Commit cd0569a3 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

added face module (created from the parts of the old "contrib")

parent 5e77149d
set(the_description "Face recognition etc")
ocv_define_module(face opencv_core opencv_imgproc)
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
***************************************
contrib. Contributed/Experimental Stuff
***************************************
The module contains some recently added functionality that has not been stabilized, or functionality that is considered optional.
.. toctree::
:maxdepth: 2
FaceRecognizer Documentation <facerec/index>
/home/philipp/facerec/data/at/s13/2.pgm;12
/home/philipp/facerec/data/at/s13/7.pgm;12
/home/philipp/facerec/data/at/s13/6.pgm;12
/home/philipp/facerec/data/at/s13/9.pgm;12
/home/philipp/facerec/data/at/s13/5.pgm;12
/home/philipp/facerec/data/at/s13/3.pgm;12
/home/philipp/facerec/data/at/s13/4.pgm;12
/home/philipp/facerec/data/at/s13/10.pgm;12
/home/philipp/facerec/data/at/s13/8.pgm;12
/home/philipp/facerec/data/at/s13/1.pgm;12
/home/philipp/facerec/data/at/s17/2.pgm;16
/home/philipp/facerec/data/at/s17/7.pgm;16
/home/philipp/facerec/data/at/s17/6.pgm;16
/home/philipp/facerec/data/at/s17/9.pgm;16
/home/philipp/facerec/data/at/s17/5.pgm;16
/home/philipp/facerec/data/at/s17/3.pgm;16
/home/philipp/facerec/data/at/s17/4.pgm;16
/home/philipp/facerec/data/at/s17/10.pgm;16
/home/philipp/facerec/data/at/s17/8.pgm;16
/home/philipp/facerec/data/at/s17/1.pgm;16
/home/philipp/facerec/data/at/s32/2.pgm;31
/home/philipp/facerec/data/at/s32/7.pgm;31
/home/philipp/facerec/data/at/s32/6.pgm;31
/home/philipp/facerec/data/at/s32/9.pgm;31
/home/philipp/facerec/data/at/s32/5.pgm;31
/home/philipp/facerec/data/at/s32/3.pgm;31
/home/philipp/facerec/data/at/s32/4.pgm;31
/home/philipp/facerec/data/at/s32/10.pgm;31
/home/philipp/facerec/data/at/s32/8.pgm;31
/home/philipp/facerec/data/at/s32/1.pgm;31
/home/philipp/facerec/data/at/s10/2.pgm;9
/home/philipp/facerec/data/at/s10/7.pgm;9
/home/philipp/facerec/data/at/s10/6.pgm;9
/home/philipp/facerec/data/at/s10/9.pgm;9
/home/philipp/facerec/data/at/s10/5.pgm;9
/home/philipp/facerec/data/at/s10/3.pgm;9
/home/philipp/facerec/data/at/s10/4.pgm;9
/home/philipp/facerec/data/at/s10/10.pgm;9
/home/philipp/facerec/data/at/s10/8.pgm;9
/home/philipp/facerec/data/at/s10/1.pgm;9
/home/philipp/facerec/data/at/s27/2.pgm;26
/home/philipp/facerec/data/at/s27/7.pgm;26
/home/philipp/facerec/data/at/s27/6.pgm;26
/home/philipp/facerec/data/at/s27/9.pgm;26
/home/philipp/facerec/data/at/s27/5.pgm;26
/home/philipp/facerec/data/at/s27/3.pgm;26
/home/philipp/facerec/data/at/s27/4.pgm;26
/home/philipp/facerec/data/at/s27/10.pgm;26
/home/philipp/facerec/data/at/s27/8.pgm;26
/home/philipp/facerec/data/at/s27/1.pgm;26
/home/philipp/facerec/data/at/s5/2.pgm;4
/home/philipp/facerec/data/at/s5/7.pgm;4
/home/philipp/facerec/data/at/s5/6.pgm;4
/home/philipp/facerec/data/at/s5/9.pgm;4
/home/philipp/facerec/data/at/s5/5.pgm;4
/home/philipp/facerec/data/at/s5/3.pgm;4
/home/philipp/facerec/data/at/s5/4.pgm;4
/home/philipp/facerec/data/at/s5/10.pgm;4
/home/philipp/facerec/data/at/s5/8.pgm;4
/home/philipp/facerec/data/at/s5/1.pgm;4
/home/philipp/facerec/data/at/s20/2.pgm;19
/home/philipp/facerec/data/at/s20/7.pgm;19
/home/philipp/facerec/data/at/s20/6.pgm;19
/home/philipp/facerec/data/at/s20/9.pgm;19
/home/philipp/facerec/data/at/s20/5.pgm;19
/home/philipp/facerec/data/at/s20/3.pgm;19
/home/philipp/facerec/data/at/s20/4.pgm;19
/home/philipp/facerec/data/at/s20/10.pgm;19
/home/philipp/facerec/data/at/s20/8.pgm;19
/home/philipp/facerec/data/at/s20/1.pgm;19
/home/philipp/facerec/data/at/s30/2.pgm;29
/home/philipp/facerec/data/at/s30/7.pgm;29
/home/philipp/facerec/data/at/s30/6.pgm;29
/home/philipp/facerec/data/at/s30/9.pgm;29
/home/philipp/facerec/data/at/s30/5.pgm;29
/home/philipp/facerec/data/at/s30/3.pgm;29
/home/philipp/facerec/data/at/s30/4.pgm;29
/home/philipp/facerec/data/at/s30/10.pgm;29
/home/philipp/facerec/data/at/s30/8.pgm;29
/home/philipp/facerec/data/at/s30/1.pgm;29
/home/philipp/facerec/data/at/s39/2.pgm;38
/home/philipp/facerec/data/at/s39/7.pgm;38
/home/philipp/facerec/data/at/s39/6.pgm;38
/home/philipp/facerec/data/at/s39/9.pgm;38
/home/philipp/facerec/data/at/s39/5.pgm;38
/home/philipp/facerec/data/at/s39/3.pgm;38
/home/philipp/facerec/data/at/s39/4.pgm;38
/home/philipp/facerec/data/at/s39/10.pgm;38
/home/philipp/facerec/data/at/s39/8.pgm;38
/home/philipp/facerec/data/at/s39/1.pgm;38
/home/philipp/facerec/data/at/s35/2.pgm;34
/home/philipp/facerec/data/at/s35/7.pgm;34
/home/philipp/facerec/data/at/s35/6.pgm;34
/home/philipp/facerec/data/at/s35/9.pgm;34
/home/philipp/facerec/data/at/s35/5.pgm;34
/home/philipp/facerec/data/at/s35/3.pgm;34
/home/philipp/facerec/data/at/s35/4.pgm;34
/home/philipp/facerec/data/at/s35/10.pgm;34
/home/philipp/facerec/data/at/s35/8.pgm;34
/home/philipp/facerec/data/at/s35/1.pgm;34
/home/philipp/facerec/data/at/s23/2.pgm;22
/home/philipp/facerec/data/at/s23/7.pgm;22
/home/philipp/facerec/data/at/s23/6.pgm;22
/home/philipp/facerec/data/at/s23/9.pgm;22
/home/philipp/facerec/data/at/s23/5.pgm;22
/home/philipp/facerec/data/at/s23/3.pgm;22
/home/philipp/facerec/data/at/s23/4.pgm;22
/home/philipp/facerec/data/at/s23/10.pgm;22
/home/philipp/facerec/data/at/s23/8.pgm;22
/home/philipp/facerec/data/at/s23/1.pgm;22
/home/philipp/facerec/data/at/s4/2.pgm;3
/home/philipp/facerec/data/at/s4/7.pgm;3
/home/philipp/facerec/data/at/s4/6.pgm;3
/home/philipp/facerec/data/at/s4/9.pgm;3
/home/philipp/facerec/data/at/s4/5.pgm;3
/home/philipp/facerec/data/at/s4/3.pgm;3
/home/philipp/facerec/data/at/s4/4.pgm;3
/home/philipp/facerec/data/at/s4/10.pgm;3
/home/philipp/facerec/data/at/s4/8.pgm;3
/home/philipp/facerec/data/at/s4/1.pgm;3
/home/philipp/facerec/data/at/s9/2.pgm;8
/home/philipp/facerec/data/at/s9/7.pgm;8
/home/philipp/facerec/data/at/s9/6.pgm;8
/home/philipp/facerec/data/at/s9/9.pgm;8
/home/philipp/facerec/data/at/s9/5.pgm;8
/home/philipp/facerec/data/at/s9/3.pgm;8
/home/philipp/facerec/data/at/s9/4.pgm;8
/home/philipp/facerec/data/at/s9/10.pgm;8
/home/philipp/facerec/data/at/s9/8.pgm;8
/home/philipp/facerec/data/at/s9/1.pgm;8
/home/philipp/facerec/data/at/s37/2.pgm;36
/home/philipp/facerec/data/at/s37/7.pgm;36
/home/philipp/facerec/data/at/s37/6.pgm;36
/home/philipp/facerec/data/at/s37/9.pgm;36
/home/philipp/facerec/data/at/s37/5.pgm;36
/home/philipp/facerec/data/at/s37/3.pgm;36
/home/philipp/facerec/data/at/s37/4.pgm;36
/home/philipp/facerec/data/at/s37/10.pgm;36
/home/philipp/facerec/data/at/s37/8.pgm;36
/home/philipp/facerec/data/at/s37/1.pgm;36
/home/philipp/facerec/data/at/s24/2.pgm;23
/home/philipp/facerec/data/at/s24/7.pgm;23
/home/philipp/facerec/data/at/s24/6.pgm;23
/home/philipp/facerec/data/at/s24/9.pgm;23
/home/philipp/facerec/data/at/s24/5.pgm;23
/home/philipp/facerec/data/at/s24/3.pgm;23
/home/philipp/facerec/data/at/s24/4.pgm;23
/home/philipp/facerec/data/at/s24/10.pgm;23
/home/philipp/facerec/data/at/s24/8.pgm;23
/home/philipp/facerec/data/at/s24/1.pgm;23
/home/philipp/facerec/data/at/s19/2.pgm;18
/home/philipp/facerec/data/at/s19/7.pgm;18
/home/philipp/facerec/data/at/s19/6.pgm;18
/home/philipp/facerec/data/at/s19/9.pgm;18
/home/philipp/facerec/data/at/s19/5.pgm;18
/home/philipp/facerec/data/at/s19/3.pgm;18
/home/philipp/facerec/data/at/s19/4.pgm;18
/home/philipp/facerec/data/at/s19/10.pgm;18
/home/philipp/facerec/data/at/s19/8.pgm;18
/home/philipp/facerec/data/at/s19/1.pgm;18
/home/philipp/facerec/data/at/s8/2.pgm;7
/home/philipp/facerec/data/at/s8/7.pgm;7
/home/philipp/facerec/data/at/s8/6.pgm;7
/home/philipp/facerec/data/at/s8/9.pgm;7
/home/philipp/facerec/data/at/s8/5.pgm;7
/home/philipp/facerec/data/at/s8/3.pgm;7
/home/philipp/facerec/data/at/s8/4.pgm;7
/home/philipp/facerec/data/at/s8/10.pgm;7
/home/philipp/facerec/data/at/s8/8.pgm;7
/home/philipp/facerec/data/at/s8/1.pgm;7
/home/philipp/facerec/data/at/s21/2.pgm;20
/home/philipp/facerec/data/at/s21/7.pgm;20
/home/philipp/facerec/data/at/s21/6.pgm;20
/home/philipp/facerec/data/at/s21/9.pgm;20
/home/philipp/facerec/data/at/s21/5.pgm;20
/home/philipp/facerec/data/at/s21/3.pgm;20
/home/philipp/facerec/data/at/s21/4.pgm;20
/home/philipp/facerec/data/at/s21/10.pgm;20
/home/philipp/facerec/data/at/s21/8.pgm;20
/home/philipp/facerec/data/at/s21/1.pgm;20
/home/philipp/facerec/data/at/s1/2.pgm;0
/home/philipp/facerec/data/at/s1/7.pgm;0
/home/philipp/facerec/data/at/s1/6.pgm;0
/home/philipp/facerec/data/at/s1/9.pgm;0
/home/philipp/facerec/data/at/s1/5.pgm;0
/home/philipp/facerec/data/at/s1/3.pgm;0
/home/philipp/facerec/data/at/s1/4.pgm;0
/home/philipp/facerec/data/at/s1/10.pgm;0
/home/philipp/facerec/data/at/s1/8.pgm;0
/home/philipp/facerec/data/at/s1/1.pgm;0
/home/philipp/facerec/data/at/s7/2.pgm;6
/home/philipp/facerec/data/at/s7/7.pgm;6
/home/philipp/facerec/data/at/s7/6.pgm;6
/home/philipp/facerec/data/at/s7/9.pgm;6
/home/philipp/facerec/data/at/s7/5.pgm;6
/home/philipp/facerec/data/at/s7/3.pgm;6
/home/philipp/facerec/data/at/s7/4.pgm;6
/home/philipp/facerec/data/at/s7/10.pgm;6
/home/philipp/facerec/data/at/s7/8.pgm;6
/home/philipp/facerec/data/at/s7/1.pgm;6
/home/philipp/facerec/data/at/s16/2.pgm;15
/home/philipp/facerec/data/at/s16/7.pgm;15
/home/philipp/facerec/data/at/s16/6.pgm;15
/home/philipp/facerec/data/at/s16/9.pgm;15
/home/philipp/facerec/data/at/s16/5.pgm;15
/home/philipp/facerec/data/at/s16/3.pgm;15
/home/philipp/facerec/data/at/s16/4.pgm;15
/home/philipp/facerec/data/at/s16/10.pgm;15
/home/philipp/facerec/data/at/s16/8.pgm;15
/home/philipp/facerec/data/at/s16/1.pgm;15
/home/philipp/facerec/data/at/s36/2.pgm;35
/home/philipp/facerec/data/at/s36/7.pgm;35
/home/philipp/facerec/data/at/s36/6.pgm;35
/home/philipp/facerec/data/at/s36/9.pgm;35
/home/philipp/facerec/data/at/s36/5.pgm;35
/home/philipp/facerec/data/at/s36/3.pgm;35
/home/philipp/facerec/data/at/s36/4.pgm;35
/home/philipp/facerec/data/at/s36/10.pgm;35
/home/philipp/facerec/data/at/s36/8.pgm;35
/home/philipp/facerec/data/at/s36/1.pgm;35
/home/philipp/facerec/data/at/s25/2.pgm;24
/home/philipp/facerec/data/at/s25/7.pgm;24
/home/philipp/facerec/data/at/s25/6.pgm;24
/home/philipp/facerec/data/at/s25/9.pgm;24
/home/philipp/facerec/data/at/s25/5.pgm;24
/home/philipp/facerec/data/at/s25/3.pgm;24
/home/philipp/facerec/data/at/s25/4.pgm;24
/home/philipp/facerec/data/at/s25/10.pgm;24
/home/philipp/facerec/data/at/s25/8.pgm;24
/home/philipp/facerec/data/at/s25/1.pgm;24
/home/philipp/facerec/data/at/s14/2.pgm;13
/home/philipp/facerec/data/at/s14/7.pgm;13
/home/philipp/facerec/data/at/s14/6.pgm;13
/home/philipp/facerec/data/at/s14/9.pgm;13
/home/philipp/facerec/data/at/s14/5.pgm;13
/home/philipp/facerec/data/at/s14/3.pgm;13
/home/philipp/facerec/data/at/s14/4.pgm;13
/home/philipp/facerec/data/at/s14/10.pgm;13
/home/philipp/facerec/data/at/s14/8.pgm;13
/home/philipp/facerec/data/at/s14/1.pgm;13
/home/philipp/facerec/data/at/s34/2.pgm;33
/home/philipp/facerec/data/at/s34/7.pgm;33
/home/philipp/facerec/data/at/s34/6.pgm;33
/home/philipp/facerec/data/at/s34/9.pgm;33
/home/philipp/facerec/data/at/s34/5.pgm;33
/home/philipp/facerec/data/at/s34/3.pgm;33
/home/philipp/facerec/data/at/s34/4.pgm;33
/home/philipp/facerec/data/at/s34/10.pgm;33
/home/philipp/facerec/data/at/s34/8.pgm;33
/home/philipp/facerec/data/at/s34/1.pgm;33
/home/philipp/facerec/data/at/s11/2.pgm;10
/home/philipp/facerec/data/at/s11/7.pgm;10
/home/philipp/facerec/data/at/s11/6.pgm;10
/home/philipp/facerec/data/at/s11/9.pgm;10
/home/philipp/facerec/data/at/s11/5.pgm;10
/home/philipp/facerec/data/at/s11/3.pgm;10
/home/philipp/facerec/data/at/s11/4.pgm;10
/home/philipp/facerec/data/at/s11/10.pgm;10
/home/philipp/facerec/data/at/s11/8.pgm;10
/home/philipp/facerec/data/at/s11/1.pgm;10
/home/philipp/facerec/data/at/s26/2.pgm;25
/home/philipp/facerec/data/at/s26/7.pgm;25
/home/philipp/facerec/data/at/s26/6.pgm;25
/home/philipp/facerec/data/at/s26/9.pgm;25
/home/philipp/facerec/data/at/s26/5.pgm;25
/home/philipp/facerec/data/at/s26/3.pgm;25
/home/philipp/facerec/data/at/s26/4.pgm;25
/home/philipp/facerec/data/at/s26/10.pgm;25
/home/philipp/facerec/data/at/s26/8.pgm;25
/home/philipp/facerec/data/at/s26/1.pgm;25
/home/philipp/facerec/data/at/s18/2.pgm;17
/home/philipp/facerec/data/at/s18/7.pgm;17
/home/philipp/facerec/data/at/s18/6.pgm;17
/home/philipp/facerec/data/at/s18/9.pgm;17
/home/philipp/facerec/data/at/s18/5.pgm;17
/home/philipp/facerec/data/at/s18/3.pgm;17
/home/philipp/facerec/data/at/s18/4.pgm;17
/home/philipp/facerec/data/at/s18/10.pgm;17
/home/philipp/facerec/data/at/s18/8.pgm;17
/home/philipp/facerec/data/at/s18/1.pgm;17
/home/philipp/facerec/data/at/s29/2.pgm;28
/home/philipp/facerec/data/at/s29/7.pgm;28
/home/philipp/facerec/data/at/s29/6.pgm;28
/home/philipp/facerec/data/at/s29/9.pgm;28
/home/philipp/facerec/data/at/s29/5.pgm;28
/home/philipp/facerec/data/at/s29/3.pgm;28
/home/philipp/facerec/data/at/s29/4.pgm;28
/home/philipp/facerec/data/at/s29/10.pgm;28
/home/philipp/facerec/data/at/s29/8.pgm;28
/home/philipp/facerec/data/at/s29/1.pgm;28
/home/philipp/facerec/data/at/s33/2.pgm;32
/home/philipp/facerec/data/at/s33/7.pgm;32
/home/philipp/facerec/data/at/s33/6.pgm;32
/home/philipp/facerec/data/at/s33/9.pgm;32
/home/philipp/facerec/data/at/s33/5.pgm;32
/home/philipp/facerec/data/at/s33/3.pgm;32
/home/philipp/facerec/data/at/s33/4.pgm;32
/home/philipp/facerec/data/at/s33/10.pgm;32
/home/philipp/facerec/data/at/s33/8.pgm;32
/home/philipp/facerec/data/at/s33/1.pgm;32
/home/philipp/facerec/data/at/s12/2.pgm;11
/home/philipp/facerec/data/at/s12/7.pgm;11
/home/philipp/facerec/data/at/s12/6.pgm;11
/home/philipp/facerec/data/at/s12/9.pgm;11
/home/philipp/facerec/data/at/s12/5.pgm;11
/home/philipp/facerec/data/at/s12/3.pgm;11
/home/philipp/facerec/data/at/s12/4.pgm;11
/home/philipp/facerec/data/at/s12/10.pgm;11
/home/philipp/facerec/data/at/s12/8.pgm;11
/home/philipp/facerec/data/at/s12/1.pgm;11
/home/philipp/facerec/data/at/s6/2.pgm;5
/home/philipp/facerec/data/at/s6/7.pgm;5
/home/philipp/facerec/data/at/s6/6.pgm;5
/home/philipp/facerec/data/at/s6/9.pgm;5
/home/philipp/facerec/data/at/s6/5.pgm;5
/home/philipp/facerec/data/at/s6/3.pgm;5
/home/philipp/facerec/data/at/s6/4.pgm;5
/home/philipp/facerec/data/at/s6/10.pgm;5
/home/philipp/facerec/data/at/s6/8.pgm;5
/home/philipp/facerec/data/at/s6/1.pgm;5
/home/philipp/facerec/data/at/s22/2.pgm;21
/home/philipp/facerec/data/at/s22/7.pgm;21
/home/philipp/facerec/data/at/s22/6.pgm;21
/home/philipp/facerec/data/at/s22/9.pgm;21
/home/philipp/facerec/data/at/s22/5.pgm;21
/home/philipp/facerec/data/at/s22/3.pgm;21
/home/philipp/facerec/data/at/s22/4.pgm;21
/home/philipp/facerec/data/at/s22/10.pgm;21
/home/philipp/facerec/data/at/s22/8.pgm;21
/home/philipp/facerec/data/at/s22/1.pgm;21
/home/philipp/facerec/data/at/s15/2.pgm;14
/home/philipp/facerec/data/at/s15/7.pgm;14
/home/philipp/facerec/data/at/s15/6.pgm;14
/home/philipp/facerec/data/at/s15/9.pgm;14
/home/philipp/facerec/data/at/s15/5.pgm;14
/home/philipp/facerec/data/at/s15/3.pgm;14
/home/philipp/facerec/data/at/s15/4.pgm;14
/home/philipp/facerec/data/at/s15/10.pgm;14
/home/philipp/facerec/data/at/s15/8.pgm;14
/home/philipp/facerec/data/at/s15/1.pgm;14
/home/philipp/facerec/data/at/s2/2.pgm;1
/home/philipp/facerec/data/at/s2/7.pgm;1
/home/philipp/facerec/data/at/s2/6.pgm;1
/home/philipp/facerec/data/at/s2/9.pgm;1
/home/philipp/facerec/data/at/s2/5.pgm;1
/home/philipp/facerec/data/at/s2/3.pgm;1
/home/philipp/facerec/data/at/s2/4.pgm;1
/home/philipp/facerec/data/at/s2/10.pgm;1
/home/philipp/facerec/data/at/s2/8.pgm;1
/home/philipp/facerec/data/at/s2/1.pgm;1
/home/philipp/facerec/data/at/s31/2.pgm;30
/home/philipp/facerec/data/at/s31/7.pgm;30
/home/philipp/facerec/data/at/s31/6.pgm;30
/home/philipp/facerec/data/at/s31/9.pgm;30
/home/philipp/facerec/data/at/s31/5.pgm;30
/home/philipp/facerec/data/at/s31/3.pgm;30
/home/philipp/facerec/data/at/s31/4.pgm;30
/home/philipp/facerec/data/at/s31/10.pgm;30
/home/philipp/facerec/data/at/s31/8.pgm;30
/home/philipp/facerec/data/at/s31/1.pgm;30
/home/philipp/facerec/data/at/s28/2.pgm;27
/home/philipp/facerec/data/at/s28/7.pgm;27
/home/philipp/facerec/data/at/s28/6.pgm;27
/home/philipp/facerec/data/at/s28/9.pgm;27
/home/philipp/facerec/data/at/s28/5.pgm;27
/home/philipp/facerec/data/at/s28/3.pgm;27
/home/philipp/facerec/data/at/s28/4.pgm;27
/home/philipp/facerec/data/at/s28/10.pgm;27
/home/philipp/facerec/data/at/s28/8.pgm;27
/home/philipp/facerec/data/at/s28/1.pgm;27
/home/philipp/facerec/data/at/s40/2.pgm;39
/home/philipp/facerec/data/at/s40/7.pgm;39
/home/philipp/facerec/data/at/s40/6.pgm;39
/home/philipp/facerec/data/at/s40/9.pgm;39
/home/philipp/facerec/data/at/s40/5.pgm;39
/home/philipp/facerec/data/at/s40/3.pgm;39
/home/philipp/facerec/data/at/s40/4.pgm;39
/home/philipp/facerec/data/at/s40/10.pgm;39
/home/philipp/facerec/data/at/s40/8.pgm;39
/home/philipp/facerec/data/at/s40/1.pgm;39
/home/philipp/facerec/data/at/s3/2.pgm;2
/home/philipp/facerec/data/at/s3/7.pgm;2
/home/philipp/facerec/data/at/s3/6.pgm;2
/home/philipp/facerec/data/at/s3/9.pgm;2
/home/philipp/facerec/data/at/s3/5.pgm;2
/home/philipp/facerec/data/at/s3/3.pgm;2
/home/philipp/facerec/data/at/s3/4.pgm;2
/home/philipp/facerec/data/at/s3/10.pgm;2
/home/philipp/facerec/data/at/s3/8.pgm;2
/home/philipp/facerec/data/at/s3/1.pgm;2
/home/philipp/facerec/data/at/s38/2.pgm;37
/home/philipp/facerec/data/at/s38/7.pgm;37
/home/philipp/facerec/data/at/s38/6.pgm;37
/home/philipp/facerec/data/at/s38/9.pgm;37
/home/philipp/facerec/data/at/s38/5.pgm;37
/home/philipp/facerec/data/at/s38/3.pgm;37
/home/philipp/facerec/data/at/s38/4.pgm;37
/home/philipp/facerec/data/at/s38/10.pgm;37
/home/philipp/facerec/data/at/s38/8.pgm;37
/home/philipp/facerec/data/at/s38/1.pgm;37
FaceRecognizer
==============
.. highlight:: cpp
.. Sample code::
* An example using the FaceRecognizer class can be found at opencv_source_code/samples/cpp/facerec_demo.cpp
* (Python) An example using the FaceRecognizer class can be found at opencv_source_code/samples/python2/facerec_demo.py
FaceRecognizer
--------------
.. ocv:class:: FaceRecognizer : public Algorithm
All face recognition models in OpenCV are derived from the abstract base class :ocv:class:`FaceRecognizer`, which provides
a unified access to all face recongition algorithms in OpenCV. ::
class FaceRecognizer : public Algorithm
{
public:
//! virtual destructor
virtual ~FaceRecognizer() {}
// Trains a FaceRecognizer.
virtual void train(InputArray src, InputArray labels) = 0;
// Updates a FaceRecognizer.
virtual void update(InputArrayOfArrays src, InputArray labels);
// Gets a prediction from a FaceRecognizer.
virtual int predict(InputArray src) const = 0;
// Predicts the label and confidence for a given sample.
virtual void predict(InputArray src, int &label, double &confidence) const = 0;
// Serializes this object to a given filename.
virtual void save(const String& filename) const;
// Deserializes this object from a given filename.
virtual void load(const String& filename);
// Serializes this object to a given cv::FileStorage.
virtual void save(FileStorage& fs) const = 0;
// Deserializes this object from a given cv::FileStorage.
virtual void load(const FileStorage& fs) = 0;
// Sets additional string info for the label
virtual void setLabelInfo(int label, const String& strInfo);
// Gets string info by label
virtual String getLabelInfo(int label);
// Gets labels by string info
virtual vector<int> getLabelsByString(const String& str);
};
Description
+++++++++++
I'll go a bit more into detail explaining :ocv:class:`FaceRecognizer`, because it doesn't look like a powerful interface at first sight. But: Every :ocv:class:`FaceRecognizer` is an :ocv:class:`Algorithm`, so you can easily get/set all model internals (if allowed by the implementation). :ocv:class:`Algorithm` is a relatively new OpenCV concept, which is available since the 2.4 release. I suggest you take a look at its description.
:ocv:class:`Algorithm` provides the following features for all derived classes:
* So called “virtual constructor”. That is, each Algorithm derivative is registered at program start and you can get the list of registered algorithms and create instance of a particular algorithm by its name (see :ocv:func:`Algorithm::create`). If you plan to add your own algorithms, it is good practice to add a unique prefix to your algorithms to distinguish them from other algorithms.
* Setting/Retrieving algorithm parameters by name. If you used video capturing functionality from OpenCV highgui module, you are probably familar with :ocv:cfunc:`cvSetCaptureProperty`, :ocv:cfunc:`cvGetCaptureProperty`, :ocv:func:`VideoCapture::set` and :ocv:func:`VideoCapture::get`. :ocv:class:`Algorithm` provides similar method where instead of integer id's you specify the parameter names as text Strings. See :ocv:func:`Algorithm::set` and :ocv:func:`Algorithm::get` for details.
* Reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store all its parameters and then read them back. There is no need to re-implement it each time.
Moreover every :ocv:class:`FaceRecognizer` supports the:
* **Training** of a :ocv:class:`FaceRecognizer` with :ocv:func:`FaceRecognizer::train` on a given set of images (your face database!).
* **Prediction** of a given sample image, that means a face. The image is given as a :ocv:class:`Mat`.
* **Loading/Saving** the model state from/to a given XML or YAML.
* **Setting/Getting labels info**, that is stored as a string. String labels info is useful for keeping names of the recognized people.
.. note:: When using the FaceRecognizer interface in combination with Python, please stick to Python 2. Some underlying scripts like create_csv will not work in other versions, like Python 3.
Setting the Thresholds
+++++++++++++++++++++++
Sometimes you run into the situation, when you want to apply a threshold on the prediction. A common scenario in face recognition is to tell, whether a face belongs to the training dataset or if it is unknown. You might wonder, why there's no public API in :ocv:class:`FaceRecognizer` to set the threshold for the prediction, but rest assured: It's supported. It just means there's no generic way in an abstract class to provide an interface for setting/getting the thresholds of *every possible* :ocv:class:`FaceRecognizer` algorithm. The appropriate place to set the thresholds is in the constructor of the specific :ocv:class:`FaceRecognizer` and since every :ocv:class:`FaceRecognizer` is a :ocv:class:`Algorithm` (see above), you can get/set the thresholds at runtime!
Here is an example of setting a threshold for the Eigenfaces method, when creating the model:
.. code-block:: cpp
// Let's say we want to keep 10 Eigenfaces and have a threshold value of 10.0
int num_components = 10;
double threshold = 10.0;
// Then if you want to have a cv::FaceRecognizer with a confidence threshold,
// create the concrete implementation with the appropiate parameters:
Ptr<FaceRecognizer> model = createEigenFaceRecognizer(num_components, threshold);
Sometimes it's impossible to train the model, just to experiment with threshold values. Thanks to :ocv:class:`Algorithm` it's possible to set internal model thresholds during runtime. Let's see how we would set/get the prediction for the Eigenface model, we've created above:
.. code-block:: cpp
// The following line reads the threshold from the Eigenfaces model:
double current_threshold = model->getDouble("threshold");
// And this line sets the threshold to 0.0:
model->set("threshold", 0.0);
If you've set the threshold to ``0.0`` as we did above, then:
.. code-block:: cpp
//
Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
// Get a prediction from the model. Note: We've set a threshold of 0.0 above,
// since the distance is almost always larger than 0.0, you'll get -1 as
// label, which indicates, this face is unknown
int predicted_label = model->predict(img);
// ...
is going to yield ``-1`` as predicted label, which states this face is unknown.
Getting the name of a FaceRecognizer
+++++++++++++++++++++++++++++++++++++
Since every :ocv:class:`FaceRecognizer` is a :ocv:class:`Algorithm`, you can use :ocv:func:`Algorithm::name` to get the name of a :ocv:class:`FaceRecognizer`:
.. code-block:: cpp
// Create a FaceRecognizer:
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
// And here's how to get its name:
String name = model->name();
FaceRecognizer::train
---------------------
Trains a FaceRecognizer with given data and associated labels.
.. ocv:function:: void FaceRecognizer::train( InputArrayOfArrays src, InputArray labels ) = 0
:param src: The training images, that means the faces you want to learn. The data has to be given as a ``vector<Mat>``.
:param labels: The labels corresponding to the images have to be given either as a ``vector<int>`` or a
The following source code snippet shows you how to learn a Fisherfaces model on a given set of images. The images are read with :ocv:func:`imread` and pushed into a ``std::vector<Mat>``. The labels of each image are stored within a ``std::vector<int>`` (you could also use a :ocv:class:`Mat` of type `CV_32SC1`). Think of the label as the subject (the person) this image belongs to, so same subjects (persons) should have the same label. For the available :ocv:class:`FaceRecognizer` you don't have to pay any attention to the order of the labels, just make sure same persons have the same label:
.. code-block:: cpp
// holds images and labels
vector<Mat> images;
vector<int> labels;
// images for first person
images.push_back(imread("person0/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0);
images.push_back(imread("person0/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0);
images.push_back(imread("person0/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0);
// images for second person
images.push_back(imread("person1/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1);
images.push_back(imread("person1/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1);
images.push_back(imread("person1/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1);
Now that you have read some images, we can create a new :ocv:class:`FaceRecognizer`. In this example I'll create a Fisherfaces model and decide to keep all of the possible Fisherfaces:
.. code-block:: cpp
// Create a new Fisherfaces model and retain all available Fisherfaces,
// this is the most common usage of this specific FaceRecognizer:
//
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
And finally train it on the given dataset (the face images and labels):
.. code-block:: cpp
// This is the common interface to train all of the available cv::FaceRecognizer
// implementations:
//
model->train(images, labels);
FaceRecognizer::update
----------------------
Updates a FaceRecognizer with given data and associated labels.
.. ocv:function:: void FaceRecognizer::update( InputArrayOfArrays src, InputArray labels )
:param src: The training images, that means the faces you want to learn. The data has to be given as a ``vector<Mat>``.
:param labels: The labels corresponding to the images have to be given either as a ``vector<int>`` or a
This method updates a (probably trained) :ocv:class:`FaceRecognizer`, but only if the algorithm supports it. The Local Binary Patterns Histograms (LBPH) recognizer (see :ocv:func:`createLBPHFaceRecognizer`) can be updated. For the Eigenfaces and Fisherfaces method, this is algorithmically not possible and you have to re-estimate the model with :ocv:func:`FaceRecognizer::train`. In any case, a call to train empties the existing model and learns a new model, while update does not delete any model data.
.. code-block:: cpp
// Create a new LBPH model (it can be updated) and use the default parameters,
// this is the most common usage of this specific FaceRecognizer:
//
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();
// This is the common interface to train all of the available cv::FaceRecognizer
// implementations:
//
model->train(images, labels);
// Some containers to hold new image:
vector<Mat> newImages;
vector<int> newLabels;
// You should add some images to the containers:
//
// ...
//
// Now updating the model is as easy as calling:
model->update(newImages,newLabels);
// This will preserve the old model data and extend the existing model
// with the new features extracted from newImages!
Calling update on an Eigenfaces model (see :ocv:func:`createEigenFaceRecognizer`), which doesn't support updating, will throw an error similar to:
.. code-block:: none
OpenCV Error: The function/feature is not implemented (This FaceRecognizer (FaceRecognizer.Eigenfaces) does not support updating, you have to use FaceRecognizer::train to update it.) in update, file /home/philipp/git/opencv/modules/contrib/src/facerec.cpp, line 305
terminate called after throwing an instance of 'cv::Exception'
Please note: The :ocv:class:`FaceRecognizer` does not store your training images, because this would be very memory intense and it's not the responsibility of te :ocv:class:`FaceRecognizer` to do so. The caller is responsible for maintaining the dataset, he want to work with.
FaceRecognizer::predict
-----------------------
.. ocv:function:: int FaceRecognizer::predict( InputArray src ) const = 0
.. ocv:function:: void FaceRecognizer::predict( InputArray src, int & label, double & confidence ) const = 0
Predicts a label and associated confidence (e.g. distance) for a given input image.
:param src: Sample image to get a prediction from.
:param label: The predicted label for the given image.
:param confidence: Associated confidence (e.g. distance) for the predicted label.
The suffix ``const`` means that prediction does not affect the internal model
state, so the method can be safely called from within different threads.
The following example shows how to get a prediction from a trained model:
.. code-block:: cpp
using namespace cv;
// Do your initialization here (create the cv::FaceRecognizer model) ...
// ...
// Read in a sample image:
Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
// And get a prediction from the cv::FaceRecognizer:
int predicted = model->predict(img);
Or to get a prediction and the associated confidence (e.g. distance):
.. code-block:: cpp
using namespace cv;
// Do your initialization here (create the cv::FaceRecognizer model) ...
// ...
Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
// Some variables for the predicted label and associated confidence (e.g. distance):
int predicted_label = -1;
double predicted_confidence = 0.0;
// Get the prediction and associated confidence from the model
model->predict(img, predicted_label, predicted_confidence);
FaceRecognizer::save
--------------------
Saves a :ocv:class:`FaceRecognizer` and its model state.
.. ocv:function:: void FaceRecognizer::save(const String& filename) const
Saves this model to a given filename, either as XML or YAML.
:param filename: The filename to store this :ocv:class:`FaceRecognizer` to (either XML/YAML).
.. ocv:function:: void FaceRecognizer::save(FileStorage& fs) const
Saves this model to a given :ocv:class:`FileStorage`.
:param fs: The :ocv:class:`FileStorage` to store this :ocv:class:`FaceRecognizer` to.
Every :ocv:class:`FaceRecognizer` overwrites ``FaceRecognizer::save(FileStorage& fs)``
to save the internal model state. ``FaceRecognizer::save(const String& filename)`` saves
the state of a model to the given filename.
The suffix ``const`` means that prediction does not affect the internal model
state, so the method can be safely called from within different threads.
FaceRecognizer::load
--------------------
Loads a :ocv:class:`FaceRecognizer` and its model state.
.. ocv:function:: void FaceRecognizer::load( const String& filename )
.. ocv:function:: void FaceRecognizer::load( const FileStorage& fs ) = 0
Loads a persisted model and state from a given XML or YAML file . Every
:ocv:class:`FaceRecognizer` has to overwrite ``FaceRecognizer::load(FileStorage& fs)``
to enable loading the model state. ``FaceRecognizer::load(FileStorage& fs)`` in
turn gets called by ``FaceRecognizer::load(const String& filename)``, to ease
saving a model.
FaceRecognizer::setLabelInfo
-----------------------------
Sets string info for the specified model's label.
.. ocv:function:: void FaceRecognizer::setLabelInfo(int label, const String& strInfo)
The string info is replaced by the provided value if it was set before for the specified label.
FaceRecognizer::getLabelInfo
----------------------------
Gets string information by label.
.. ocv:function:: String FaceRecognizer::getLabelInfo(int label)
If an unknown label id is provided or there is no label information associated with the specified label id the method returns an empty string.
FaceRecognizer::getLabelsByString
---------------------------------
Gets vector of labels by string.
.. ocv:function:: vector<int> FaceRecognizer::getLabelsByString(const String& str)
The function searches for the labels containing the specified sub-string in the associated string info.
createEigenFaceRecognizer
-------------------------
.. ocv:function:: Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX)
:param num_components: The number of components (read: Eigenfaces) kept for this Principal Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be kept for good reconstruction capabilities. It is based on your input data, so experiment with the number. Keeping 80 components should almost always be sufficient.
:param threshold: The threshold applied in the prediction.
Notes:
++++++
* Training and prediction must be done on grayscale images, use :ocv:func:`cvtColor` to convert between the color spaces.
* **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use :ocv:func:`resize` to resize the images.
* This model does not support updating.
Model internal data:
++++++++++++++++++++
* ``num_components`` see :ocv:func:`createEigenFaceRecognizer`.
* ``threshold`` see :ocv:func:`createEigenFaceRecognizer`.
* ``eigenvalues`` The eigenvalues for this Principal Component Analysis (ordered descending).
* ``eigenvectors`` The eigenvectors for this Principal Component Analysis (ordered by their eigenvalue).
* ``mean`` The sample mean calculated from the training data.
* ``projections`` The projections of the training data.
* ``labels`` The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.
createFisherFaceRecognizer
--------------------------
.. ocv:function:: Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX)
:param num_components: The number of components (read: Fisherfaces) kept for this Linear Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that means the number of your classes ``c`` (read: subjects, persons you want to recognize). If you leave this at the default (``0``) or set it to a value less-equal ``0`` or greater ``(c-1)``, it will be set to the correct number ``(c-1)`` automatically.
:param threshold: The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.
Notes:
++++++
* Training and prediction must be done on grayscale images, use :ocv:func:`cvtColor` to convert between the color spaces.
* **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use :ocv:func:`resize` to resize the images.
* This model does not support updating.
Model internal data:
++++++++++++++++++++
* ``num_components`` see :ocv:func:`createFisherFaceRecognizer`.
* ``threshold`` see :ocv:func:`createFisherFaceRecognizer`.
* ``eigenvalues`` The eigenvalues for this Linear Discriminant Analysis (ordered descending).
* ``eigenvectors`` The eigenvectors for this Linear Discriminant Analysis (ordered by their eigenvalue).
* ``mean`` The sample mean calculated from the training data.
* ``projections`` The projections of the training data.
* ``labels`` The labels corresponding to the projections.
createLBPHFaceRecognizer
-------------------------
.. ocv:function:: Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX)
:param radius: The radius used for building the Circular Local Binary Pattern. The greater the radius, the
:param neighbors: The number of sample points to build a Circular Local Binary Pattern from. An appropriate value is to use `` 8`` sample points. Keep in mind: the more sample points you include, the higher the computational cost.
:param grid_x: The number of cells in the horizontal direction, ``8`` is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
:param grid_y: The number of cells in the vertical direction, ``8`` is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
:param threshold: The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.
Notes:
++++++
* The Circular Local Binary Patterns (used in training and prediction) expect the data given as grayscale images, use :ocv:func:`cvtColor` to convert between the color spaces.
* This model supports updating.
Model internal data:
++++++++++++++++++++
* ``radius`` see :ocv:func:`createLBPHFaceRecognizer`.
* ``neighbors`` see :ocv:func:`createLBPHFaceRecognizer`.
* ``grid_x`` see :ocv:func:`createLBPHFaceRecognizer`.
* ``grid_y`` see :ocv:func:`createLBPHFaceRecognizer`.
* ``threshold`` see :ocv:func:`createLBPHFaceRecognizer`.
* ``histograms`` Local Binary Patterns Histograms calculated from the given training data (empty if none was given).
* ``labels`` Labels corresponding to the calculated Local Binary Patterns Histograms.
Changelog
=========
Release 0.05
------------
This library is now included in the official OpenCV distribution (from 2.4 on).
The :ocv:class`FaceRecognizer` is now an :ocv:class:`Algorithm`, which better fits into the overall
OpenCV API.
To reduce the confusion on user side and minimize my work, libfacerec and OpenCV
have been synchronized and are now based on the same interfaces and implementation.
The library now has an extensive documentation:
* The API is explained in detail and with a lot of code examples.
* The face recognition guide I had written for Python and GNU Octave/MATLAB has been adapted to the new OpenCV C++ ``cv::FaceRecognizer``.
* A tutorial for gender classification with Fisherfaces.
* A tutorial for face recognition in videos (e.g. webcam).
Release highlights
++++++++++++++++++
* There are no single highlights to pick from, this release is a highlight itself.
Release 0.04
------------
This version is fully Windows-compatible and works with OpenCV 2.3.1. Several
bugfixes, but none influenced the recognition rate.
Release highlights
++++++++++++++++++
* A whole lot of exceptions with meaningful error messages.
* A tutorial for Windows users: `http://bytefish.de/blog/opencv_visual_studio_and_libfacerec <http://bytefish.de/blog/opencv_visual_studio_and_libfacerec>`_
Release 0.03
------------
Reworked the library to provide separate implementations in cpp files, because
it's the preferred way of contributing OpenCV libraries. This means the library
is not header-only anymore. Slight API changes were done, please see the
documentation for details.
Release highlights
++++++++++++++++++
* New Unit Tests (for LBP Histograms) make the library more robust.
* Added more documentation.
Release 0.02
------------
Reworked the library to provide separate implementations in cpp files, because
it's the preferred way of contributing OpenCV libraries. This means the library
is not header-only anymore. Slight API changes were done, please see the
documentation for details.
Release highlights
++++++++++++++++++
* New Unit Tests (for LBP Histograms) make the library more robust.
* Added a documentation and changelog in reStructuredText.
Release 0.01
------------
Initial release as header-only library.
Release highlights
++++++++++++++++++
* Colormaps for OpenCV to enhance the visualization.
* Face Recognition algorithms implemented:
* Eigenfaces [TP91]_
* Fisherfaces [BHK97]_
* Local Binary Patterns Histograms [AHP04]_
* Added persistence facilities to store the models with a common API.
* Unit Tests (using `gtest <http://code.google.com/p/googletest/>`_).
* Providing a CMakeLists.txt to enable easy cross-platform building.
Face Recognition with OpenCV
############################
.. contents:: Table of Contents
:depth: 3
Introduction
============
`OpenCV (Open Source Computer Vision) <http://opencv.org>`_ is a popular computer vision library started by `Intel <http://www.intel.com>`_ in 1999. The cross-platform library sets its focus on real-time image processing and includes patent-free implementations of the latest computer vision algorithms. In 2008 `Willow Garage <http://www.willowgarage.com>`_ took over support and OpenCV 2.3.1 now comes with a programming interface to C, C++, `Python <http://www.python.org>`_ and `Android <http://www.android.com>`_. OpenCV is released under a BSD license so it is used in academic projects and commercial products alike.
OpenCV 2.4 now comes with the very new :ocv:class:`FaceRecognizer` class for face recognition, so you can start experimenting with face recognition right away. This document is the guide I've wished for, when I was working myself into face recognition. It shows you how to perform face recognition with :ocv:class:`FaceRecognizer` in OpenCV (with full source code listings) and gives you an introduction into the algorithms behind. I'll also show how to create the visualizations you can find in many publications, because a lot of people asked for.
The currently available algorithms are:
* Eigenfaces (see :ocv:func:`createEigenFaceRecognizer`)
* Fisherfaces (see :ocv:func:`createFisherFaceRecognizer`)
* Local Binary Patterns Histograms (see :ocv:func:`createLBPHFaceRecognizer`)
You don't need to copy and paste the source code examples from this page, because they are available in the ``src`` folder coming with this documentation. If you have built OpenCV with the samples turned on, chances are good you have them compiled already! Although it might be interesting for very advanced users, I've decided to leave the implementation details out as I am afraid they confuse new users.
All code in this document is released under the `BSD license <http://www.opensource.org/licenses/bsd-license>`_, so feel free to use it for your projects.
Face Recognition
================
Face recognition is an easy task for humans. Experiments in [Tu06]_ have shown, that even one to three day old babies are able to distinguish between known faces. So how hard could it be for a computer? It turns out we know little about human recognition to date. Are inner features (eyes, nose, mouth) or outer features (head shape, hairline) used for a successful face recognition? How do we analyze an image and how does the brain encode it? It was shown by `David Hubel <http://en.wikipedia.org/wiki/David_H._Hubel>`_ and `Torsten Wiesel <http://en.wikipedia.org/wiki/Torsten_Wiesel>`_, that our brain has specialized nerve cells responding to specific local features of a scene, such as lines, edges, angles or movement. Since we don't see the world as scattered pieces, our visual cortex must somehow combine the different sources of information into useful patterns. Automatic face recognition is all about extracting those meaningful features from an image, putting them into a useful representation and performing some kind of classification on them.
Face recognition based on the geometric features of a face is probably the most intuitive approach to face recognition. One of the first automated face recognition systems was described in [Kanade73]_: marker points (position of eyes, ears, nose, ...) were used to build a feature vector (distance between the points, angle between them, ...). The recognition was performed by calculating the euclidean distance between feature vectors of a probe and reference image. Such a method is robust against changes in illumination by its nature, but has a huge drawback: the accurate registration of the marker points is complicated, even with state of the art algorithms. Some of the latest work on geometric face recognition was carried out in [Bru92]_. A 22-dimensional feature vector was used and experiments on large datasets have shown, that geometrical features alone my not carry enough information for face recognition.
The Eigenfaces method described in [TP91]_ took a holistic approach to face recognition: A facial image is a point from a high-dimensional image space and a lower-dimensional representation is found, where classification becomes easy. The lower-dimensional subspace is found with Principal Component Analysis, which identifies the axes with maximum variance. While this kind of transformation is optimal from a reconstruction standpoint, it doesn't take any class labels into account. Imagine a situation where the variance is generated from external sources, let it be light. The axes with maximum variance do not necessarily contain any discriminative information at all, hence a classification becomes impossible. So a class-specific projection with a Linear Discriminant Analysis was applied to face recognition in [BHK97]_. The basic idea is to minimize the variance within a class, while maximizing the variance between the classes at the same time.
Recently various methods for a local feature extraction emerged. To avoid the high-dimensionality of the input data only local regions of an image are described, the extracted features are (hopefully) more robust against partial occlusion, illumation and small sample size. Algorithms used for a local feature extraction are Gabor Wavelets ([Wiskott97]_), Discrete Cosinus Transform ([Messer06]_) and Local Binary Patterns ([AHP04]_). It's still an open research question what's the best way to preserve spatial information when applying a local feature extraction, because spatial information is potentially useful information.
Face Database
==============
Let's get some data to experiment with first. I don't want to do a toy example here. We are doing face recognition, so you'll need some face images! You can either create your own dataset or start with one of the available face databases, `http://face-rec.org/databases/ <http://face-rec.org/databases>`_ gives you an up-to-date overview. Three interesting databases are (parts of the description are quoted from `http://face-rec.org <http://face-rec.org>`_):
* `AT&T Facedatabase <http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html>`_ The AT&T Facedatabase, sometimes also referred to as *ORL Database of Faces*, contains ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement).
* `Yale Facedatabase A <http://vision.ucsd.edu/content/yale-face-database>`_, also known as Yalefaces. The AT&T Facedatabase is good for initial tests, but it's a fairly easy database. The Eigenfaces method already has a 97% recognition rate on it, so you won't see any great improvements with other algorithms. The Yale Facedatabase A (also known as Yalefaces) is a more appropriate dataset for initial experiments, because the recognition problem is harder. The database consists of 15 people (14 male, 1 female) each with 11 grayscale images sized :math:`320 \times 243` pixel. There are changes in the light conditions (center light, left light, right light), facial expressions (happy, normal, sad, sleepy, surprised, wink) and glasses (glasses, no-glasses).
The original images are not cropped and aligned. Please look into the :ref:`appendixft` for a Python script, that does the job for you.
* `Extended Yale Facedatabase B <http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html>`_ The Extended Yale Facedatabase B contains 2414 images of 38 different people in its cropped version. The focus of this database is set on extracting features that are robust to illumination, the images have almost no variation in emotion/occlusion/... . I personally think, that this dataset is too large for the experiments I perform in this document. You better use the `AT&T Facedatabase <http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html>`_ for intial testing. A first version of the Yale Facedatabase B was used in [BHK97]_ to see how the Eigenfaces and Fisherfaces method perform under heavy illumination changes. [Lee05]_ used the same setup to take 16128 images of 28 people. The Extended Yale Facedatabase B is the merge of the two databases, which is now known as Extended Yalefacedatabase B.
Preparing the data
-------------------
Once we have acquired some data, we'll need to read it in our program. In the demo applications I have decided to read the images from a very simple CSV file. Why? Because it's the simplest platform-independent approach I can think of. However, if you know a simpler solution please ping me about it. Basically all the CSV file needs to contain are lines composed of a ``filename`` followed by a ``;`` followed by the ``label`` (as *integer number*), making up a line like this:
.. code-block:: none
/path/to/image.ext;0
Let's dissect the line. ``/path/to/image.ext`` is the path to an image, probably something like this if you are in Windows: ``C:/faces/person0/image0.jpg``. Then there is the separator ``;`` and finally we assign the label ``0`` to the image. Think of the label as the subject (the person) this image belongs to, so same subjects (persons) should have the same label.
Download the AT&T Facedatabase from AT&T Facedatabase and the corresponding CSV file from at.txt, which looks like this (file is without ... of course):
.. code-block:: none
./at/s1/1.pgm;0
./at/s1/2.pgm;0
...
./at/s2/1.pgm;1
./at/s2/2.pgm;1
...
./at/s40/1.pgm;39
./at/s40/2.pgm;39
Imagine I have extracted the files to ``D:/data/at`` and have downloaded the CSV file to ``D:/data/at.txt``. Then you would simply need to Search & Replace ``./`` with ``D:/data/``. You can do that in an editor of your choice, every sufficiently advanced editor can do this. Once you have a CSV file with valid filenames and labels, you can run any of the demos by passing the path to the CSV file as parameter:
.. code-block:: none
facerec_demo.exe D:/data/at.txt
Creating the CSV File
+++++++++++++++++++++
You don't really want to create the CSV file by hand. I have prepared you a little Python script ``create_csv.py`` (you find it at ``src/create_csv.py`` coming with this tutorial) that automatically creates you a CSV file. If you have your images in hierarchie like this (``/basepath/<subject>/<image.ext>``):
.. code-block:: none
philipp@mango:~/facerec/data/at$ tree
.
|-- s1
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
|-- s2
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
...
|-- s40
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
Then simply call create_csv.py with the path to the folder, just like this and you could save the output:
.. code-block:: none
philipp@mango:~/facerec/data$ python create_csv.py
at/s13/2.pgm;0
at/s13/7.pgm;0
at/s13/6.pgm;0
at/s13/9.pgm;0
at/s13/5.pgm;0
at/s13/3.pgm;0
at/s13/4.pgm;0
at/s13/10.pgm;0
at/s13/8.pgm;0
at/s13/1.pgm;0
at/s17/2.pgm;1
at/s17/7.pgm;1
at/s17/6.pgm;1
at/s17/9.pgm;1
at/s17/5.pgm;1
at/s17/3.pgm;1
[...]
Please see the :ref:`appendixft` for additional informations.
Eigenfaces
==========
The problem with the image representation we are given is its high dimensionality. Two-dimensional :math:`p \times q` grayscale images span a :math:`m = pq`-dimensional vector space, so an image with :math:`100 \times 100` pixels lies in a :math:`10,000`-dimensional image space already. The question is: Are all dimensions equally useful for us? We can only make a decision if there's any variance in data, so what we are looking for are the components that account for most of the information. The Principal Component Analysis (PCA) was independently proposed by `Karl Pearson <http://en.wikipedia.org/wiki/Karl_Pearson>`_ (1901) and `Harold Hotelling <http://en.wikipedia.org/wiki/Harold_Hotelling>`_ (1933) to turn a set of possibly correlated variables into a smaller set of uncorrelated variables. The idea is, that a high-dimensional dataset is often described by correlated variables and therefore only a few meaningful dimensions account for most of the information. The PCA method finds the directions with the greatest variance in the data, called principal components.
Algorithmic Description
-----------------------
Let :math:`X = \{ x_{1}, x_{2}, \ldots, x_{n} \}` be a random vector with observations :math:`x_i \in R^{d}`.
1. Compute the mean :math:`\mu`
.. math::
\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}
2. Compute the the Covariance Matrix `S`
.. math::
S = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu) (x_{i} - \mu)^{T}`
3. Compute the eigenvalues :math:`\lambda_{i}` and eigenvectors :math:`v_{i}` of :math:`S`
.. math::
S v_{i} = \lambda_{i} v_{i}, i=1,2,\ldots,n
4. Order the eigenvectors descending by their eigenvalue. The :math:`k` principal components are the eigenvectors corresponding to the :math:`k` largest eigenvalues.
The :math:`k` principal components of the observed vector :math:`x` are then given by:
.. math::
y = W^{T} (x - \mu)
where :math:`W = (v_{1}, v_{2}, \ldots, v_{k})`.
The reconstruction from the PCA basis is given by:
.. math::
x = W y + \mu
where :math:`W = (v_{1}, v_{2}, \ldots, v_{k})`.
The Eigenfaces method then performs face recognition by:
* Projecting all training samples into the PCA subspace.
* Projecting the query image into the PCA subspace.
* Finding the nearest neighbor between the projected training images and the projected query image.
Still there's one problem left to solve. Imagine we are given :math:`400` images sized :math:`100 \times 100` pixel. The Principal Component Analysis solves the covariance matrix :math:`S = X X^{T}`, where :math:`{size}(X) = 10000 \times 400` in our example. You would end up with a :math:`10000 \times 10000` matrix, roughly :math:`0.8 GB`. Solving this problem isn't feasible, so we'll need to apply a trick. From your linear algebra lessons you know that a :math:`M \times N` matrix with :math:`M > N` can only have :math:`N - 1` non-zero eigenvalues. So it's possible to take the eigenvalue decomposition :math:`S = X^{T} X` of size :math:`N \times N` instead:
.. math::
X^{T} X v_{i} = \lambda_{i} v{i}
and get the original eigenvectors of :math:`S = X X^{T}` with a left multiplication of the data matrix:
.. math::
X X^{T} (X v_{i}) = \lambda_{i} (X v_{i})
The resulting eigenvectors are orthogonal, to get orthonormal eigenvectors they need to be normalized to unit length. I don't want to turn this into a publication, so please look into [Duda01]_ for the derivation and proof of the equations.
Eigenfaces in OpenCV
--------------------
For the first source code example, I'll go through it with you. I am first giving you the whole source code listing, and after this we'll look at the most important lines in detail. Please note: every source code listing is commented in detail, so you should have no problems following it.
.. literalinclude:: src/facerec_eigenfaces.cpp
:language: cpp
:linenos:
The source code for this demo application is also available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_eigenfaces.cpp <src/facerec_eigenfaces.cpp>`
I've used the jet colormap, so you can see how the grayscale values are distributed within the specific Eigenfaces. You can see, that the Eigenfaces do not only encode facial features, but also the illumination in the images (see the left light in Eigenface \#4, right light in Eigenfaces \#5):
.. image:: img/eigenfaces_opencv.png
:align: center
We've already seen, that we can reconstruct a face from its lower dimensional approximation. So let's see how many Eigenfaces are needed for a good reconstruction. I'll do a subplot with :math:`10,30,\ldots,310` Eigenfaces:
.. code-block:: cpp
// Display or save the image reconstruction at some predefined steps:
for(int num_components = 10; num_components < 300; num_components+=15) {
// slice the eigenvectors from the model
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// Display or save:
if(argc == 2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
10 Eigenvectors are obviously not sufficient for a good image reconstruction, 50 Eigenvectors may already be sufficient to encode important facial features. You'll get a good reconstruction with approximately 300 Eigenvectors for the AT&T Facedatabase. There are rule of thumbs how many Eigenfaces you should choose for a successful face recognition, but it heavily depends on the input data. [Zhao03]_ is the perfect point to start researching for this:
.. image:: img/eigenface_reconstruction_opencv.png
:align: center
Fisherfaces
============
The Principal Component Analysis (PCA), which is the core of the Eigenfaces method, finds a linear combination of features that maximizes the total variance in data. While this is clearly a powerful way to represent data, it doesn't consider any classes and so a lot of discriminative information *may* be lost when throwing components away. Imagine a situation where the variance in your data is generated by an external source, let it be the light. The components identified by a PCA do not necessarily contain any discriminative information at all, so the projected samples are smeared together and a classification becomes impossible (see `http://www.bytefish.de/wiki/pca_lda_with_gnu_octave <http://www.bytefish.de/wiki/pca_lda_with_gnu_octave>`_ for an example).
The Linear Discriminant Analysis performs a class-specific dimensionality reduction and was invented by the great statistician `Sir R. A. Fisher <http://en.wikipedia.org/wiki/Ronald_Fisher>`_. He successfully used it for classifying flowers in his 1936 paper *The use of multiple measurements in taxonomic problems* [Fisher36]_. In order to find the combination of features that separates best between classes the Linear Discriminant Analysis maximizes the ratio of between-classes to within-classes scatter, instead of maximizing the overall scatter. The idea is simple: same classes should cluster tightly together, while different classes are as far away as possible from each other in the lower-dimensional representation. This was also recognized by `Belhumeur <http://www.cs.columbia.edu/~belhumeur/>`_, `Hespanha <http://www.ece.ucsb.edu/~hespanha/>`_ and `Kriegman <http://cseweb.ucsd.edu/~kriegman/>`_ and so they applied a Discriminant Analysis to face recognition in [BHK97]_.
Algorithmic Description
-----------------------
Let :math:`X` be a random vector with samples drawn from :math:`c` classes:
.. math::
:nowrap:
\begin{align*}
X & = & \{X_1,X_2,\ldots,X_c\} \\
X_i & = & \{x_1, x_2, \ldots, x_n\}
\end{align*}
The scatter matrices :math:`S_{B}` and `S_{W}` are calculated as:
.. math::
:nowrap:
\begin{align*}
S_{B} & = & \sum_{i=1}^{c} N_{i} (\mu_i - \mu)(\mu_i - \mu)^{T} \\
S_{W} & = & \sum_{i=1}^{c} \sum_{x_{j} \in X_{i}} (x_j - \mu_i)(x_j - \mu_i)^{T}
\end{align*}
, where :math:`\mu` is the total mean:
.. math::
\mu = \frac{1}{N} \sum_{i=1}^{N} x_i
And :math:`\mu_i` is the mean of class :math:`i \in \{1,\ldots,c\}`:
.. math::
\mu_i = \frac{1}{|X_i|} \sum_{x_j \in X_i} x_j
Fisher's classic algorithm now looks for a projection :math:`W`, that maximizes the class separability criterion:
.. math::
W_{opt} = \operatorname{arg\,max}_{W} \frac{|W^T S_B W|}{|W^T S_W W|}
Following [BHK97]_, a solution for this optimization problem is given by solving the General Eigenvalue Problem:
.. math::
:nowrap:
\begin{align*}
S_{B} v_{i} & = & \lambda_{i} S_w v_{i} \nonumber \\
S_{W}^{-1} S_{B} v_{i} & = & \lambda_{i} v_{i}
\end{align*}
There's one problem left to solve: The rank of :math:`S_{W}` is at most :math:`(N-c)`, with :math:`N` samples and :math:`c` classes. In pattern recognition problems the number of samples :math:`N` is almost always samller than the dimension of the input data (the number of pixels), so the scatter matrix :math:`S_{W}` becomes singular (see [RJ91]_). In [BHK97]_ this was solved by performing a Principal Component Analysis on the data and projecting the samples into the :math:`(N-c)`-dimensional space. A Linear Discriminant Analysis was then performed on the reduced data, because :math:`S_{W}` isn't singular anymore.
The optimization problem can then be rewritten as:
.. math::
:nowrap:
\begin{align*}
W_{pca} & = & \operatorname{arg\,max}_{W} |W^T S_T W| \\
W_{fld} & = & \operatorname{arg\,max}_{W} \frac{|W^T W_{pca}^T S_{B} W_{pca} W|}{|W^T W_{pca}^T S_{W} W_{pca} W|}
\end{align*}
The transformation matrix :math:`W`, that projects a sample into the :math:`(c-1)`-dimensional space is then given by:
.. math::
W = W_{fld}^{T} W_{pca}^{T}
Fisherfaces in OpenCV
---------------------
.. literalinclude:: src/facerec_fisherfaces.cpp
:language: cpp
:linenos:
The source code for this demo application is also available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_fisherfaces.cpp <src/facerec_fisherfaces.cpp>`
For this example I am going to use the Yale Facedatabase A, just because the plots are nicer. Each Fisherface has the same length as an original image, thus it can be displayed as an image. The demo shows (or saves) the first, at most 16 Fisherfaces:
.. image:: img/fisherfaces_opencv.png
:align: center
The Fisherfaces method learns a class-specific transformation matrix, so the they do not capture illumination as obviously as the Eigenfaces method. The Discriminant Analysis instead finds the facial features to discriminate between the persons. It's important to mention, that the performance of the Fisherfaces heavily depends on the input data as well. Practically said: if you learn the Fisherfaces for well-illuminated pictures only and you try to recognize faces in bad-illuminated scenes, then method is likely to find the wrong components (just because those features may not be predominant on bad illuminated images). This is somewhat logical, since the method had no chance to learn the illumination.
The Fisherfaces allow a reconstruction of the projected image, just like the Eigenfaces did. But since we only identified the features to distinguish between subjects, you can't expect a nice reconstruction of the original image. For the Fisherfaces method we'll project the sample image onto each of the Fisherfaces instead. So you'll have a nice visualization, which feature each of the Fisherfaces describes:
.. code-block:: cpp
// Display or save the image reconstruction at some predefined steps:
for(int num_component = 0; num_component < min(16, W.cols); num_component++) {
// Slice the Fisherface from the model:
Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// Display or save:
if(argc == 2) {
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);
} else {
imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction);
}
}
The differences may be subtle for the human eyes, but you should be able to see some differences:
.. image:: img/fisherface_reconstruction_opencv.png
:align: center
Local Binary Patterns Histograms
================================
Eigenfaces and Fisherfaces take a somewhat holistic approach to face recognition. You treat your data as a vector somewhere in a high-dimensional image space. We all know high-dimensionality is bad, so a lower-dimensional subspace is identified, where (probably) useful information is preserved. The Eigenfaces approach maximizes the total scatter, which can lead to problems if the variance is generated by an external source, because components with a maximum variance over all classes aren't necessarily useful for classification (see `http://www.bytefish.de/wiki/pca_lda_with_gnu_octave <http://www.bytefish.de/wiki/pca_lda_with_gnu_octave>`_). So to preserve some discriminative information we applied a Linear Discriminant Analysis and optimized as described in the Fisherfaces method. The Fisherfaces method worked great... at least for the constrained scenario we've assumed in our model.
Now real life isn't perfect. You simply can't guarantee perfect light settings in your images or 10 different images of a person. So what if there's only one image for each person? Our covariance estimates for the subspace *may* be horribly wrong, so will the recognition. Remember the Eigenfaces method had a 96% recognition rate on the AT&T Facedatabase? How many images do we actually need to get such useful estimates? Here are the Rank-1 recognition rates of the Eigenfaces and Fisherfaces method on the AT&T Facedatabase, which is a fairly easy image database:
.. image:: img/at_database_small_sample_size.png
:scale: 60%
:align: center
So in order to get good recognition rates you'll need at least 8(+-1) images for each person and the Fisherfaces method doesn't really help here. The above experiment is a 10-fold cross validated result carried out with the facerec framework at: `https://github.com/bytefish/facerec <https://github.com/bytefish/facerec>`_. This is not a publication, so I won't back these figures with a deep mathematical analysis. Please have a look into [KM01]_ for a detailed analysis of both methods, when it comes to small training datasets.
So some research concentrated on extracting local features from images. The idea is to not look at the whole image as a high-dimensional vector, but describe only local features of an object. The features you extract this way will have a low-dimensionality implicitly. A fine idea! But you'll soon observe the image representation we are given doesn't only suffer from illumination variations. Think of things like scale, translation or rotation in images - your local description has to be at least a bit robust against those things. Just like :ocv:class:`SIFT`, the Local Binary Patterns methodology has its roots in 2D texture analysis. The basic idea of Local Binary Patterns is to summarize the local structure in an image by comparing each pixel with its neighborhood. Take a pixel as center and threshold its neighbors against. If the intensity of the center pixel is greater-equal its neighbor, then denote it with 1 and 0 if not. You'll end up with a binary number for each pixel, just like 11001111. So with 8 surrounding pixels you'll end up with 2^8 possible combinations, called *Local Binary Patterns* or sometimes referred to as *LBP codes*. The first LBP operator described in literature actually used a fixed 3 x 3 neighborhood just like this:
.. image:: img/lbp/lbp.png
:scale: 80%
:align: center
Algorithmic Description
-----------------------
A more formal description of the LBP operator can be given as:
.. math::
LBP(x_c, y_c) = \sum_{p=0}^{P-1} 2^p s(i_p - i_c)
, with :math:`(x_c, y_c)` as central pixel with intensity :math:`i_c`; and :math:`i_n` being the intensity of the the neighbor pixel. :math:`s` is the sign function defined as:
.. math::
:nowrap:
\begin{equation}
s(x) =
\begin{cases}
1 & \text{if $x \geq 0$}\\
0 & \text{else}
\end{cases}
\end{equation}
This description enables you to capture very fine grained details in images. In fact the authors were able to compete with state of the art results for texture classification. Soon after the operator was published it was noted, that a fixed neighborhood fails to encode details differing in scale. So the operator was extended to use a variable neighborhood in [AHP04]_. The idea is to align an abritrary number of neighbors on a circle with a variable radius, which enables to capture the following neighborhoods:
.. image:: img/lbp/patterns.png
:scale: 80%
:align: center
For a given Point :math:`(x_c,y_c)` the position of the neighbor :math:`(x_p,y_p), p \in P` can be calculated by:
.. math::
:nowrap:
\begin{align*}
x_{p} & = & x_c + R \cos({\frac{2\pi p}{P}})\\
y_{p} & = & y_c - R \sin({\frac{2\pi p}{P}})
\end{align*}
Where :math:`R` is the radius of the circle and :math:`P` is the number of sample points.
The operator is an extension to the original LBP codes, so it's sometimes called *Extended LBP* (also referred to as *Circular LBP*) . If a points coordinate on the circle doesn't correspond to image coordinates, the point get's interpolated. Computer science has a bunch of clever interpolation schemes, the OpenCV implementation does a bilinear interpolation:
.. math::
:nowrap:
\begin{align*}
f(x,y) \approx \begin{bmatrix}
1-x & x \end{bmatrix} \begin{bmatrix}
f(0,0) & f(0,1) \\
f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix}
1-y \\
y \end{bmatrix}.
\end{align*}
By definition the LBP operator is robust against monotonic gray scale transformations. We can easily verify this by looking at the LBP image of an artificially modified image (so you see what an LBP image looks like!):
.. image:: img/lbp/lbp_yale.jpg
:scale: 60%
:align: center
So what's left to do is how to incorporate the spatial information in the face recognition model. The representation proposed by Ahonen et. al [AHP04]_ is to divide the LBP image into :math:`m` local regions and extract a histogram from each. The spatially enhanced feature vector is then obtained by concatenating the local histograms (**not merging them**). These histograms are called *Local Binary Patterns Histograms*.
Local Binary Patterns Histograms in OpenCV
------------------------------------------
.. literalinclude:: src/facerec_lbph.cpp
:language: cpp
:linenos:
The source code for this demo application is also available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_lbph.cpp <src/facerec_lbph.cpp>`
Conclusion
==========
You've learned how to use the new :ocv:class:`FaceRecognizer` in real applications. After reading the document you also know how the algorithms work, so now it's time for you to experiment with the available algorithms. Use them, improve them and let the OpenCV community participate!
Credits
=======
This document wouldn't be possible without the kind permission to use the face images of the *AT&T Database of Faces* and the *Yale Facedatabase A/B*.
The Database of Faces
---------------------
** Important: when using these images, please give credit to "AT&T Laboratories, Cambridge." **
The Database of Faces, formerly *The ORL Database of Faces*, contains a set of face images taken between April 1992 and April 1994. The database was used in the context of a face recognition project carried out in collaboration with the Speech, Vision and Robotics Group of the Cambridge University Engineering Department.
There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement).
The files are in PGM format. The size of each image is 92x112 pixels, with 256 grey levels per pixel. The images are organised in 40 directories (one for each subject), which have names of the form sX, where X indicates the subject number (between 1 and 40). In each of these directories, there are ten different images of that subject, which have names of the form Y.pgm, where Y is the image number for that subject (between 1 and 10).
A copy of the database can be retrieved from: `http://www.cl.cam.ac.uk/research/dtg/attarchive/pub/data/att_faces.zip <http://www.cl.cam.ac.uk/research/dtg/attarchive/pub/data/att_faces.zip>`_.
Yale Facedatabase A
-------------------
*With the permission of the authors I am allowed to show a small number of images (say subject 1 and all the variations) and all images such as Fisherfaces and Eigenfaces from either Yale Facedatabase A or the Yale Facedatabase B.*
The Yale Face Database A (size 6.4MB) contains 165 grayscale images in GIF format of 15 individuals. There are 11 images per subject, one per different facial expression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink. (Source: `http://cvc.yale.edu/projects/yalefaces/yalefaces.html <http://cvc.yale.edu/projects/yalefaces/yalefaces.html>`_)
Yale Facedatabase B
--------------------
*With the permission of the authors I am allowed to show a small number of images (say subject 1 and all the variations) and all images such as Fisherfaces and Eigenfaces from either Yale Facedatabase A or the Yale Facedatabase B.*
The extended Yale Face Database B contains 16128 images of 28 human subjects under 9 poses and 64 illumination conditions. The data format of this database is the same as the Yale Face Database B. Please refer to the homepage of the Yale Face Database B (or one copy of this page) for more detailed information of the data format.
You are free to use the extended Yale Face Database B for research purposes. All publications which use this database should acknowledge the use of "the Exteded Yale Face Database B" and reference Athinodoros Georghiades, Peter Belhumeur, and David Kriegman's paper, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose", PAMI, 2001, `[bibtex] <http://vision.ucsd.edu/~leekc/ExtYaleDatabase/athosref.html>`_.
The extended database as opposed to the original Yale Face Database B with 10 subjects was first reported by Kuang-Chih Lee, Jeffrey Ho, and David Kriegman in "Acquiring Linear Subspaces for Face Recognition under Variable Lighting, PAMI, May, 2005 `[pdf] <http://vision.ucsd.edu/~leekc/papers/9pltsIEEE.pdf>`_." All test image data used in the experiments are manually aligned, cropped, and then re-sized to 168x192 images. If you publish your experimental results with the cropped images, please reference the PAMI2005 paper as well. (Source: `http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html <http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html>`_)
Literature
==========
.. [AHP04] Ahonen, T., Hadid, A., and Pietikainen, M. *Face Recognition with Local Binary Patterns.* Computer Vision - ECCV 2004 (2004), 469–481.
.. [BHK97] Belhumeur, P. N., Hespanha, J., and Kriegman, D. *Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection.* IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997), 711–720.
.. [Bru92] Brunelli, R., Poggio, T. *Face Recognition through Geometrical Features.* European Conference on Computer Vision (ECCV) 1992, S. 792–800.
.. [Duda01] Duda, Richard O. and Hart, Peter E. and Stork, David G., *Pattern Classification* (2nd Edition) 2001.
.. [Fisher36] Fisher, R. A. *The use of multiple measurements in taxonomic problems.* Annals Eugen. 7 (1936), 179–188.
.. [GBK01] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., *From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose* IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 6 (2001), 643-660.
.. [Kanade73] Kanade, T. *Picture processing system by computer complex and recognition of human faces.* PhD thesis, Kyoto University, November 1973
.. [KM01] Martinez, A and Kak, A. *PCA versus LDA* IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No.2, pp. 228-233, 2001.
.. [Lee05] Lee, K., Ho, J., Kriegman, D. *Acquiring Linear Subspaces for Face Recognition under Variable Lighting.* In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27 (2005), Nr. 5
.. [Messer06] Messer, K. et al. *Performance Characterisation of Face Recognition Algorithms and Their Sensitivity to Severe Illumination Changes.* In: In: ICB, 2006, S. 1–11.
.. [RJ91] S. Raudys and A.K. Jain. *Small sample size effects in statistical pattern recognition: Recommendations for practitioneers.* - IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 3 (1991), 252-264.
.. [Tan10] Tan, X., and Triggs, B. *Enhanced local texture feature sets for face recognition under difficult lighting conditions.* IEEE Transactions on Image Processing 19 (2010), 1635–650.
.. [TP91] Turk, M., and Pentland, A. *Eigenfaces for recognition.* Journal of Cognitive Neuroscience 3 (1991), 71–86.
.. [Tu06] Chiara Turati, Viola Macchi Cassia, F. S., and Leo, I. *Newborns face recognition: Role of inner and outer facial features. Child Development* 77, 2 (2006), 297–311.
.. [Wiskott97] Wiskott, L., Fellous, J., Krüger, N., Malsburg, C. *Face Recognition By Elastic Bunch Graph Matching.* IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997), S. 775–779
.. [Zhao03] Zhao, W., Chellappa, R., Phillips, P., and Rosenfeld, A. Face recognition: A literature survey. ACM Computing Surveys (CSUR) 35, 4 (2003), 399–458.
.. _appendixft:
Appendix
========
Creating the CSV File
---------------------
You don't really want to create the CSV file by hand. I have prepared you a little Python script ``create_csv.py`` (you find it at ``/src/create_csv.py`` coming with this tutorial) that automatically creates you a CSV file. If you have your images in hierarchie like this (``/basepath/<subject>/<image.ext>``):
.. code-block:: none
philipp@mango:~/facerec/data/at$ tree
.
|-- s1
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
|-- s2
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
...
|-- s40
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
Then simply call ``create_csv.py`` with the path to the folder, just like this and you could save the output:
.. code-block:: none
philipp@mango:~/facerec/data$ python create_csv.py
at/s13/2.pgm;0
at/s13/7.pgm;0
at/s13/6.pgm;0
at/s13/9.pgm;0
at/s13/5.pgm;0
at/s13/3.pgm;0
at/s13/4.pgm;0
at/s13/10.pgm;0
at/s13/8.pgm;0
at/s13/1.pgm;0
at/s17/2.pgm;1
at/s17/7.pgm;1
at/s17/6.pgm;1
at/s17/9.pgm;1
at/s17/5.pgm;1
at/s17/3.pgm;1
[...]
Here is the script, if you can't find it:
.. literalinclude:: ./src/create_csv.py
:language: python
:linenos:
Aligning Face Images
---------------------
An accurate alignment of your image data is especially important in tasks like emotion detection, were you need as much detail as possible. Believe me... You don't want to do this by hand. So I've prepared you a tiny Python script. The code is really easy to use. To scale, rotate and crop the face image you just need to call *CropFace(image, eye_left, eye_right, offset_pct, dest_sz)*, where:
* *eye_left* is the position of the left eye
* *eye_right* is the position of the right eye
* *offset_pct* is the percent of the image you want to keep next to the eyes (horizontal, vertical direction)
* *dest_sz* is the size of the output image
If you are using the same *offset_pct* and *dest_sz* for your images, they are all aligned at the eyes.
.. literalinclude:: ./src/crop_face.py
:language: python
:linenos:
Imagine we are given `this photo of Arnold Schwarzenegger <http://en.wikipedia.org/wiki/File:Arnold_Schwarzenegger_edit%28ws%29.jpg>`_, which is under a Public Domain license. The (x,y)-position of the eyes is approximately *(252,364)* for the left and *(420,366)* for the right eye. Now you only need to define the horizontal offset, vertical offset and the size your scaled, rotated & cropped face should have.
Here are some examples:
+---------------------------------+----------------------------------------------------------------------------+
| Configuration | Cropped, Scaled, Rotated Face |
+=================================+============================================================================+
| 0.1 (10%), 0.1 (10%), (200,200) | .. image:: ./img/tutorial/gender_classification/arnie_10_10_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (200,200) | .. image:: ./img/tutorial/gender_classification/arnie_20_20_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.3 (30%), 0.3 (30%), (200,200) | .. image:: ./img/tutorial/gender_classification/arnie_30_30_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (70,70) | .. image:: ./img/tutorial/gender_classification/arnie_20_20_70_70.jpg |
+---------------------------------+----------------------------------------------------------------------------+
CSV for the AT&T Facedatabase
------------------------------
.. literalinclude:: etc/at.txt
:language: none
:linenos:
FaceRecognizer - Face Recognition with OpenCV
##############################################
OpenCV 2.4 now comes with the very new :ocv:class:`FaceRecognizer` class for face recognition. This documentation is going to explain you :doc:`the API <facerec_api>` in detail and it will give you a lot of help to get started (full source code examples). :doc:`Face Recognition with OpenCV <facerec_tutorial>` is the definite guide to the new :ocv:class:`FaceRecognizer`. There's also a :doc:`tutorial on gender classification <tutorial/facerec_gender_classification>`, a :doc:`tutorial for face recognition in videos <tutorial/facerec_video_recognition>` and it's shown :doc:`how to load & save your results <tutorial/facerec_save_load>`.
These documents are the help I have wished for, when I was working myself into face recognition. I hope you also think the new :ocv:class:`FaceRecognizer` is a useful addition to OpenCV.
Please issue any feature requests and/or bugs on the official OpenCV bug tracker at:
* http://code.opencv.org/projects/opencv/issues
Contents
========
.. toctree::
:maxdepth: 1
FaceRecognizer API <facerec_api>
Guide to Face Recognition with OpenCV <facerec_tutorial>
Tutorial on Gender Classification <tutorial/facerec_gender_classification>
Tutorial on Face Recognition in Videos <tutorial/facerec_video_recognition>
Tutorial On Saving & Loading a FaceRecognizer <tutorial/facerec_save_load>
Changelog <facerec_changelog>
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
CMAKE_MINIMUM_REQUIRED(VERSION 2.6)
set(name "facerec")
project(facerec_cpp_samples)
#SET(OpenCV_DIR /path/to/your/opencv/installation)
# packages
find_package(OpenCV REQUIRED) # http://opencv.org
# probably you should loop through the sample files here
add_executable(facerec_demo facerec_demo.cpp)
target_link_libraries(facerec_demo opencv_core opencv_face opencv_imgproc opencv_highgui)
add_executable(facerec_video facerec_video.cpp)
target_link_libraries(facerec_video opencv_face opencv_core opencv_imgproc opencv_highgui opencv_objdetect opencv_imgproc)
add_executable(facerec_eigenfaces facerec_eigenfaces.cpp)
target_link_libraries(facerec_eigenfaces opencv_face opencv_core opencv_imgproc opencv_highgui)
add_executable(facerec_fisherfaces facerec_fisherfaces.cpp)
target_link_libraries(facerec_fisherfaces opencv_face opencv_core opencv_imgproc opencv_highgui)
add_executable(facerec_lbph facerec_lbph.cpp)
target_link_libraries(facerec_lbph opencv_face opencv_core opencv_imgproc opencv_highgui)
#!/usr/bin/env python
import sys
import os.path
# This is a tiny script to help you creating a CSV file from a face
# database with a similar hierarchie:
#
# philipp@mango:~/facerec/data/at$ tree
# .
# |-- README
# |-- s1
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
# |-- s2
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
# ...
# |-- s40
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
#
if __name__ == "__main__":
if len(sys.argv) != 2:
print "usage: create_csv <base_path>"
sys.exit(1)
BASE_PATH=sys.argv[1]
SEPARATOR=";"
label = 0
for dirname, dirnames, filenames in os.walk(BASE_PATH):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
abs_path = "%s/%s" % (subject_path, filename)
print "%s%s%d" % (abs_path, SEPARATOR, label)
label = label + 1
#!/usr/bin/env python
# Software License Agreement (BSD License)
#
# Copyright (c) 2012, Philipp Wagner
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of the author nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import sys, math, Image
def Distance(p1,p2):
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return math.sqrt(dx*dx+dy*dy)
def ScaleRotateTranslate(image, angle, center = None, new_center = None, scale = None, resample=Image.BICUBIC):
if (scale is None) and (center is None):
return image.rotate(angle=angle, resample=resample)
nx,ny = x,y = center
sx=sy=1.0
if new_center:
(nx,ny) = new_center
if scale:
(sx,sy) = (scale, scale)
cosine = math.cos(angle)
sine = math.sin(angle)
a = cosine/sx
b = sine/sx
c = x-nx*a-ny*b
d = -sine/sy
e = cosine/sy
f = y-nx*d-ny*e
return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample)
def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)):
# calculate offsets in original image
offset_h = math.floor(float(offset_pct[0])*dest_sz[0])
offset_v = math.floor(float(offset_pct[1])*dest_sz[1])
# get the direction
eye_direction = (eye_right[0] - eye_left[0], eye_right[1] - eye_left[1])
# calc rotation angle in radians
rotation = -math.atan2(float(eye_direction[1]),float(eye_direction[0]))
# distance between them
dist = Distance(eye_left, eye_right)
# calculate the reference eye-width
reference = dest_sz[0] - 2.0*offset_h
# scale factor
scale = float(dist)/float(reference)
# rotate original around the left eye
image = ScaleRotateTranslate(image, center=eye_left, angle=rotation)
# crop the rotated image
crop_xy = (eye_left[0] - scale*offset_h, eye_left[1] - scale*offset_v)
crop_size = (dest_sz[0]*scale, dest_sz[1]*scale)
image = image.crop((int(crop_xy[0]), int(crop_xy[1]), int(crop_xy[0]+crop_size[0]), int(crop_xy[1]+crop_size[1])))
# resize it
image = image.resize(dest_sz, Image.ANTIALIAS)
return image
def readFileNames():
try:
inFile = open('path_to_created_csv_file.csv')
except:
raise IOError('There is no file named path_to_created_csv_file.csv in current directory.')
return False
picPath = []
picIndex = []
for line in inFile.readlines():
if line != '':
fields = line.rstrip().split(';')
picPath.append(fields[0])
picIndex.append(int(fields[1]))
return (picPath, picIndex)
if __name__ == "__main__":
[images, indexes]=readFileNames()
if not os.path.exists("modified"):
os.makedirs("modified")
for img in images:
image = Image.open(img)
CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.1,0.1), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_10_10_200_200.jpg")
CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.2,0.2), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_20_20_200_200.jpg")
CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.3,0.3), dest_sz=(200,200)).save("modified/"+img.rstrip().split('/')[1]+"_30_30_200_200.jpg")
CropFace(image, eye_left=(252,364), eye_right=(420,366), offset_pct=(0.2,0.2)).save("modified/"+img.rstrip().split('/')[1]+"_20_20_70_70.jpg")
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 2) {
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
exit(1);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
//
// If you want to create a FaceRecognizer with a
// confidennce threshold, call it with:
//
// cv::createEigenFaceRecognizer(10, 123.0);
//
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Sometimes you'll need to get/set internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// First we'll use it to set the threshold of the FaceRecognizer
// to 0.0 without retraining the model. This can be useful if
// you are evaluating the model:
//
model->set("threshold", 0.0);
// Now the threshold of this model is set to 0.0. A prediction
// now returns -1, as it's impossible to have a distance below
// it
predictedLabel = model->predict(testSample);
cout << "Predicted class = " << predictedLabel << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// From this we will display the (at most) first 10 Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
imshow(format("%d", i), cgrayscale);
}
waitKey(0);
return 0;
}
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc < 2) {
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
exit(1);
}
string output_folder = ".";
if (argc == 3) {
output_folder = string(argv[2]);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
//
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0), call it with:
//
// cv::createEigenFaceRecognizer(10, 123.0);
//
// If you want to use _all_ Eigenfaces and have a threshold,
// then call the method like this:
//
// cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// Get the sample mean from the training data
Mat mean = model->getMat("mean");
// Display or save:
if(argc == 2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// Display or save the Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
// Display or save:
if(argc == 2) {
imshow(format("eigenface_%d", i), cgrayscale);
} else {
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// Display or save the image reconstruction at some predefined steps:
for(int num_components = min(W.cols, 10); num_components < min(W.cols, 300); num_components+=15) {
// slice the eigenvectors from the model
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// Display or save:
if(argc == 2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
// Display if we are not writing to an output folder:
if(argc == 2) {
waitKey(0);
}
return 0;
}
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc < 2) {
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
exit(1);
}
string output_folder = ".";
if (argc == 3) {
output_folder = string(argv[2]);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Fisherfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// If you just want to keep 10 Fisherfaces, then call
// the factory method like this:
//
// cv::createFisherFaceRecognizer(10);
//
// However it is not useful to discard Fisherfaces! Please
// always try to use _all_ available Fisherfaces for
// classification.
//
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0) and use _all_
// Fisherfaces, then call it with:
//
// cv::createFisherFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// Get the sample mean from the training data
Mat mean = model->getMat("mean");
// Display or save:
if(argc == 2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// Display or save the first, at most 16 Fisherfaces:
for (int i = 0; i < min(16, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// Show the image & apply a Bone colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
// Display or save:
if(argc == 2) {
imshow(format("fisherface_%d", i), cgrayscale);
} else {
imwrite(format("%s/fisherface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// Display or save the image reconstruction at some predefined steps:
for(int num_component = 0; num_component < min(16, W.cols); num_component++) {
// Slice the Fisherface from the model:
Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// Display or save:
if(argc == 2) {
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);
} else {
imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction);
}
}
// Display if we are not writing to an output folder:
if(argc == 2) {
waitKey(0);
}
return 0;
}
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 2) {
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
exit(1);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an LBPH model for
// face recognition and train it with the images and
// labels read from the given CSV file.
//
// The LBPHFaceRecognizer uses Extended Local Binary Patterns
// (it's probably configurable with other operators at a later
// point), and has the following default values
//
// radius = 1
// neighbors = 8
// grid_x = 8
// grid_y = 8
//
// So if you want a LBPH FaceRecognizer using a radius of
// 2 and 16 neighbors, call the factory method with:
//
// cv::createLBPHFaceRecognizer(2, 16);
//
// And if you want a threshold (e.g. 123.0) call it with its default values:
//
// cv::createLBPHFaceRecognizer(1,8,8,8,123.0)
//
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Sometimes you'll need to get/set internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// First we'll use it to set the threshold of the FaceRecognizer
// to 0.0 without retraining the model. This can be useful if
// you are evaluating the model:
//
model->set("threshold", 0.0);
// Now the threshold of this model is set to 0.0. A prediction
// now returns -1, as it's impossible to have a distance below
// it
predictedLabel = model->predict(testSample);
cout << "Predicted class = " << predictedLabel << endl;
// Show some informations about the model, as there's no cool
// Model data to display as in Eigenfaces/Fisherfaces.
// Due to efficiency reasons the LBP images are not stored
// within the model:
cout << "Model Information:" << endl;
string model_info = format("\tLBPH(radius=%i, neighbors=%i, grid_x=%i, grid_y=%i, threshold=%.2f)",
model->getInt("radius"),
model->getInt("neighbors"),
model->getInt("grid_x"),
model->getInt("grid_y"),
model->getDouble("threshold"));
cout << model_info << endl;
// We could get the histograms for example:
vector<Mat> histograms = model->getMatVector("histograms");
// But should I really visualize it? Probably the length is interesting:
cout << "Size of the histograms: " << histograms[0].total() << endl;
return 0;
}
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc < 2) {
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
exit(1);
}
string output_folder = ".";
if (argc == 3) {
output_folder = string(argv[2]);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
//
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0), call it with:
//
// cv::createEigenFaceRecognizer(10, 123.0);
//
// If you want to use _all_ Eigenfaces and have a threshold,
// then call the method like this:
//
// cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model0 = createEigenFaceRecognizer();
model0->train(images, labels);
// save the model to eigenfaces_at.yaml
model0->save("eigenfaces_at.yml");
//
//
// Now create a new Eigenfaces Recognizer
//
Ptr<FaceRecognizer> model1 = createEigenFaceRecognizer();
model1->load("eigenfaces_at.yml");
// The following line predicts the label of a given
// test image:
int predictedLabel = model1->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model1->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model1->getMat("eigenvectors");
// Get the sample mean from the training data
Mat mean = model1->getMat("mean");
// Display or save:
if(argc == 2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// Display or save the Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
// Display or save:
if(argc == 2) {
imshow(format("eigenface_%d", i), cgrayscale);
} else {
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// Display or save the image reconstruction at some predefined steps:
for(int num_components = 10; num_components < 300; num_components+=15) {
// slice the eigenvectors from the model
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// Display or save:
if(argc == 2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
// Display if we are not writing to an output folder:
if(argc == 2) {
waitKey(0);
}
return 0;
}
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 4) {
cout << "usage: " << argv[0] << " </path/to/haar_cascade> </path/to/csv.ext> </path/to/device id>" << endl;
cout << "\t </path/to/haar_cascade> -- Path to the Haar Cascade for face detection." << endl;
cout << "\t </path/to/csv.ext> -- Path to the CSV file with the face database." << endl;
cout << "\t <device id> -- The webcam device id to grab frames from." << endl;
exit(1);
}
// Get the path to your CSV:
string fn_haar = string(argv[1]);
string fn_csv = string(argv[2]);
int deviceId = atoi(argv[3]);
// These vectors hold the images and corresponding labels:
vector<Mat> images;
vector<int> labels;
// Read in the data (fails if no valid input filename is given, but you'll get an error message):
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size AND we need to reshape incoming faces to this size:
int im_width = images[0].cols;
int im_height = images[0].rows;
// Create a FaceRecognizer and train it on the given images:
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// That's it for learning the Face Recognition model. You now
// need to create the classifier for the task of Face Detection.
// We are going to use the haar cascade you have specified in the
// command line arguments:
//
CascadeClassifier haar_cascade;
haar_cascade.load(fn_haar);
// Get a handle to the Video device:
VideoCapture cap(deviceId);
// Check if we can use this device at all:
if(!cap.isOpened()) {
cerr << "Capture Device ID " << deviceId << "cannot be opened." << endl;
return -1;
}
// Holds the current frame from the Video device:
Mat frame;
for(;;) {
cap >> frame;
// Clone the current frame:
Mat original = frame.clone();
// Convert the current frame to grayscale:
Mat gray;
cvtColor(original, gray, CV_BGR2GRAY);
// Find the faces in the frame:
vector< Rect_<int> > faces;
haar_cascade.detectMultiScale(gray, faces);
// At this point you have the position of the faces in
// faces. Now we'll get the faces, make a prediction and
// annotate it in the video. Cool or what?
for(int i = 0; i < faces.size(); i++) {
// Process face by face:
Rect face_i = faces[i];
// Crop the face from the image. So simple with OpenCV C++:
Mat face = gray(face_i);
// Resizing the face is necessary for Eigenfaces and Fisherfaces. You can easily
// verify this, by reading through the face recognition tutorial coming with OpenCV.
// Resizing IS NOT NEEDED for Local Binary Patterns Histograms, so preparing the
// input data really depends on the algorithm used.
//
// I strongly encourage you to play around with the algorithms. See which work best
// in your scenario, LBPH should always be a contender for robust face recognition.
//
// Since I am showing the Fisherfaces algorithm here, I also show how to resize the
// face you have just found:
Mat face_resized;
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
// Now perform the prediction, see how easy that is:
int prediction = model->predict(face_resized);
// And finally write all we've found out to the original image!
// First of all draw a green rectangle around the detected face:
rectangle(original, face_i, CV_RGB(0, 255,0), 1);
// Create the text we will annotate the box with:
string box_text = format("Prediction = %d", prediction);
// Calculate the position for annotated text (make sure we don't
// put illegal values in there):
int pos_x = std::max(face_i.tl().x - 10, 0);
int pos_y = std::max(face_i.tl().y - 10, 0);
// And now put it into the image:
putText(original, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, CV_RGB(0,255,0), 2.0);
}
// Show the result:
imshow("face_recognizer", original);
// And display it:
char key = (char) waitKey(20);
// Exit this loop on escape:
if(key == 27)
break;
}
return 0;
}
Gender Classification with OpenCV
=================================
.. contents:: Table of Contents
:depth: 3
Introduction
------------
A lot of people interested in face recognition, also want to know how to perform image classification tasks like:
* Gender Classification (Gender Detection)
* Emotion Classification (Emotion Detection)
* Glasses Classification (Glasses Detection)
* ...
This is has become very, very easy with the new :ocv:class:`FaceRecognizer` class. In this tutorial I'll show you how to perform gender classification with OpenCV on a set of face images. You'll also learn how to align your images to enhance the recognition results. If you want to do emotion classification instead of gender classification, all you need to do is to update is your training data and the configuration you pass to the demo.
Prerequisites
--------------
For gender classification of faces, you'll need some images of male and female faces first. I've decided to search faces of celebrities using `Google Images <http://www.google.com/images>`_ with the faces filter turned on (my god, they have great algorithms at `Google <http://www.google.com>`_!). My database has 8 male and 5 female subjects, each with 10 images. Here are the names, if you don't know who to search:
* Angelina Jolie
* Arnold Schwarzenegger
* Brad Pitt
* Emma Watson
* George Clooney
* Jennifer Lopez
* Johnny Depp
* Justin Timberlake
* Katy Perry
* Keanu Reeves
* Naomi Watts
* Patrick Stewart
* Tom Cruise
Once you have acquired some images, you'll need to read them. In the demo application I have decided to read the images from a very simple CSV file. Why? Because it's the simplest platform-independent approach I can think of. However, if you know a simpler solution please ping me about it. Basically all the CSV file needs to contain are lines composed of a ``filename`` followed by a ``;`` followed by the ``label`` (as *integer number*), making up a line like this:
.. code-block:: none
/path/to/image.ext;0
Let's dissect the line. ``/path/to/image.ext`` is the path to an image, probably something like this if you are in Windows: ``C:/faces/person0/image0.jpg``. Then there is the separator ``;`` and finally we assign a label ``0`` to the image. Think of the label as the subject (the person, the gender or whatever comes to your mind). In the gender classification scenario, the label is the gender the person has. I'll give the label ``0`` to *male* persons and the label ``1`` is for *female* subjects. So my CSV file looks like this:
.. code-block:: none
/home/philipp/facerec/data/gender/male/keanu_reeves/keanu_reeves_01.jpg;0
/home/philipp/facerec/data/gender/male/keanu_reeves/keanu_reeves_02.jpg;0
/home/philipp/facerec/data/gender/male/keanu_reeves/keanu_reeves_03.jpg;0
...
/home/philipp/facerec/data/gender/female/katy_perry/katy_perry_01.jpg;1
/home/philipp/facerec/data/gender/female/katy_perry/katy_perry_02.jpg;1
/home/philipp/facerec/data/gender/female/katy_perry/katy_perry_03.jpg;1
...
/home/philipp/facerec/data/gender/male/brad_pitt/brad_pitt_01.jpg;0
/home/philipp/facerec/data/gender/male/brad_pitt/brad_pitt_02.jpg;0
/home/philipp/facerec/data/gender/male/brad_pitt/brad_pitt_03.jpg;0
...
/home/philipp/facerec/data/gender/female/emma_watson/emma_watson_08.jpg;1
/home/philipp/facerec/data/gender/female/emma_watson/emma_watson_02.jpg;1
/home/philipp/facerec/data/gender/female/emma_watson/emma_watson_03.jpg;1
All images for this example were chosen to have a frontal face perspective. They have been cropped, scaled and rotated to be aligned at the eyes, just like this set of George Clooney images:
.. image:: ../img/tutorial/gender_classification/clooney_set.png
:align: center
You really don't want to create the CSV file by hand. And you really don't want scale, rotate & translate the images manually. I have prepared you two Python scripts ``create_csv.py`` and ``crop_face.py``, you can find them in the ``src`` folder coming with this documentation. You'll see how to use them in the :ref:`appendixfgc`.
Fisherfaces for Gender Classification
--------------------------------------
If you want to decide whether a person is *male* or *female*, you have to learn the discriminative features of both classes. The Eigenfaces method is based on the Principal Component Analysis, which is an unsupervised statistical model and not suitable for this task. Please see the Face Recognition tutorial for insights into the algorithms. The Fisherfaces instead yields a class-specific linear projection, so it is much better suited for the gender classification task. `http://www.bytefish.de/blog/gender_classification <http://www.bytefish.de/blog/gender_classification>`_ shows the recognition rate of the Fisherfaces method for gender classification.
The Fisherfaces method achieves a 98% recognition rate in a subject-independent cross-validation. A subject-independent cross-validation means *images of the person under test are never used for learning the model*. And could you believe it: you can simply use the facerec_fisherfaces demo, that's inlcuded in OpenCV.
Fisherfaces in OpenCV
---------------------
The source code for this demo application is also available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_fisherfaces.cpp <../src/facerec_fisherfaces.cpp>`
.. literalinclude:: ../src/facerec_fisherfaces.cpp
:language: cpp
:linenos:
Running the Demo
----------------
If you are in Windows, then simply start the demo by running (from command line):
.. code-block:: none
facerec_fisherfaces.exe C:/path/to/your/csv.ext
If you are in Linux, then simply start the demo by running:
.. code-block:: none
./facerec_fisherfaces /path/to/your/csv.ext
If you don't want to display the images, but save them, then pass the desired path to the demo. It works like this in Windows:
.. code-block:: none
facerec_fisherfaces.exe C:/path/to/your/csv.ext C:/path/to/store/results/at
And in Linux:
.. code-block:: none
./facerec_fisherfaces /path/to/your/csv.ext /path/to/store/results/at
Results
-------
If you run the program with your CSV file as parameter, you'll see the Fisherface that separates between male and female images. I've decided to apply a Jet colormap in this demo, so you can see which features the method identifies:
.. image:: ../img/tutorial/gender_classification/fisherface_0.png
The demo also shows the average face of the male and female training images you have passed:
.. image:: ../img/tutorial/gender_classification/mean.png
Moreover it the demo should yield the prediction for the correct gender:
.. code-block:: none
Predicted class = 1 / Actual class = 1.
And for advanced users I have also shown the Eigenvalue for the Fisherface:
.. code-block:: none
Eigenvalue #0 = 152.49493
And the Fisherfaces reconstruction:
.. image:: ../img/tutorial/gender_classification/fisherface_reconstruction_0.png
I hope this gives you an idea how to approach gender classification and the other image classification tasks.
.. _appendixfgc:
Appendix
--------
Creating the CSV File
+++++++++++++++++++++
You don't really want to create the CSV file by hand. I have prepared you a little Python script ``create_csv.py`` (you find it at ``/src/create_csv.py`` coming with this tutorial) that automatically creates you a CSV file. If you have your images in hierarchie like this (``/basepath/<subject>/<image.ext>``):
.. code-block:: none
philipp@mango:~/facerec/data/at$ tree
.
|-- s1
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
|-- s2
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
...
|-- s40
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
Then simply call ``create_csv.py`` with the path to the folder, just like this and you could save the output:
.. code-block:: none
philipp@mango:~/facerec/data$ python create_csv.py
at/s13/2.pgm;0
at/s13/7.pgm;0
at/s13/6.pgm;0
at/s13/9.pgm;0
at/s13/5.pgm;0
at/s13/3.pgm;0
at/s13/4.pgm;0
at/s13/10.pgm;0
at/s13/8.pgm;0
at/s13/1.pgm;0
at/s17/2.pgm;1
at/s17/7.pgm;1
at/s17/6.pgm;1
at/s17/9.pgm;1
at/s17/5.pgm;1
at/s17/3.pgm;1
[...]
Here is the script, if you can't find it:
.. literalinclude:: ../src/create_csv.py
:language: python
:linenos:
Aligning Face Images
++++++++++++++++++++
An accurate alignment of your image data is especially important in tasks like emotion detection, were you need as much detail as possible. Believe me... You don't want to do this by hand. So I've prepared you a tiny Python script. The code is really easy to use. To scale, rotate and crop the face image you just need to call *CropFace(image, eye_left, eye_right, offset_pct, dest_sz)*, where:
* *eye_left* is the position of the left eye
* *eye_right* is the position of the right eye
* *offset_pct* is the percent of the image you want to keep next to the eyes (horizontal, vertical direction)
* *dest_sz* is the size of the output image
If you are using the same *offset_pct* and *dest_sz* for your images, they are all aligned at the eyes.
.. literalinclude:: ../src/crop_face.py
:language: python
:linenos:
Imagine we are given `this photo of Arnold Schwarzenegger <http://en.wikipedia.org/wiki/File:Arnold_Schwarzenegger_edit%28ws%29.jpg>`_, which is under a Public Domain license. The (x,y)-position of the eyes is approximately *(252,364)* for the left and *(420,366)* for the right eye. Now you only need to define the horizontal offset, vertical offset and the size your scaled, rotated & cropped face should have.
Here are some examples:
+---------------------------------+----------------------------------------------------------------------------+
| Configuration | Cropped, Scaled, Rotated Face |
+=================================+============================================================================+
| 0.1 (10%), 0.1 (10%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_10_10_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_20_20_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.3 (30%), 0.3 (30%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_30_30_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (70,70) | .. image:: ../img/tutorial/gender_classification/arnie_20_20_70_70.jpg |
+---------------------------------+----------------------------------------------------------------------------+
Saving and Loading a FaceRecognizer
===================================
Introduction
------------
Saving and loading a :ocv:class:`FaceRecognizer` is very important. Training a FaceRecognizer can be a very time-intense task, plus it's often impossible to ship the whole face database to the user of your product. The task of saving and loading a FaceRecognizer is easy with :ocv:class:`FaceRecognizer`. You only have to call :ocv:func:`FaceRecognizer::load` for loading and :ocv:func:`FaceRecognizer::save` for saving a :ocv:class:`FaceRecognizer`.
I'll adapt the Eigenfaces example from the :doc:`../facerec_tutorial`: Imagine we want to learn the Eigenfaces of the `AT&T Facedatabase <http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html>`_, store the model to a YAML file and then load it again.
From the loaded model, we'll get a prediction, show the mean, Eigenfaces and the image reconstruction.
Using FaceRecognizer::save and FaceRecognizer::load
-----------------------------------------------------
The source code for this demo application is also available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_save_load.cpp <../src/facerec_save_load.cpp>`
.. literalinclude:: ../src/facerec_save_load.cpp
:language: cpp
:linenos:
Results
-------
``eigenfaces_at.yml`` then contains the model state, we'll simply look at the first 10 lines with ``head eigenfaces_at.yml``:
.. code-block:: none
philipp@mango:~/github/libfacerec-build$ head eigenfaces_at.yml
%YAML:1.0
num_components: 399
mean: !!opencv-matrix
rows: 1
cols: 10304
dt: d
data: [ 8.5558897243107765e+01, 8.5511278195488714e+01,
8.5854636591478695e+01, 8.5796992481203006e+01,
8.5952380952380949e+01, 8.6162907268170414e+01,
8.6082706766917283e+01, 8.5776942355889716e+01,
And here is the Reconstruction, which is the same as the original:
.. image:: ../img/eigenface_reconstruction_opencv.png
:align: center
Face Recognition in Videos with OpenCV
=======================================
.. contents:: Table of Contents
:depth: 3
Introduction
------------
Whenever you hear the term *face recognition*, you instantly think of surveillance in videos. So performing face recognition in videos (e.g. webcam) is one of the most requested features I have got. I have heard your cries, so here it is. An application, that shows you how to do face recognition in videos! For the face detection part we'll use the awesome :ocv:class:`CascadeClassifier` and we'll use :ocv:class:`FaceRecognizer` for face recognition. This example uses the Fisherfaces method for face recognition, because it is robust against large changes in illumination.
Here is what the final application looks like. As you can see I am only writing the id of the recognized person above the detected face (by the way this id is Arnold Schwarzenegger for my data set):
.. image:: ../img/tutorial/facerec_video/facerec_video.png
:align: center
:scale: 70%
This demo is a basis for your research and it shows you how to implement face recognition in videos. You probably want to extend the application and make it more sophisticated: You could combine the id with the name, then show the confidence of the prediction, recognize the emotion... and and and. But before you send mails, asking what these Haar-Cascade thing is or what a CSV is: Make sure you have read the entire tutorial. It's all explained in here. If you just want to scroll down to the code, please note:
* The available Haar-Cascades for face detection are located in the ``data`` folder of your OpenCV installation! One of the available Haar-Cascades for face detection is for example ``/path/to/opencv/data/haarcascades/haarcascade_frontalface_default.xml``.
I encourage you to experiment with the application. Play around with the available :ocv:class:`FaceRecognizer` implementations, try the available cascades in OpenCV and see if you can improve your results!
Prerequisites
--------------
You want to do face recognition, so you need some face images to learn a :ocv:class:`FaceRecognizer` on. I have decided to reuse the images from the gender classification example: :doc:`facerec_gender_classification`.
I have the following celebrities in my training data set:
* Angelina Jolie
* Arnold Schwarzenegger
* Brad Pitt
* George Clooney
* Johnny Depp
* Justin Timberlake
* Katy Perry
* Keanu Reeves
* Patrick Stewart
* Tom Cruise
In the demo I have decided to read the images from a very simple CSV file. Why? Because it's the simplest platform-independent approach I can think of. However, if you know a simpler solution please ping me about it. Basically all the CSV file needs to contain are lines composed of a ``filename`` followed by a ``;`` followed by the ``label`` (as *integer number*), making up a line like this:
.. code-block:: none
/path/to/image.ext;0
Let's dissect the line. ``/path/to/image.ext`` is the path to an image, probably something like this if you are in Windows: ``C:/faces/person0/image0.jpg``. Then there is the separator ``;`` and finally we assign a label ``0`` to the image. Think of the label as the subject (the person, the gender or whatever comes to your mind). In the face recognition scenario, the label is the person this image belongs to. In the gender classification scenario, the label is the gender the person has. So my CSV file looks like this:
.. code-block:: none
/home/philipp/facerec/data/c/keanu_reeves/keanu_reeves_01.jpg;0
/home/philipp/facerec/data/c/keanu_reeves/keanu_reeves_02.jpg;0
/home/philipp/facerec/data/c/keanu_reeves/keanu_reeves_03.jpg;0
...
/home/philipp/facerec/data/c/katy_perry/katy_perry_01.jpg;1
/home/philipp/facerec/data/c/katy_perry/katy_perry_02.jpg;1
/home/philipp/facerec/data/c/katy_perry/katy_perry_03.jpg;1
...
/home/philipp/facerec/data/c/brad_pitt/brad_pitt_01.jpg;2
/home/philipp/facerec/data/c/brad_pitt/brad_pitt_02.jpg;2
/home/philipp/facerec/data/c/brad_pitt/brad_pitt_03.jpg;2
...
/home/philipp/facerec/data/c1/crop_arnold_schwarzenegger/crop_08.jpg;6
/home/philipp/facerec/data/c1/crop_arnold_schwarzenegger/crop_05.jpg;6
/home/philipp/facerec/data/c1/crop_arnold_schwarzenegger/crop_02.jpg;6
/home/philipp/facerec/data/c1/crop_arnold_schwarzenegger/crop_03.jpg;6
All images for this example were chosen to have a frontal face perspective. They have been cropped, scaled and rotated to be aligned at the eyes, just like this set of George Clooney images:
.. image:: ../img/tutorial/gender_classification/clooney_set.png
:align: center
Face Recongition from Videos
-----------------------------
The source code for the demo is available in the ``src`` folder coming with this documentation:
* :download:`src/facerec_video.cpp <../src/facerec_video.cpp>`
This demo uses the :ocv:class:`CascadeClassifier`:
.. literalinclude:: ../src/facerec_video.cpp
:language: cpp
:linenos:
Running the Demo
----------------
You'll need:
* The path to a valid Haar-Cascade for detecting a face with a :ocv:class:`CascadeClassifier`.
* The path to a valid CSV File for learning a :ocv:class:`FaceRecognizer`.
* A webcam and its device id (you don't know the device id? Simply start from 0 on and see what happens).
If you are in Windows, then simply start the demo by running (from command line):
.. code-block:: none
facerec_video.exe <C:/path/to/your/haar_cascade.xml> <C:/path/to/your/csv.ext> <video device>
If you are in Linux, then simply start the demo by running:
.. code-block:: none
./facerec_video </path/to/your/haar_cascade.xml> </path/to/your/csv.ext> <video device>
An example. If the haar-cascade is at ``C:/opencv/data/haarcascades/haarcascade_frontalface_default.xml``, the CSV file is at ``C:/facerec/data/celebrities.txt`` and I have a webcam with deviceId ``1``, then I would call the demo with:
.. code-block:: none
facerec_video.exe C:/opencv/data/haarcascades/haarcascade_frontalface_default.xml C:/facerec/data/celebrities.txt 1
That's it.
Results
-------
Enjoy!
Appendix
--------
Creating the CSV File
+++++++++++++++++++++
You don't really want to create the CSV file by hand. I have prepared you a little Python script ``create_csv.py`` (you find it at ``/src/create_csv.py`` coming with this tutorial) that automatically creates you a CSV file. If you have your images in hierarchie like this (``/basepath/<subject>/<image.ext>``):
.. code-block:: none
philipp@mango:~/facerec/data/at$ tree
.
|-- s1
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
|-- s2
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
...
|-- s40
| |-- 1.pgm
| |-- ...
| |-- 10.pgm
Then simply call ``create_csv.py`` with the path to the folder, just like this and you could save the output:
.. code-block:: none
philipp@mango:~/facerec/data$ python create_csv.py
at/s13/2.pgm;0
at/s13/7.pgm;0
at/s13/6.pgm;0
at/s13/9.pgm;0
at/s13/5.pgm;0
at/s13/3.pgm;0
at/s13/4.pgm;0
at/s13/10.pgm;0
at/s13/8.pgm;0
at/s13/1.pgm;0
at/s17/2.pgm;1
at/s17/7.pgm;1
at/s17/6.pgm;1
at/s17/9.pgm;1
at/s17/5.pgm;1
at/s17/3.pgm;1
[...]
Here is the script, if you can't find it:
.. literalinclude:: ../src/create_csv.py
:language: python
:linenos:
Aligning Face Images
++++++++++++++++++++
An accurate alignment of your image data is especially important in tasks like emotion detection, were you need as much detail as possible. Believe me... You don't want to do this by hand. So I've prepared you a tiny Python script. The code is really easy to use. To scale, rotate and crop the face image you just need to call *CropFace(image, eye_left, eye_right, offset_pct, dest_sz)*, where:
* *eye_left* is the position of the left eye
* *eye_right* is the position of the right eye
* *offset_pct* is the percent of the image you want to keep next to the eyes (horizontal, vertical direction)
* *dest_sz* is the size of the output image
If you are using the same *offset_pct* and *dest_sz* for your images, they are all aligned at the eyes.
.. literalinclude:: ../src/crop_face.py
:language: python
:linenos:
Imagine we are given `this photo of Arnold Schwarzenegger <http://en.wikipedia.org/wiki/File:Arnold_Schwarzenegger_edit%28ws%29.jpg>`_, which is under a Public Domain license. The (x,y)-position of the eyes is approximately *(252,364)* for the left and *(420,366)* for the right eye. Now you only need to define the horizontal offset, vertical offset and the size your scaled, rotated & cropped face should have.
Here are some examples:
+---------------------------------+----------------------------------------------------------------------------+
| Configuration | Cropped, Scaled, Rotated Face |
+=================================+============================================================================+
| 0.1 (10%), 0.1 (10%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_10_10_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_20_20_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.3 (30%), 0.3 (30%), (200,200) | .. image:: ../img/tutorial/gender_classification/arnie_30_30_200_200.jpg |
+---------------------------------+----------------------------------------------------------------------------+
| 0.2 (20%), 0.2 (20%), (70,70) | .. image:: ../img/tutorial/gender_classification/arnie_20_20_70_70.jpg |
+---------------------------------+----------------------------------------------------------------------------+
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_FACE_HPP__
#define __OPENCV_FACE_HPP__
#include "opencv2/face/facerec.hpp"
#endif
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_FACEREC_HPP__
#define __OPENCV_FACEREC_HPP__
#include "opencv2/core.hpp"
namespace cv { namespace face {
class CV_EXPORTS_W FaceRecognizer : public Algorithm
{
public:
//! virtual destructor
virtual ~FaceRecognizer() {}
// Trains a FaceRecognizer.
CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0;
// Updates a FaceRecognizer.
CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels) = 0;
// Gets a prediction from a FaceRecognizer.
virtual int predict(InputArray src) const = 0;
// Predicts the label and confidence for a given sample.
CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0;
// Serializes this object to a given filename.
CV_WRAP virtual void save(const String& filename) const = 0;
// Deserializes this object from a given filename.
CV_WRAP virtual void load(const String& filename) = 0;
// Serializes this object to a given cv::FileStorage.
virtual void save(FileStorage& fs) const = 0;
// Deserializes this object from a given cv::FileStorage.
virtual void load(const FileStorage& fs) = 0;
// Sets additional string info for the label
virtual void setLabelInfo(int label, const String& strInfo) = 0;
// Gets string info by label
virtual String getLabelInfo(int label) const = 0;
// Gets labels by string
virtual std::vector<int> getLabelsByString(const String& str) const = 0;
};
CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
bool initModule_facerec();
}} //namespace cv::face
#endif //__OPENCV_FACEREC_HPP__
/path/to/at/s13/2.pgm;12
/path/to/at/s13/7.pgm;12
/path/to/at/s13/6.pgm;12
/path/to/at/s13/9.pgm;12
/path/to/at/s13/5.pgm;12
/path/to/at/s13/3.pgm;12
/path/to/at/s13/4.pgm;12
/path/to/at/s13/10.pgm;12
/path/to/at/s13/8.pgm;12
/path/to/at/s13/1.pgm;12
/path/to/at/s17/2.pgm;16
/path/to/at/s17/7.pgm;16
/path/to/at/s17/6.pgm;16
/path/to/at/s17/9.pgm;16
/path/to/at/s17/5.pgm;16
/path/to/at/s17/3.pgm;16
/path/to/at/s17/4.pgm;16
/path/to/at/s17/10.pgm;16
/path/to/at/s17/8.pgm;16
/path/to/at/s17/1.pgm;16
/path/to/at/s32/2.pgm;31
/path/to/at/s32/7.pgm;31
/path/to/at/s32/6.pgm;31
/path/to/at/s32/9.pgm;31
/path/to/at/s32/5.pgm;31
/path/to/at/s32/3.pgm;31
/path/to/at/s32/4.pgm;31
/path/to/at/s32/10.pgm;31
/path/to/at/s32/8.pgm;31
/path/to/at/s32/1.pgm;31
/path/to/at/s10/2.pgm;9
/path/to/at/s10/7.pgm;9
/path/to/at/s10/6.pgm;9
/path/to/at/s10/9.pgm;9
/path/to/at/s10/5.pgm;9
/path/to/at/s10/3.pgm;9
/path/to/at/s10/4.pgm;9
/path/to/at/s10/10.pgm;9
/path/to/at/s10/8.pgm;9
/path/to/at/s10/1.pgm;9
/path/to/at/s27/2.pgm;26
/path/to/at/s27/7.pgm;26
/path/to/at/s27/6.pgm;26
/path/to/at/s27/9.pgm;26
/path/to/at/s27/5.pgm;26
/path/to/at/s27/3.pgm;26
/path/to/at/s27/4.pgm;26
/path/to/at/s27/10.pgm;26
/path/to/at/s27/8.pgm;26
/path/to/at/s27/1.pgm;26
/path/to/at/s5/2.pgm;4
/path/to/at/s5/7.pgm;4
/path/to/at/s5/6.pgm;4
/path/to/at/s5/9.pgm;4
/path/to/at/s5/5.pgm;4
/path/to/at/s5/3.pgm;4
/path/to/at/s5/4.pgm;4
/path/to/at/s5/10.pgm;4
/path/to/at/s5/8.pgm;4
/path/to/at/s5/1.pgm;4
/path/to/at/s20/2.pgm;19
/path/to/at/s20/7.pgm;19
/path/to/at/s20/6.pgm;19
/path/to/at/s20/9.pgm;19
/path/to/at/s20/5.pgm;19
/path/to/at/s20/3.pgm;19
/path/to/at/s20/4.pgm;19
/path/to/at/s20/10.pgm;19
/path/to/at/s20/8.pgm;19
/path/to/at/s20/1.pgm;19
/path/to/at/s30/2.pgm;29
/path/to/at/s30/7.pgm;29
/path/to/at/s30/6.pgm;29
/path/to/at/s30/9.pgm;29
/path/to/at/s30/5.pgm;29
/path/to/at/s30/3.pgm;29
/path/to/at/s30/4.pgm;29
/path/to/at/s30/10.pgm;29
/path/to/at/s30/8.pgm;29
/path/to/at/s30/1.pgm;29
/path/to/at/s39/2.pgm;38
/path/to/at/s39/7.pgm;38
/path/to/at/s39/6.pgm;38
/path/to/at/s39/9.pgm;38
/path/to/at/s39/5.pgm;38
/path/to/at/s39/3.pgm;38
/path/to/at/s39/4.pgm;38
/path/to/at/s39/10.pgm;38
/path/to/at/s39/8.pgm;38
/path/to/at/s39/1.pgm;38
/path/to/at/s35/2.pgm;34
/path/to/at/s35/7.pgm;34
/path/to/at/s35/6.pgm;34
/path/to/at/s35/9.pgm;34
/path/to/at/s35/5.pgm;34
/path/to/at/s35/3.pgm;34
/path/to/at/s35/4.pgm;34
/path/to/at/s35/10.pgm;34
/path/to/at/s35/8.pgm;34
/path/to/at/s35/1.pgm;34
/path/to/at/s23/2.pgm;22
/path/to/at/s23/7.pgm;22
/path/to/at/s23/6.pgm;22
/path/to/at/s23/9.pgm;22
/path/to/at/s23/5.pgm;22
/path/to/at/s23/3.pgm;22
/path/to/at/s23/4.pgm;22
/path/to/at/s23/10.pgm;22
/path/to/at/s23/8.pgm;22
/path/to/at/s23/1.pgm;22
/path/to/at/s4/2.pgm;3
/path/to/at/s4/7.pgm;3
/path/to/at/s4/6.pgm;3
/path/to/at/s4/9.pgm;3
/path/to/at/s4/5.pgm;3
/path/to/at/s4/3.pgm;3
/path/to/at/s4/4.pgm;3
/path/to/at/s4/10.pgm;3
/path/to/at/s4/8.pgm;3
/path/to/at/s4/1.pgm;3
/path/to/at/s9/2.pgm;8
/path/to/at/s9/7.pgm;8
/path/to/at/s9/6.pgm;8
/path/to/at/s9/9.pgm;8
/path/to/at/s9/5.pgm;8
/path/to/at/s9/3.pgm;8
/path/to/at/s9/4.pgm;8
/path/to/at/s9/10.pgm;8
/path/to/at/s9/8.pgm;8
/path/to/at/s9/1.pgm;8
/path/to/at/s37/2.pgm;36
/path/to/at/s37/7.pgm;36
/path/to/at/s37/6.pgm;36
/path/to/at/s37/9.pgm;36
/path/to/at/s37/5.pgm;36
/path/to/at/s37/3.pgm;36
/path/to/at/s37/4.pgm;36
/path/to/at/s37/10.pgm;36
/path/to/at/s37/8.pgm;36
/path/to/at/s37/1.pgm;36
/path/to/at/s24/2.pgm;23
/path/to/at/s24/7.pgm;23
/path/to/at/s24/6.pgm;23
/path/to/at/s24/9.pgm;23
/path/to/at/s24/5.pgm;23
/path/to/at/s24/3.pgm;23
/path/to/at/s24/4.pgm;23
/path/to/at/s24/10.pgm;23
/path/to/at/s24/8.pgm;23
/path/to/at/s24/1.pgm;23
/path/to/at/s19/2.pgm;18
/path/to/at/s19/7.pgm;18
/path/to/at/s19/6.pgm;18
/path/to/at/s19/9.pgm;18
/path/to/at/s19/5.pgm;18
/path/to/at/s19/3.pgm;18
/path/to/at/s19/4.pgm;18
/path/to/at/s19/10.pgm;18
/path/to/at/s19/8.pgm;18
/path/to/at/s19/1.pgm;18
/path/to/at/s8/2.pgm;7
/path/to/at/s8/7.pgm;7
/path/to/at/s8/6.pgm;7
/path/to/at/s8/9.pgm;7
/path/to/at/s8/5.pgm;7
/path/to/at/s8/3.pgm;7
/path/to/at/s8/4.pgm;7
/path/to/at/s8/10.pgm;7
/path/to/at/s8/8.pgm;7
/path/to/at/s8/1.pgm;7
/path/to/at/s21/2.pgm;20
/path/to/at/s21/7.pgm;20
/path/to/at/s21/6.pgm;20
/path/to/at/s21/9.pgm;20
/path/to/at/s21/5.pgm;20
/path/to/at/s21/3.pgm;20
/path/to/at/s21/4.pgm;20
/path/to/at/s21/10.pgm;20
/path/to/at/s21/8.pgm;20
/path/to/at/s21/1.pgm;20
/path/to/at/s1/2.pgm;0
/path/to/at/s1/7.pgm;0
/path/to/at/s1/6.pgm;0
/path/to/at/s1/9.pgm;0
/path/to/at/s1/5.pgm;0
/path/to/at/s1/3.pgm;0
/path/to/at/s1/4.pgm;0
/path/to/at/s1/10.pgm;0
/path/to/at/s1/8.pgm;0
/path/to/at/s1/1.pgm;0
/path/to/at/s7/2.pgm;6
/path/to/at/s7/7.pgm;6
/path/to/at/s7/6.pgm;6
/path/to/at/s7/9.pgm;6
/path/to/at/s7/5.pgm;6
/path/to/at/s7/3.pgm;6
/path/to/at/s7/4.pgm;6
/path/to/at/s7/10.pgm;6
/path/to/at/s7/8.pgm;6
/path/to/at/s7/1.pgm;6
/path/to/at/s16/2.pgm;15
/path/to/at/s16/7.pgm;15
/path/to/at/s16/6.pgm;15
/path/to/at/s16/9.pgm;15
/path/to/at/s16/5.pgm;15
/path/to/at/s16/3.pgm;15
/path/to/at/s16/4.pgm;15
/path/to/at/s16/10.pgm;15
/path/to/at/s16/8.pgm;15
/path/to/at/s16/1.pgm;15
/path/to/at/s36/2.pgm;35
/path/to/at/s36/7.pgm;35
/path/to/at/s36/6.pgm;35
/path/to/at/s36/9.pgm;35
/path/to/at/s36/5.pgm;35
/path/to/at/s36/3.pgm;35
/path/to/at/s36/4.pgm;35
/path/to/at/s36/10.pgm;35
/path/to/at/s36/8.pgm;35
/path/to/at/s36/1.pgm;35
/path/to/at/s25/2.pgm;24
/path/to/at/s25/7.pgm;24
/path/to/at/s25/6.pgm;24
/path/to/at/s25/9.pgm;24
/path/to/at/s25/5.pgm;24
/path/to/at/s25/3.pgm;24
/path/to/at/s25/4.pgm;24
/path/to/at/s25/10.pgm;24
/path/to/at/s25/8.pgm;24
/path/to/at/s25/1.pgm;24
/path/to/at/s14/2.pgm;13
/path/to/at/s14/7.pgm;13
/path/to/at/s14/6.pgm;13
/path/to/at/s14/9.pgm;13
/path/to/at/s14/5.pgm;13
/path/to/at/s14/3.pgm;13
/path/to/at/s14/4.pgm;13
/path/to/at/s14/10.pgm;13
/path/to/at/s14/8.pgm;13
/path/to/at/s14/1.pgm;13
/path/to/at/s34/2.pgm;33
/path/to/at/s34/7.pgm;33
/path/to/at/s34/6.pgm;33
/path/to/at/s34/9.pgm;33
/path/to/at/s34/5.pgm;33
/path/to/at/s34/3.pgm;33
/path/to/at/s34/4.pgm;33
/path/to/at/s34/10.pgm;33
/path/to/at/s34/8.pgm;33
/path/to/at/s34/1.pgm;33
/path/to/at/s11/2.pgm;10
/path/to/at/s11/7.pgm;10
/path/to/at/s11/6.pgm;10
/path/to/at/s11/9.pgm;10
/path/to/at/s11/5.pgm;10
/path/to/at/s11/3.pgm;10
/path/to/at/s11/4.pgm;10
/path/to/at/s11/10.pgm;10
/path/to/at/s11/8.pgm;10
/path/to/at/s11/1.pgm;10
/path/to/at/s26/2.pgm;25
/path/to/at/s26/7.pgm;25
/path/to/at/s26/6.pgm;25
/path/to/at/s26/9.pgm;25
/path/to/at/s26/5.pgm;25
/path/to/at/s26/3.pgm;25
/path/to/at/s26/4.pgm;25
/path/to/at/s26/10.pgm;25
/path/to/at/s26/8.pgm;25
/path/to/at/s26/1.pgm;25
/path/to/at/s18/2.pgm;17
/path/to/at/s18/7.pgm;17
/path/to/at/s18/6.pgm;17
/path/to/at/s18/9.pgm;17
/path/to/at/s18/5.pgm;17
/path/to/at/s18/3.pgm;17
/path/to/at/s18/4.pgm;17
/path/to/at/s18/10.pgm;17
/path/to/at/s18/8.pgm;17
/path/to/at/s18/1.pgm;17
/path/to/at/s29/2.pgm;28
/path/to/at/s29/7.pgm;28
/path/to/at/s29/6.pgm;28
/path/to/at/s29/9.pgm;28
/path/to/at/s29/5.pgm;28
/path/to/at/s29/3.pgm;28
/path/to/at/s29/4.pgm;28
/path/to/at/s29/10.pgm;28
/path/to/at/s29/8.pgm;28
/path/to/at/s29/1.pgm;28
/path/to/at/s33/2.pgm;32
/path/to/at/s33/7.pgm;32
/path/to/at/s33/6.pgm;32
/path/to/at/s33/9.pgm;32
/path/to/at/s33/5.pgm;32
/path/to/at/s33/3.pgm;32
/path/to/at/s33/4.pgm;32
/path/to/at/s33/10.pgm;32
/path/to/at/s33/8.pgm;32
/path/to/at/s33/1.pgm;32
/path/to/at/s12/2.pgm;11
/path/to/at/s12/7.pgm;11
/path/to/at/s12/6.pgm;11
/path/to/at/s12/9.pgm;11
/path/to/at/s12/5.pgm;11
/path/to/at/s12/3.pgm;11
/path/to/at/s12/4.pgm;11
/path/to/at/s12/10.pgm;11
/path/to/at/s12/8.pgm;11
/path/to/at/s12/1.pgm;11
/path/to/at/s6/2.pgm;5
/path/to/at/s6/7.pgm;5
/path/to/at/s6/6.pgm;5
/path/to/at/s6/9.pgm;5
/path/to/at/s6/5.pgm;5
/path/to/at/s6/3.pgm;5
/path/to/at/s6/4.pgm;5
/path/to/at/s6/10.pgm;5
/path/to/at/s6/8.pgm;5
/path/to/at/s6/1.pgm;5
/path/to/at/s22/2.pgm;21
/path/to/at/s22/7.pgm;21
/path/to/at/s22/6.pgm;21
/path/to/at/s22/9.pgm;21
/path/to/at/s22/5.pgm;21
/path/to/at/s22/3.pgm;21
/path/to/at/s22/4.pgm;21
/path/to/at/s22/10.pgm;21
/path/to/at/s22/8.pgm;21
/path/to/at/s22/1.pgm;21
/path/to/at/s15/2.pgm;14
/path/to/at/s15/7.pgm;14
/path/to/at/s15/6.pgm;14
/path/to/at/s15/9.pgm;14
/path/to/at/s15/5.pgm;14
/path/to/at/s15/3.pgm;14
/path/to/at/s15/4.pgm;14
/path/to/at/s15/10.pgm;14
/path/to/at/s15/8.pgm;14
/path/to/at/s15/1.pgm;14
/path/to/at/s2/2.pgm;1
/path/to/at/s2/7.pgm;1
/path/to/at/s2/6.pgm;1
/path/to/at/s2/9.pgm;1
/path/to/at/s2/5.pgm;1
/path/to/at/s2/3.pgm;1
/path/to/at/s2/4.pgm;1
/path/to/at/s2/10.pgm;1
/path/to/at/s2/8.pgm;1
/path/to/at/s2/1.pgm;1
/path/to/at/s31/2.pgm;30
/path/to/at/s31/7.pgm;30
/path/to/at/s31/6.pgm;30
/path/to/at/s31/9.pgm;30
/path/to/at/s31/5.pgm;30
/path/to/at/s31/3.pgm;30
/path/to/at/s31/4.pgm;30
/path/to/at/s31/10.pgm;30
/path/to/at/s31/8.pgm;30
/path/to/at/s31/1.pgm;30
/path/to/at/s28/2.pgm;27
/path/to/at/s28/7.pgm;27
/path/to/at/s28/6.pgm;27
/path/to/at/s28/9.pgm;27
/path/to/at/s28/5.pgm;27
/path/to/at/s28/3.pgm;27
/path/to/at/s28/4.pgm;27
/path/to/at/s28/10.pgm;27
/path/to/at/s28/8.pgm;27
/path/to/at/s28/1.pgm;27
/path/to/at/s40/2.pgm;39
/path/to/at/s40/7.pgm;39
/path/to/at/s40/6.pgm;39
/path/to/at/s40/9.pgm;39
/path/to/at/s40/5.pgm;39
/path/to/at/s40/3.pgm;39
/path/to/at/s40/4.pgm;39
/path/to/at/s40/10.pgm;39
/path/to/at/s40/8.pgm;39
/path/to/at/s40/1.pgm;39
/path/to/at/s3/2.pgm;2
/path/to/at/s3/7.pgm;2
/path/to/at/s3/6.pgm;2
/path/to/at/s3/9.pgm;2
/path/to/at/s3/5.pgm;2
/path/to/at/s3/3.pgm;2
/path/to/at/s3/4.pgm;2
/path/to/at/s3/10.pgm;2
/path/to/at/s3/8.pgm;2
/path/to/at/s3/1.pgm;2
/path/to/at/s38/2.pgm;37
/path/to/at/s38/7.pgm;37
/path/to/at/s38/6.pgm;37
/path/to/at/s38/9.pgm;37
/path/to/at/s38/5.pgm;37
/path/to/at/s38/3.pgm;37
/path/to/at/s38/4.pgm;37
/path/to/at/s38/10.pgm;37
/path/to/at/s38/8.pgm;37
/path/to/at/s38/1.pgm;37
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/face.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, std::map<int, string>& labelsInfo, char separator = ';') {
ifstream csv(filename.c_str());
if (!csv) CV_Error(CV_StsBadArg, "No valid input file was given, please check the given filename.");
string line, path, classlabel, info;
while (getline(csv, line)) {
stringstream liness(line);
path.clear(); classlabel.clear(); info.clear();
getline(liness, path, separator);
getline(liness, classlabel, separator);
getline(liness, info, separator);
if(!path.empty() && !classlabel.empty()) {
cout << "Processing " << path << endl;
int label = atoi(classlabel.c_str());
if(!info.empty())
labelsInfo.insert(std::make_pair(label, info));
// 'path' can be file, dir or wildcard path
String root(path.c_str());
vector<String> files;
glob(root, files, true);
for(vector<String>::const_iterator f = files.begin(); f != files.end(); ++f) {
cout << "\t" << *f << endl;
Mat img = imread(*f, CV_LOAD_IMAGE_GRAYSCALE);
static int w=-1, h=-1;
static bool showSmallSizeWarning = true;
if(w>0 && h>0 && (w!=img.cols || h!=img.rows)) cout << "\t* Warning: images should be of the same size!" << endl;
if(showSmallSizeWarning && (img.cols<50 || img.rows<50)) {
cout << "* Warning: for better results images should be not smaller than 50x50!" << endl;
showSmallSizeWarning = false;
}
images.push_back(img);
labels.push_back(label);
}
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 2 && argc != 3) {
cout << "Usage: " << argv[0] << " <csv> [arg2]\n"
<< "\t<csv> - path to config file in CSV format\n"
<< "\targ2 - if the 2nd argument is provided (with any value) "
<< "the advanced stuff is run and shown to console.\n"
<< "The CSV config file consists of the following lines:\n"
<< "<path>;<label>[;<comment>]\n"
<< "\t<path> - file, dir or wildcard path\n"
<< "\t<label> - non-negative integer person label\n"
<< "\t<comment> - optional comment string (e.g. person name)"
<< endl;
exit(1);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
std::map<int, string> labelsInfo;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels, labelsInfo);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
//
// If you want to create a FaceRecognizer with a
// confidennce threshold, call it with:
//
// cv::createEigenFaceRecognizer(10, 123.0);
//
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
model->setLabelsInfo(labelsInfo);
model->train(images, labels);
string saveModelPath = "face-rec-model.txt";
cout << "Saving the trained model to " << saveModelPath << endl;
model->save(saveModelPath);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
if( (predictedLabel == testLabel) && !model->getLabelInfo(predictedLabel).empty() )
cout << format("%d-th label's info: %s", predictedLabel, model->getLabelInfo(predictedLabel).c_str()) << endl;
// advanced stuff
if(argc>2) {
// Sometimes you'll need to get/set internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// First we'll use it to set the threshold of the FaceRecognizer
// to 0.0 without retraining the model. This can be useful if
// you are evaluating the model:
//
model->set("threshold", 0.0);
// Now the threshold of this model is set to 0.0. A prediction
// now returns -1, as it's impossible to have a distance below
// it
predictedLabel = model->predict(testSample);
cout << "Predicted class = " << predictedLabel << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// From this we will display the (at most) first 10 Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale;
normalize(ev.reshape(1), grayscale, 0, 255, NORM_MINMAX, CV_8UC1);
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
imshow(format("%d", i), cgrayscale);
}
waitKey(0);
}
return 0;
}
/*
* Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "precomp.hpp"
#include <set>
#include <limits>
#include <iostream>
namespace cv
{
namespace face
{
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template<typename _Tp>
inline void readFileNodeList(const FileNode& fn, std::vector<_Tp>& result) {
if (fn.type() == FileNode::SEQ) {
for (FileNodeIterator it = fn.begin(); it != fn.end();) {
_Tp item;
it >> item;
result.push_back(item);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template<typename _Tp>
inline void writeFileNodeList(FileStorage& fs, const String& name,
const std::vector<_Tp>& items) {
// typedefs
typedef typename std::vector<_Tp>::const_iterator constVecIterator;
// write the elements in item to fs
fs << name << "[";
for (constVecIterator it = items.begin(); it != items.end(); ++it) {
fs << *it;
}
fs << "]";
}
static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
// make sure the input data is a vector of matrices or vector of vector
if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
String error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
CV_Error(Error::StsBadArg, error_message);
}
// number of samples
size_t n = src.total();
// return empty matrix if no matrices given
if(n == 0)
return Mat();
// dimensionality of (reshaped) samples
size_t d = src.getMat(0).total();
// create data matrix
Mat data((int)n, (int)d, rtype);
// now copy data
for(unsigned int i = 0; i < n; i++) {
// make sure data can be reshaped, throw exception if not!
if(src.getMat(i).total() != d) {
String error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());
CV_Error(Error::StsBadArg, error_message);
}
// get a hold of the current row
Mat xi = data.row(i);
// make reshape happy by cloning for non-continuous matrices
if(src.getMat(i).isContinuous()) {
src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
} else {
src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
}
}
return data;
}
// Removes duplicate elements in a given vector.
template<typename _Tp>
inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) {
typedef typename std::set<_Tp>::const_iterator constSetIterator;
typedef typename std::vector<_Tp>::const_iterator constVecIterator;
std::set<_Tp> set_elems;
for (constVecIterator it = src.begin(); it != src.end(); ++it)
set_elems.insert(*it);
std::vector<_Tp> elems;
for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
elems.push_back(*it);
return elems;
}
class FaceRecognizerImpl : public FaceRecognizer
{
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Serializes this object to a given filename.
virtual void save(const String& filename) const
{
FileStorage fs(filename, FileStorage::WRITE);
if (!fs.isOpened())
CV_Error(Error::StsError, "File can't be opened for writing!");
this->save(fs);
fs.release();
}
// Deserializes this object from a given filename.
virtual void load(const String& filename)
{
FileStorage fs(filename, FileStorage::READ);
if (!fs.isOpened())
CV_Error(Error::StsError, "File can't be opened for writing!");
this->load(fs);
fs.release();
}
// Updates a FaceRecognizer.
virtual void update(InputArrayOfArrays src, InputArray labels)
{
(void)src;
(void)labels;
String error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str());
CV_Error(Error::StsNotImplemented, error_msg);
}
// Sets additional string info for the label
virtual void setLabelInfo(int label, const String& strInfo)
{
_labelsInfo[label] = strInfo;
}
// Gets string info by label
virtual String getLabelInfo(int label) const
{
std::map<int, String>::const_iterator iter(_labelsInfo.find(label));
return iter != _labelsInfo.end() ? iter->second : "";
}
// Gets labels by string
virtual std::vector<int> getLabelsByString(const String& str) const
{
std::vector<int> labels;
for (std::map<int, String>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
{
size_t found = (it->second).find(str);
if (found != String::npos)
labels.push_back(it->first);
}
return labels;
}
protected:
// Stored pairs "label id - string info"
std::map<int, String> _labelsInfo;
};
// Utility structure to load/save face label info (a pair of int and string) via FileStorage
struct LabelInfo
{
LabelInfo():label(-1), value("") {}
LabelInfo(int _label, const String &_value): label(_label), value(_value) {}
int label;
String value;
void write(cv::FileStorage& fs) const
{
fs << "{" << "label" << label << "value" << value << "}";
}
void read(const cv::FileNode& node)
{
label = (int)node["label"];
value = (String)node["value"];
}
std::ostream& operator<<(std::ostream& out)
{
out << "{ label = " << label << ", " << "value = " << value.c_str() << "}";
return out;
}
};
static void write(cv::FileStorage& fs, const String&, const LabelInfo& x)
{
x.write(fs);
}
static void read(const cv::FileNode& node, LabelInfo& x, const LabelInfo& default_value = LabelInfo())
{
if(node.empty())
x = default_value;
else
x.read(node);
}
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 71–86.
class Eigenfaces : public FaceRecognizerImpl
{
private:
int _num_components;
double _threshold;
std::vector<Mat> _projections;
Mat _labels;
Mat _eigenvectors;
Mat _eigenvalues;
Mat _mean;
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes an empty Eigenfaces model.
Eigenfaces(int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {}
// Initializes and computes an Eigenfaces model with images in src and
// corresponding labels in labels. num_components will be kept for
// classification.
Eigenfaces(InputArrayOfArrays src, InputArray labels,
int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {
train(src, labels);
}
// Computes an Eigenfaces model with images in src and corresponding labels
// in labels.
void train(InputArrayOfArrays src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
void load(const FileStorage& fs);
// See FaceRecognizer::save.
void save(FileStorage& fs) const;
AlgorithmInfo* info() const;
};
// Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher-
// faces: Recognition using class specific linear projection.". IEEE
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// 711–720.
class Fisherfaces: public FaceRecognizerImpl
{
private:
int _num_components;
double _threshold;
Mat _eigenvectors;
Mat _eigenvalues;
Mat _mean;
std::vector<Mat> _projections;
Mat _labels;
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes an empty Fisherfaces model.
Fisherfaces(int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {}
// Initializes and computes a Fisherfaces model with images in src and
// corresponding labels in labels. num_components will be kept for
// classification.
Fisherfaces(InputArrayOfArrays src, InputArray labels,
int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {
train(src, labels);
}
~Fisherfaces() {}
// Computes a Fisherfaces model with images in src and corresponding labels
// in labels.
void train(InputArrayOfArrays src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
void load(const FileStorage& fs);
// See FaceRecognizer::save.
void save(FileStorage& fs) const;
AlgorithmInfo* info() const;
};
// Face Recognition based on Local Binary Patterns.
//
// Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary
// patterns: Application to face recognition." IEEE Transactions on Pattern
// Analysis and Machine Intelligence, 28(12):2037-2041.
//
class LBPH : public FaceRecognizerImpl
{
private:
int _grid_x;
int _grid_y;
int _radius;
int _neighbors;
double _threshold;
std::vector<Mat> _histograms;
Mat _labels;
// Computes a LBPH model with images in src and
// corresponding labels in labels, possibly preserving
// old model data.
void train(InputArrayOfArrays src, InputArray labels, bool preserveData);
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes this LBPH Model. The current implementation is rather fixed
// as it uses the Extended Local Binary Patterns per default.
//
// radius, neighbors are used in the local binary patterns creation.
// grid_x, grid_y control the grid size of the spatial histograms.
LBPH(int radius_=1, int neighbors_=8,
int gridx=8, int gridy=8,
double threshold = DBL_MAX) :
_grid_x(gridx),
_grid_y(gridy),
_radius(radius_),
_neighbors(neighbors_),
_threshold(threshold) {}
// Initializes and computes this LBPH Model. The current implementation is
// rather fixed as it uses the Extended Local Binary Patterns per default.
//
// (radius=1), (neighbors=8) are used in the local binary patterns creation.
// (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms.
LBPH(InputArrayOfArrays src,
InputArray labels,
int radius_=1, int neighbors_=8,
int gridx=8, int gridy=8,
double threshold = DBL_MAX) :
_grid_x(gridx),
_grid_y(gridy),
_radius(radius_),
_neighbors(neighbors_),
_threshold(threshold) {
train(src, labels);
}
~LBPH() { }
// Computes a LBPH model with images in src and
// corresponding labels in labels.
void train(InputArrayOfArrays src, InputArray labels);
// Updates this LBPH model with images in src and
// corresponding labels in labels.
void update(InputArrayOfArrays src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
void load(const FileStorage& fs);
// See FaceRecognizer::save.
void save(FileStorage& fs) const;
// Getter functions.
int neighbors() const { return _neighbors; }
int radius() const { return _radius; }
int grid_x() const { return _grid_x; }
int grid_y() const { return _grid_y; }
AlgorithmInfo* info() const;
};
//------------------------------------------------------------------------------
// Eigenfaces
//------------------------------------------------------------------------------
void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
if(_src.total() == 0) {
String error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(Error::StsBadArg, error_message);
} else if(_local_labels.getMat().type() != CV_32SC1) {
String error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
CV_Error(Error::StsBadArg, error_message);
}
// make sure data has correct size
if(_src.total() > 1) {
for(int i = 1; i < static_cast<int>(_src.total()); i++) {
if(_src.getMat(i-1).total() != _src.getMat(i).total()) {
String error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
CV_Error(Error::StsUnsupportedFormat, error_message);
}
}
}
// get labels
Mat labels = _local_labels.getMat();
// observations in row
Mat data = asRowMatrix(_src, CV_64FC1);
// number of samples
int n = data.rows;
// assert there are as much samples as labels
if(static_cast<int>(labels.total()) != n) {
String error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());
CV_Error(Error::StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// clip number of components to be valid
if((_num_components <= 0) || (_num_components > n))
_num_components = n;
// perform the PCA
PCA pca(data, Mat(), PCA::DATA_AS_ROW, _num_components);
// copy the PCA results
_mean = pca.mean.reshape(1,1); // store the mean vector
_eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row
transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column
// store labels for prediction
_labels = labels.clone();
// save projections
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = LDA::subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
}
void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const {
// get data
Mat src = _src.getMat();
// make sure the user is passing correct data
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
String error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
CV_Error(Error::StsError, error_message);
} else if(_eigenvectors.rows != static_cast<int>(src.total())) {
// check data alignment just for clearer exception messages
String error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(Error::StsBadArg, error_message);
}
// project into PCA subspace
Mat q = LDA::subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int)sampleIdx);
}
}
}
int Eigenfaces::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
void Eigenfaces::load(const FileStorage& fs) {
//read matrices
fs["num_components"] >> _num_components;
fs["mean"] >> _mean;
fs["eigenvalues"] >> _eigenvalues;
fs["eigenvectors"] >> _eigenvectors;
// read sequences
readFileNodeList(fs["projections"], _projections);
fs["labels"] >> _labels;
const FileNode& fn = fs["labelsInfo"];
if (fn.type() == FileNode::SEQ)
{
_labelsInfo.clear();
for (FileNodeIterator it = fn.begin(); it != fn.end();)
{
LabelInfo item;
it >> item;
_labelsInfo.insert(std::make_pair(item.label, item.value));
}
}
}
void Eigenfaces::save(FileStorage& fs) const {
// write matrices
fs << "num_components" << _num_components;
fs << "mean" << _mean;
fs << "eigenvalues" << _eigenvalues;
fs << "eigenvectors" << _eigenvectors;
// write sequences
writeFileNodeList(fs, "projections", _projections);
fs << "labels" << _labels;
fs << "labelsInfo" << "[";
for (std::map<int, String>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
fs << LabelInfo(it->first, it->second);
fs << "]";
}
//------------------------------------------------------------------------------
// Fisherfaces
//------------------------------------------------------------------------------
void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
if(src.total() == 0) {
String error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(Error::StsBadArg, error_message);
} else if(_lbls.getMat().type() != CV_32SC1) {
String error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
CV_Error(Error::StsBadArg, error_message);
}
// make sure data has correct size
if(src.total() > 1) {
for(int i = 1; i < static_cast<int>(src.total()); i++) {
if(src.getMat(i-1).total() != src.getMat(i).total()) {
String error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());
CV_Error(Error::StsUnsupportedFormat, error_message);
}
}
}
// get data
Mat labels = _lbls.getMat();
Mat data = asRowMatrix(src, CV_64FC1);
// number of samples
int N = data.rows;
// make sure labels are passed in correct shape
if(labels.total() != (size_t) N) {
String error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());
CV_Error(Error::StsBadArg, error_message);
} else if(labels.rows != 1 && labels.cols != 1) {
String error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);
CV_Error(Error::StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// safely copy from cv::Mat to std::vector
std::vector<int> ll;
for(unsigned int i = 0; i < labels.total(); i++) {
ll.push_back(labels.at<int>(i));
}
// get the number of unique classes
int C = (int) remove_dups(ll).size();
// clip number of components to be a valid number
if((_num_components <= 0) || (_num_components > (C-1)))
_num_components = (C-1);
// perform a PCA and keep (N-C) components
PCA pca(data, Mat(), PCA::DATA_AS_ROW, (N-C));
// project the data and perform a LDA on it
LDA lda(pca.project(data),labels, _num_components);
// store the total mean vector
_mean = pca.mean.reshape(1,1);
// store labels
_labels = labels.clone();
// store the eigenvalues of the discriminants
lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
// Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors.
// Note: OpenCV stores the eigenvectors by row, so we need to transpose it!
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);
// store the projections of the original data
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = LDA::subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
}
void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const {
Mat src = _src.getMat();
// check data alignment just for clearer exception messages
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
String error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";
CV_Error(Error::StsBadArg, error_message);
} else if(src.total() != (size_t) _eigenvectors.rows) {
String error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(Error::StsBadArg, error_message);
}
// project into LDA subspace
Mat q = LDA::subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
// find 1-nearest neighbor
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int)sampleIdx);
}
}
}
int Fisherfaces::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
// See FaceRecognizer::load.
void Fisherfaces::load(const FileStorage& fs) {
//read matrices
fs["num_components"] >> _num_components;
fs["mean"] >> _mean;
fs["eigenvalues"] >> _eigenvalues;
fs["eigenvectors"] >> _eigenvectors;
// read sequences
readFileNodeList(fs["projections"], _projections);
fs["labels"] >> _labels;
const FileNode& fn = fs["labelsInfo"];
if (fn.type() == FileNode::SEQ)
{
_labelsInfo.clear();
for (FileNodeIterator it = fn.begin(); it != fn.end();)
{
LabelInfo item;
it >> item;
_labelsInfo.insert(std::make_pair(item.label, item.value));
}
}
}
// See FaceRecognizer::save.
void Fisherfaces::save(FileStorage& fs) const {
// write matrices
fs << "num_components" << _num_components;
fs << "mean" << _mean;
fs << "eigenvalues" << _eigenvalues;
fs << "eigenvectors" << _eigenvectors;
// write sequences
writeFileNodeList(fs, "projections", _projections);
fs << "labels" << _labels;
fs << "labelsInfo" << "[";
for (std::map<int, String>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
fs << LabelInfo(it->first, it->second);
fs << "]";
}
//------------------------------------------------------------------------------
// LBPH
//------------------------------------------------------------------------------
template <typename _Tp> static
void olbp_(InputArray _src, OutputArray _dst) {
// get matrices
Mat src = _src.getMat();
// allocate memory for result
_dst.create(src.rows-2, src.cols-2, CV_8UC1);
Mat dst = _dst.getMat();
// zero the result matrix
dst.setTo(0);
// calculate patterns
for(int i=1;i<src.rows-1;i++) {
for(int j=1;j<src.cols-1;j++) {
_Tp center = src.at<_Tp>(i,j);
unsigned char code = 0;
code |= (src.at<_Tp>(i-1,j-1) >= center) << 7;
code |= (src.at<_Tp>(i-1,j) >= center) << 6;
code |= (src.at<_Tp>(i-1,j+1) >= center) << 5;
code |= (src.at<_Tp>(i,j+1) >= center) << 4;
code |= (src.at<_Tp>(i+1,j+1) >= center) << 3;
code |= (src.at<_Tp>(i+1,j) >= center) << 2;
code |= (src.at<_Tp>(i+1,j-1) >= center) << 1;
code |= (src.at<_Tp>(i,j-1) >= center) << 0;
dst.at<unsigned char>(i-1,j-1) = code;
}
}
}
//------------------------------------------------------------------------------
// cv::elbp
//------------------------------------------------------------------------------
template <typename _Tp> static
inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) {
//get matrices
Mat src = _src.getMat();
// allocate memory for result
_dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1);
Mat dst = _dst.getMat();
// zero
dst.setTo(0);
for(int n=0; n<neighbors; n++) {
// sample points
float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));
float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));
// relative indices
int fx = static_cast<int>(floor(x));
int fy = static_cast<int>(floor(y));
int cx = static_cast<int>(ceil(x));
int cy = static_cast<int>(ceil(y));
// fractional part
float ty = y - fy;
float tx = x - fx;
// set interpolation weights
float w1 = (1 - tx) * (1 - ty);
float w2 = tx * (1 - ty);
float w3 = (1 - tx) * ty;
float w4 = tx * ty;
// iterate through your data
for(int i=radius; i < src.rows-radius;i++) {
for(int j=radius;j < src.cols-radius;j++) {
// calculate interpolated value
float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx));
// floating point precision, so check some machine-dependent epsilon
dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n;
}
}
}
}
static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)
{
int type = src.type();
switch (type) {
case CV_8SC1: elbp_<char>(src,dst, radius, neighbors); break;
case CV_8UC1: elbp_<unsigned char>(src, dst, radius, neighbors); break;
case CV_16SC1: elbp_<short>(src,dst, radius, neighbors); break;
case CV_16UC1: elbp_<unsigned short>(src,dst, radius, neighbors); break;
case CV_32SC1: elbp_<int>(src,dst, radius, neighbors); break;
case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break;
case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break;
default:
String error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);
CV_Error(Error::StsNotImplemented, error_msg);
break;
}
}
static Mat
histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)
{
Mat result;
// Establish the number of bins.
int histSize = maxVal-minVal+1;
// Set the ranges.
float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) };
const float* histRange = { range };
// calc histogram
calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);
// normalize
if(normed) {
result /= (int)src.total();
}
return result.reshape(1,1);
}
static Mat histc(InputArray _src, int minVal, int maxVal, bool normed)
{
Mat src = _src.getMat();
switch (src.type()) {
case CV_8SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_8UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_16SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_16UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_32SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_32FC1:
return histc_(src, minVal, maxVal, normed);
break;
default:
CV_Error(Error::StsUnmatchedFormats, "This type is not implemented yet."); break;
}
return Mat();
}
static Mat spatial_histogram(InputArray _src, int numPatterns,
int grid_x, int grid_y, bool /*normed*/)
{
Mat src = _src.getMat();
// calculate LBP patch size
int width = src.cols/grid_x;
int height = src.rows/grid_y;
// allocate memory for the spatial histogram
Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1);
// return matrix with zeros if no data was given
if(src.empty())
return result.reshape(1,1);
// initial result_row
int resultRowIdx = 0;
// iterate through grid
for(int i = 0; i < grid_y; i++) {
for(int j = 0; j < grid_x; j++) {
Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width));
Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true);
// copy to the result matrix
Mat result_row = result.row(resultRowIdx);
cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1);
// increase row count in result matrix
resultRowIdx++;
}
}
// return result as reshaped feature vector
return result.reshape(1,1);
}
//------------------------------------------------------------------------------
// wrapper to cv::elbp (extended local binary patterns)
//------------------------------------------------------------------------------
static Mat elbp(InputArray src, int radius, int neighbors) {
Mat dst;
elbp(src, dst, radius, neighbors);
return dst;
}
void LBPH::load(const FileStorage& fs) {
fs["radius"] >> _radius;
fs["neighbors"] >> _neighbors;
fs["grid_x"] >> _grid_x;
fs["grid_y"] >> _grid_y;
//read matrices
readFileNodeList(fs["histograms"], _histograms);
fs["labels"] >> _labels;
const FileNode& fn = fs["labelsInfo"];
if (fn.type() == FileNode::SEQ)
{
_labelsInfo.clear();
for (FileNodeIterator it = fn.begin(); it != fn.end();)
{
LabelInfo item;
it >> item;
_labelsInfo.insert(std::make_pair(item.label, item.value));
}
}
}
// See FaceRecognizer::save.
void LBPH::save(FileStorage& fs) const {
fs << "radius" << _radius;
fs << "neighbors" << _neighbors;
fs << "grid_x" << _grid_x;
fs << "grid_y" << _grid_y;
// write matrices
writeFileNodeList(fs, "histograms", _histograms);
fs << "labels" << _labels;
fs << "labelsInfo" << "[";
for (std::map<int, String>::const_iterator it = _labelsInfo.begin(); it != _labelsInfo.end(); it++)
fs << LabelInfo(it->first, it->second);
fs << "]";
}
void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels) {
this->train(_in_src, _in_labels, false);
}
void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) {
// got no data, just return
if(_in_src.total() == 0)
return;
this->train(_in_src, _in_labels, true);
}
void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) {
if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) {
String error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
CV_Error(Error::StsBadArg, error_message);
}
if(_in_src.total() == 0) {
String error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(Error::StsUnsupportedFormat, error_message);
} else if(_in_labels.getMat().type() != CV_32SC1) {
String error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type());
CV_Error(Error::StsUnsupportedFormat, error_message);
}
// get the vector of matrices
std::vector<Mat> src;
_in_src.getMatVector(src);
// get the label matrix
Mat labels = _in_labels.getMat();
// check if data is well- aligned
if(labels.total() != src.size()) {
String error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());
CV_Error(Error::StsBadArg, error_message);
}
// if this model should be trained without preserving old data, delete old model data
if(!preserveData) {
_labels.release();
_histograms.clear();
}
// append labels to _labels matrix
for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) {
_labels.push_back(labels.at<int>((int)labelIdx));
}
// store the spatial histograms of the original data
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
// calculate lbp image
Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
// get spatial histogram from this lbp image
Mat p = spatial_histogram(
lbp_image, /* lbp_image */
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
_grid_x, /* grid size x */
_grid_y, /* grid size y */
true);
// add to templates
_histograms.push_back(p);
}
}
void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
if(_histograms.empty()) {
// throw error if no data (or simply return -1?)
String error_message = "This LBPH model is not computed yet. Did you call the train method?";
CV_Error(Error::StsBadArg, error_message);
}
Mat src = _src.getMat();
// get the spatial histogram from input image
Mat lbp_image = elbp(src, _radius, _neighbors);
Mat query = spatial_histogram(
lbp_image, /* lbp_image */
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
_grid_x, /* grid size x */
_grid_y, /* grid size y */
true /* normed histograms */);
// find 1-nearest neighbor
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
double dist = compareHist(_histograms[sampleIdx], query, HISTCMP_CHISQR_ALT);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int) sampleIdx);
}
}
}
int LBPH::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components, double threshold)
{
return makePtr<Eigenfaces>(num_components, threshold);
}
Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components, double threshold)
{
return makePtr<Fisherfaces>(num_components, threshold);
}
Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,
int grid_x, int grid_y, double threshold)
{
return makePtr<LBPH>(radius, neighbors, grid_x, grid_y, threshold);
}
CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
obj.info()->addParam(obj, "ncomponents", obj._num_components);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "projections", obj._projections, true);
obj.info()->addParam(obj, "labels", obj._labels, true);
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
obj.info()->addParam(obj, "mean", obj._mean, true))
CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
obj.info()->addParam(obj, "ncomponents", obj._num_components);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "projections", obj._projections, true);
obj.info()->addParam(obj, "labels", obj._labels, true);
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
obj.info()->addParam(obj, "mean", obj._mean, true))
CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
obj.info()->addParam(obj, "radius", obj._radius);
obj.info()->addParam(obj, "neighbors", obj._neighbors);
obj.info()->addParam(obj, "grid_x", obj._grid_x);
obj.info()->addParam(obj, "grid_y", obj._grid_y);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "histograms", obj._histograms, true);
obj.info()->addParam(obj, "labels", obj._labels, true))
bool initModule_facerec()
{
return !Eigenfaces_info_auto.name().empty() && !Fisherfaces_info_auto.name().empty() && !LBPH_info_auto.name().empty();
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/face.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include <map>
#include <valarray>
namespace cv
{
// special function to get pointer to constant valarray elements, since
// simple &arr[0] does not compile on VS2005/VS2008.
template<typename T> inline const T* get_data(const std::valarray<T>& arr)
{ return &((std::valarray<T>&)arr)[0]; }
}
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment