j
=
0
;
j
<
ceil
(
(
float
)
image
.
cols
/
N
);
j
++
)
{
// Compute the mean of image's block and epslonMatrix's block based on ROI
Mat
roiImage
=
image
(
roi
);
Mat
roiEpslon
=
epslonPixelsValue
(
roi
);
currentPixelValue
=
mean
(
roiImage
).
val
[
0
];
currentEpslonValue
=
mean
(
roiEpslon
).
val
[
0
];
// scan background model vector
for
(
int
z
=
0
;
z
<
N_DS
;
z
++
)
{
// Select the current template 2 channel matrix, select ROI and compute the mean for each channel separately
Mat
roiTemplate
=
(
*
(
backgroundModel
[
z
]
)
)(
roi
);
Scalar
templateMean
=
mean
(
roiTemplate
);
currentB
=
templateMean
[
0
];
currentC
=
templateMean
[
1
];
if
(
(
currentC
)
>
0
)
//The current template is active
{
// If there is a match with a current background template
if
(
abs
(
currentPixelValue
-
(
currentB
)
)
<
currentEpslonValue
)
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
rectangle
(
lowResBFMask
,
roi
,
Scalar
(
0
),
FILLED
);
break
;
}
}
}
// Shift the ROI from left to right follow the block dimension
roi
=
roi
+
Point
(
N
,
0
);
if
(
(
roi
.
x
+
(
roi
.
width
-
1
)
)
>
(
image
.
cols
-
1
)
&&
(
roi
.
y
+
(
N
-
1
)
)
<=
(
image
.
rows
-
1
)
)
{
roi
=
Rect
(
Point
(
roi
.
x
,
roi
.
y
),
Size
(
abs
(
(
image
.
cols
-
1
)
-
roi
.
x
)
+
1
,
N
)
);
}
else
if
(
(
roi
.
x
+
(
roi
.
width
-
1
)
)
>
(
image
.
cols
-
1
)
&&
(
roi
.
y
+
(
N
-
1
)
)
>
(
image
.
rows
-
1
)
)
{
roi
=
Rect
(
Point
(
roi
.
x
,
roi
.
y
),
Size
(
abs
(
(
image
.
cols
-
1
)
-
roi
.
x
)
+
1
,
abs
(
(
image
.
rows
-
1
)
-
roi
.
y
)
+
1
)
);
}
}
//Shift the ROI from up to down follow the block dimension, also bringing it back to beginning of row
roi
.
x
=
0
;
roi
.
y
+=
N
;
if
(
(
roi
.
y
+
(
roi
.
height
-
1
)
)
>
(
image
.
rows
-
1
)
)
{
roi
=
Rect
(
Point
(
roi
.
x
,
roi
.
y
),
Size
(
N
,
abs
(
(
image
.
rows
-
1
)
-
roi
.
y
)
+
1
)
);
}
}
return
true
;
}
else
{
lowResBFMask
.
create
(
image
.
rows
,
image
.
cols
,
CV_32F
);
lowResBFMask
.
setTo
(
1
);
return
false
;
}
}
bool
inline
pairCompare
(
pair
<
float
,
float
>
t
,
pair
<
float
,
float
>
t_plusOne
)
{
return
(
t
.
second
>
t_plusOne
.
second
);
}
// Background model maintenance functions
bool
MotionSaliencyBinWangApr2014
::
templateOrdering
()
{
vector
<
pair
<
float
,
float
>
>
pixelTemplates
(
backgroundModel
.
size
()
);
Vec2f
*
bgModel_0P
;
Vec2f
*
bgModel_1P
;
// Scan all pixels of image
for
(
int
i
=
0
;
i
<
backgroundModel
[
0
]
->
rows
;
i
++
)
{
bgModel_0P
=
backgroundModel
[
0
]
->
ptr
<
Vec2f
>
(
i
);
bgModel_1P
=
backgroundModel
[
1
]
->
ptr
<
Vec2f
>
(
i
);
for
(
int
j
=
0
;
j
<
backgroundModel
[
0
]
->
cols
;
j
++
)
{
// scan background model vector from T1 to Tk
for
(
size_t
z
=
1
;
z
<
backgroundModel
.
size
();
z
++
)
{
Vec2f
bgModel_zP
=
backgroundModel
[
z
]
->
ptr
<
Vec2f
>
(
i
)[
j
];
// Fill vector of pairs
pixelTemplates
[
z
-
1
].
first
=
bgModel_zP
[
0
];
// Current B (background value)
pixelTemplates
[
z
-
1
].
second
=
bgModel_zP
[
1
];
// Current C (efficacy value)
}
//SORT template from T1 to Tk
std
::
sort
(
pixelTemplates
.
begin
(),
pixelTemplates
.
end
(),
pairCompare
);
//REFILL CURRENT MODEL ( T1...Tk)
for
(
size_t
zz
=
1
;
zz
<
backgroundModel
.
size
();
zz
++
)
{
backgroundModel
[
zz
]
->
ptr
<
Vec2f
>
(
i
)[
j
][
0
]
=
pixelTemplates
[
zz
-
1
].
first
;
// Replace previous B with new ordered B value
backgroundModel
[
zz
]
->
ptr
<
Vec2f
>
(
i
)[
j
][
1
]
=
pixelTemplates
[
zz
-
1
].
second
;
// Replace previous C with new ordered C value
}
// SORT Template T0 and T1
//if( backgroundModel[1]->at<Vec2f>( i, j )[1] > thetaL && backgroundModel[0]->at<Vec2f>( i, j )[1] < thetaL )
if
(
bgModel_1P
[
j
][
1
]
>
thetaL
&&
bgModel_0P
[
j
][
1
]
<
thetaL
)
{
// swap B value of T0 with B value of T1 (for current model)
swap
(
bgModel_0P
[
j
][
0
],
bgModel_1P
[
j
][
0
]
);
// set new C0 value for current model)
swap
(
bgModel_0P
[
j
][
1
],
bgModel_1P
[
j
][
1
]
);
bgModel_0P
[
j
][
1
]
=
gamma
*
thetaL
;
}
}
}
return
true
;
}
bool
MotionSaliencyBinWangApr2014
::
templateReplacement
(
const
Mat
&
finalBFMask
,
const
Mat
&
image
)
{
/* Mat test( image.rows, image.cols, CV_8U );
for ( int i = 0; i < test.rows; i++ )
{
for ( int j = 0; j < test.cols; j++ )
{
test.at<uchar>( i, j ) = (int) potentialBackground.at<Vec2f>( i, j )[0];
}
}
imshow( "test_BA", test );*/
std
::
vector
<
Mat
>
temp
;
split
(
*
backgroundModel
[
0
],
temp
);
//if at least the first template is activated / initialized for all pixels
if
(
countNonZero
(
temp
[
1
]
)
<=
(
temp
[
1
].
cols
*
temp
[
1
].
rows
)
/
2
)
{
thetaA
=
15
;
thetaL
=
40
;
neighborhoodCheck
=
false
;
}
else
{
thetaA
=
thetaA_VAL
;
thetaL
=
thetaL_VAL
;
neighborhoodCheck
=
true
;
}
float
roiSize
=
3
;
// FIXED ROI SIZE, not change until you first appropriately adjust the following controls in the EVALUATION section!
int
countNonZeroElements
=
0
;
std
::
vector
<
Mat
>
mv
;
Mat
replicateCurrentBAMat
(
roiSize
,
roiSize
,
CV_32FC1
);
Mat
backgroundModelROI
(
roiSize
,
roiSize
,
CV_32FC1
);
Mat
diffResult
(
roiSize
,
roiSize
,
CV_32FC1
);
// Scan all pixels of finalBFMask and all pixels of others models (the dimension are the same)
const
float
*
finalBFMaskP
;
Vec2f
*
pbgP
;
const
uchar
*
imageP
;
float
*
epslonP
;
for
(
int
i
=
0
;
i
<
finalBFMask
.
rows
;
i
++
)
{
finalBFMaskP
=
finalBFMask
.
ptr
<
float
>
(
i
);
pbgP
=
potentialBackground
.
ptr
<
Vec2f
>
(
i
);
imageP
=
image
.
ptr
<
uchar
>
(
i
);
epslonP
=
epslonPixelsValue
.
ptr
<
float
>
(
i
);
for
(
int
j
=
0
;
j
<
finalBFMask
.
cols
;
j
++
)
{
/////////////////// MAINTENANCE of potentialBackground model ///////////////////
if
(
finalBFMaskP
[
j
]
==
1
)
// i.e. the corresponding frame pixel has been market as foreground
{
/* For the pixels with CA= 0, if the current frame pixel has been classified as foreground, its value
* will be loaded into BA and CA will be set to 1*/
if
(
pbgP
[
j
][
1
]
==
0
)
{
pbgP
[
j
][
0
]
=
(
float
)
imageP
[
j
];
pbgP
[
j
][
1
]
=
1
;
}
/*the distance between this pixel value and BA is calculated, and if this distance is smaller than
the decision threshold epslon, then CA is increased by 1, otherwise is decreased by 1*/
else
if
(
abs
(
(
float
)
imageP
[
j
]
-
pbgP
[
j
][
0
]
)
<
epslonP
[
j
]
)
{
pbgP
[
j
][
1
]
+=
1
;
}
else
{
pbgP
[
j
][
1
]
-=
1
;
}
/*}*/
/////////////////// END of potentialBackground model MAINTENANCE///////////////////
/////////////////// EVALUATION of potentialBackground values ///////////////////
if
(
pbgP
[
j
][
1
]
>
thetaA
)
{
if
(
neighborhoodCheck
)
{
// replicate currentBA value
replicateCurrentBAMat
.
setTo
(
pbgP
[
j
][
0
]
);
for
(
size_t
z
=
0
;
z
<
backgroundModel
.
size
();
z
++
)
{
// Neighborhood of current pixel in the current background model template.
// The ROI is centered in the pixel coordinates
/*if( ( i - floor( roiSize / 2 ) >= 0 ) && ( j - floor( roiSize / 2 ) >= 0 )
&& ( i + floor( roiSize / 2 ) <= ( backgroundModel[z].rows - 1 ) )
&& ( j + floor( roiSize / 2 ) <= ( backgroundModel[z].cols - 1 ) ) ) */
if
(
i
>
0
&&
j
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
roiSize
,
roiSize
)
);
}
else
if
(
i
==
0
&&
j
==
0
)
// upper left
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
,
i
,
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
j
==
0
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
)
// middle left
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
,
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
roiSize
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
==
0
)
//down left
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
,
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
0
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// upper - middle
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
(
j
-
floor
(
roiSize
/
2
)
),
i
,
roiSize
,
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
>
0
&&
j
<
(
backgroundModel
[
z
]
->
cols
-
1
)
)
//down middle
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
roiSize
,
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
i
==
0
&&
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// upper right
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
-
floor
(
roiSize
/
2
),
i
,
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
else
if
(
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
&&
i
>
0
&&
i
<
(
backgroundModel
[
z
]
->
rows
-
1
)
)
// middle - right
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
roiSize
)
);
}
else
if
(
i
==
(
backgroundModel
[
z
]
->
rows
-
1
)
&&
j
==
(
backgroundModel
[
z
]
->
cols
-
1
)
)
// down right
{
split
(
*
backgroundModel
[
z
],
mv
);
backgroundModelROI
=
mv
[
0
](
Rect
(
j
-
floor
(
roiSize
/
2
),
i
-
floor
(
roiSize
/
2
),
ceil
(
roiSize
/
2
),
ceil
(
roiSize
/
2
)
)
);
}
/* Check if the value of current pixel BA in potentialBackground model is already contained in at least one of its neighbors'
* background model
*/
resize
(
replicateCurrentBAMat
,
replicateCurrentBAMat
,
Size
(
backgroundModelROI
.
cols
,
backgroundModelROI
.
rows
),
0
,
0
,
INTER_LINEAR
);
resize
(
diffResult
,
diffResult
,
Size
(
backgroundModelROI
.
cols
,
backgroundModelROI
.
rows
),
0
,
0
,
INTER_LINEAR
);
absdiff
(
replicateCurrentBAMat
,
backgroundModelROI
,
diffResult
);
threshold
(
diffResult
,
diffResult
,
epslonP
[
j
],
255
,
THRESH_BINARY_INV
);
countNonZeroElements
=
countNonZero
(
diffResult
);
if
(
countNonZeroElements
>
0
)
{
/////////////////// REPLACEMENT of backgroundModel template ///////////////////
//replace TA with current TK
backgroundModel
[
backgroundModel
.
size
()
-
1
]
->
at
<
Vec2f
>
(
i
,
j
)
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
);
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
NAN
;
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
0
;
break
;
}
}
// end for backgroundModel size
}
else
{
backgroundModel
[
backgroundModel
.
size
()
-
1
]
->
at
<
Vec2f
>
(
i
,
j
)
=
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
);
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
0
]
=
NAN
;
potentialBackground
.
at
<
Vec2f
>
(
i
,
j
)[
1
]
=
0
;
}
}
// close if of EVALUATION
}
// end of if( finalBFMask.at<uchar>( i, j ) == 1 ) // i.e. the corresponding frame pixel has been market as foreground
}
// end of second for
}
// end of first for
return
true
;
}
bool
MotionSaliencyBinWangApr2014
::
computeSaliencyImpl
(
const
InputArray
image
,
OutputArray
saliencyMap
)
{
Mat
highResBFMask
;
Mat
lowResBFMask
;
Mat
not_lowResBFMask
;
Mat
noisePixelsMask
;
fullResolutionDetection
(
image
.
getMat
(),
highResBFMask
);
lowResolutionDetection
(
image
.
getMat
(),
lowResBFMask
);
/*imshow( "highResBFMask", highResBFMask * 255 );
imshow( "lowResBFMask", lowResBFMask * 255 );
*/
// Compute the final background-foreground mask. One pixel is marked as foreground if and only if it is
// foreground in both masks (full and low)
bitwise_and
(
highResBFMask
,
lowResBFMask
,
saliencyMap
);
// Detect the noise pixels (i.e. for a given pixel, fullRes(pixel) = foreground and lowRes(pixel)= background)
//bitwise_not( lowResBFMask, not_lowResBFMask );
//bitwise_and( highResBFMask, not_lowResBFMask, noisePixelsMask );
templateOrdering
();
templateReplacement
(
saliencyMap
.
getMat
(),
image
.
getMat
()
);
templateOrdering
();
/* Mat kernel = getStructuringElement( MORPH_RECT, Size( 3, 3 ));
Mat kernel2 = getStructuringElement( MORPH_RECT, Size( 3, 3 ));
morphologyEx(saliencyMap.getMat(), saliencyMap.getMat(), MORPH_OPEN, kernel);
morphologyEx(saliencyMap.getMat(), saliencyMap.getMat(), MORPH_CLOSE, kernel2);*/
return
true
;
}
}
// namespace cv
modules/saliency/src/saliency_init.cpp
View file @
cfc338b8
...
...
@@ -57,11 +57,19 @@ CV_INIT_ALGORITHM(
ObjectnessBING
,
"SALIENCY.BING"
,
obj
.
info
()
->
addParam
(
obj
,
"_base"
,
obj
.
_base
);
obj
.
info
()
->
addParam
(
obj
,
"_NSS"
,
obj
.
_NSS
);
obj
.
info
()
->
addParam
(
obj
,
"_W"
,
obj
.
_W
)
);
CV_INIT_ALGORITHM
(
MotionSaliencyBinWangApr2014
,
"SALIENCY.BinWangApr2014"
,
obj
.
info
()
->
addParam
(
obj
,
"imgSize"
,
obj
.
imgSize
,
false
,
reinterpret_cast
<
SizeGetter
>
(
&
MotionSaliencyBinWangApr2014
::
getWsize
),
reinterpret_cast
<
SizeSetter
>
(
&
MotionSaliencyBinWangApr2014
::
setWsize
)
)
);
bool
initModule_saliency
(
void
)
{
bool
all
=
true
;
all
&=
!
StaticSaliencySpectralResidual_info_auto
.
name
().
empty
();
//all &= !MotionSaliencySuBSENSE_info_auto.name().empty();
all
&=
!
MotionSaliencyBinWangApr2014_info_auto
.
name
().
empty
();
all
&=
!
ObjectnessBING_info_auto
.
name
().
empty
();
return
all
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment