Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
cc8442e4
Commit
cc8442e4
authored
Aug 06, 2016
by
VBystricky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add CropLayer and EltWise layer implementation. Add sample for semantic segmentation network.
parent
dd9b2eb4
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
1751 additions
and
2 deletions
+1751
-2
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+21
-0
fcn32s-heavy-pascal.prototxt
modules/dnn/samples/fcn32s-heavy-pascal.prototxt
+502
-0
fcn8s-heavy-pascal.prototxt
modules/dnn/samples/fcn8s-heavy-pascal.prototxt
+612
-0
fcn_semsegm.cpp
modules/dnn/samples/fcn_semsegm.cpp
+152
-0
pascal-classes.txt
modules/dnn/samples/pascal-classes.txt
+21
-0
rgb.jpg
modules/dnn/samples/rgb.jpg
+0
-0
caffe.proto
modules/dnn/src/caffe/caffe.proto
+20
-1
caffe.tar.gz
modules/dnn/src/caffe/compiled/caffe.tar.gz
+0
-0
layer_loaders.cpp
modules/dnn/src/caffe/layer_loaders.cpp
+63
-0
init.cpp
modules/dnn/src/init.cpp
+4
-1
crop_layer.cpp
modules/dnn/src/layers/crop_layer.cpp
+103
-0
crop_layer.hpp
modules/dnn/src/layers/crop_layer.hpp
+64
-0
eltwise_layer.cpp
modules/dnn/src/layers/eltwise_layer.cpp
+127
-0
eltwise_layer.hpp
modules/dnn/src/layers/eltwise_layer.hpp
+62
-0
No files found.
modules/dnn/include/opencv2/dnn/all_layers.hpp
View file @
cc8442e4
...
@@ -363,6 +363,27 @@ namespace dnn
...
@@ -363,6 +363,27 @@ namespace dnn
static
Ptr
<
PowerLayer
>
create
(
double
power
=
1
,
double
scale
=
1
,
double
shift
=
0
);
static
Ptr
<
PowerLayer
>
create
(
double
power
=
1
,
double
scale
=
1
,
double
shift
=
0
);
};
};
/* Layers using in semantic segmentation */
class
CV_EXPORTS_W
CropLayer
:
public
Layer
{
public
:
static
Ptr
<
CropLayer
>
create
(
int
start_axis
,
const
std
::
vector
<
int
>
&
offset
);
};
class
CV_EXPORTS_W
EltwiseLayer
:
public
Layer
{
public
:
enum
EltwiseOp
{
PROD
=
0
,
SUM
=
1
,
MAX
=
2
,
};
static
Ptr
<
EltwiseLayer
>
create
(
EltwiseOp
op
,
const
std
::
vector
<
int
>
&
coeffs
);
};
//! @}
//! @}
//! @}
//! @}
...
...
modules/dnn/samples/fcn32s-heavy-pascal.prototxt
0 → 100755
View file @
cc8442e4
#
# This prototxt is based on voc-fcn32s/val.prototxt file from
# https://github.com/shelhamer/fcn.berkeleyvision.org, which is distributed under
# Caffe (BSD) license:
# http://caffe.berkeleyvision.org/model_zoo.html#bvlc-model-license
#
name: "voc-fcn32s"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 500
input_dim: 500
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 100
kernel_size: 3
stride: 1
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
pad: 0
kernel_size: 7
stride: 1
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
pad: 0
kernel_size: 1
stride: 1
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "score_fr"
type: "Convolution"
bottom: "fc7"
top: "score_fr"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 21
pad: 0
kernel_size: 1
}
}
layer {
name: "upscore"
type: "Deconvolution"
bottom: "score_fr"
top: "upscore"
param {
lr_mult: 0
}
convolution_param {
num_output: 21
bias_term: false
kernel_size: 64
stride: 32
}
}
layer {
name: "score"
type: "Crop"
bottom: "upscore"
bottom: "data"
top: "score"
crop_param {
axis: 2
offset: 19
}
}
modules/dnn/samples/fcn8s-heavy-pascal.prototxt
0 → 100755
View file @
cc8442e4
#
# This prototxt is based on voc-fcn8s/val.prototxt file from
# https://github.com/shelhamer/fcn.berkeleyvision.org, which is distributed under
# Caffe (BSD) license:
# http://caffe.berkeleyvision.org/model_zoo.html#bvlc-model-license
#
name: "voc-fcn8s"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 500
input_dim: 500
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 100
kernel_size: 3
stride: 1
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
pad: 0
kernel_size: 7
stride: 1
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4096
pad: 0
kernel_size: 1
stride: 1
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "score_fr"
type: "Convolution"
bottom: "fc7"
top: "score_fr"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 21
pad: 0
kernel_size: 1
}
}
layer {
name: "upscore2"
type: "Deconvolution"
bottom: "score_fr"
top: "upscore2"
param {
lr_mult: 0
}
convolution_param {
num_output: 21
bias_term: false
kernel_size: 4
stride: 2
}
}
layer {
name: "score_pool4"
type: "Convolution"
bottom: "pool4"
top: "score_pool4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 21
pad: 0
kernel_size: 1
}
}
layer {
name: "score_pool4c"
type: "Crop"
bottom: "score_pool4"
bottom: "upscore2"
top: "score_pool4c"
crop_param {
axis: 2
offset: 5
}
}
layer {
name: "fuse_pool4"
type: "Eltwise"
bottom: "upscore2"
bottom: "score_pool4c"
top: "fuse_pool4"
eltwise_param {
operation: SUM
}
}
layer {
name: "upscore_pool4"
type: "Deconvolution"
bottom: "fuse_pool4"
top: "upscore_pool4"
param {
lr_mult: 0
}
convolution_param {
num_output: 21
bias_term: false
kernel_size: 4
stride: 2
}
}
layer {
name: "score_pool3"
type: "Convolution"
bottom: "pool3"
top: "score_pool3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 21
pad: 0
kernel_size: 1
}
}
layer {
name: "score_pool3c"
type: "Crop"
bottom: "score_pool3"
bottom: "upscore_pool4"
top: "score_pool3c"
crop_param {
axis: 2
offset: 9
}
}
layer {
name: "fuse_pool3"
type: "Eltwise"
bottom: "upscore_pool4"
bottom: "score_pool3c"
top: "fuse_pool3"
eltwise_param {
operation: SUM
}
}
layer {
name: "upscore8"
type: "Deconvolution"
bottom: "fuse_pool3"
top: "upscore8"
param {
lr_mult: 0
}
convolution_param {
num_output: 21
bias_term: false
kernel_size: 16
stride: 8
}
}
layer {
name: "score"
type: "Crop"
bottom: "upscore8"
bottom: "data"
top: "score"
crop_param {
axis: 2
offset: 31
}
}
modules/dnn/samples/fcn_semsegm.cpp
0 → 100755
View file @
cc8442e4
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using
namespace
cv
;
using
namespace
cv
::
dnn
;
#include <fstream>
#include <iostream>
#include <cstdlib>
using
namespace
std
;
static
const
string
fcnType
=
"fcn8s"
;
static
vector
<
cv
::
Vec3b
>
readColors
(
const
string
&
filename
=
"pascal-classes.txt"
)
{
vector
<
cv
::
Vec3b
>
colors
;
ifstream
fp
(
filename
.
c_str
());
if
(
!
fp
.
is_open
())
{
cerr
<<
"File with colors not found: "
<<
filename
<<
endl
;
exit
(
-
1
);
}
string
line
;
while
(
!
fp
.
eof
())
{
getline
(
fp
,
line
);
if
(
line
.
length
())
{
stringstream
ss
(
line
);
string
name
;
ss
>>
name
;
int
temp
;
cv
::
Vec3b
color
;
ss
>>
temp
;
color
[
0
]
=
temp
;
ss
>>
temp
;
color
[
1
]
=
temp
;
ss
>>
temp
;
color
[
2
]
=
temp
;
colors
.
push_back
(
color
);
}
}
fp
.
close
();
return
colors
;
}
static
void
colorizeSegmentation
(
dnn
::
Blob
&
score
,
const
vector
<
cv
::
Vec3b
>
&
colors
,
cv
::
Mat
&
segm
)
{
const
int
rows
=
score
.
rows
();
const
int
cols
=
score
.
cols
();
const
int
chns
=
score
.
channels
();
cv
::
Mat
maxCl
(
rows
,
cols
,
CV_8UC1
);
cv
::
Mat
maxVal
(
rows
,
cols
,
CV_32FC1
);
for
(
int
ch
=
0
;
ch
<
chns
;
ch
++
)
{
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
{
const
float
*
ptrScore
=
score
.
ptrf
(
0
,
ch
,
row
);
uchar
*
ptrMaxCl
=
maxCl
.
ptr
<
uchar
>
(
row
);
float
*
ptrMaxVal
=
maxVal
.
ptr
<
float
>
(
row
);
for
(
int
col
=
0
;
col
<
cols
;
col
++
)
{
if
(
ptrScore
[
col
]
>
ptrMaxVal
[
col
])
{
ptrMaxVal
[
col
]
=
ptrScore
[
col
];
ptrMaxCl
[
col
]
=
ch
;
}
}
}
}
segm
.
create
(
rows
,
cols
,
CV_8UC3
);
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
{
const
uchar
*
ptrMaxCl
=
maxCl
.
ptr
<
uchar
>
(
row
);
cv
::
Vec3b
*
ptrSegm
=
segm
.
ptr
<
cv
::
Vec3b
>
(
row
);
for
(
int
col
=
0
;
col
<
cols
;
col
++
)
{
ptrSegm
[
col
]
=
colors
[
ptrMaxCl
[
col
]];
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
String
modelTxt
=
fcnType
+
"-heavy-pascal.prototxt"
;
String
modelBin
=
fcnType
+
"-heavy-pascal.caffemodel"
;
String
imageFile
=
(
argc
>
1
)
?
argv
[
1
]
:
"rgb.jpg"
;
vector
<
cv
::
Vec3b
>
colors
=
readColors
();
//! [Create the importer of Caffe model]
Ptr
<
dnn
::
Importer
>
importer
;
try
//Try to import Caffe GoogleNet model
{
importer
=
dnn
::
createCaffeImporter
(
modelTxt
,
modelBin
);
}
catch
(
const
cv
::
Exception
&
err
)
//Importer can throw errors, we will catch them
{
cerr
<<
err
.
msg
<<
endl
;
}
//! [Create the importer of Caffe model]
if
(
!
importer
)
{
cerr
<<
"Can't load network by using the following files: "
<<
endl
;
cerr
<<
"prototxt: "
<<
modelTxt
<<
endl
;
cerr
<<
"caffemodel: "
<<
modelBin
<<
endl
;
cerr
<<
fcnType
<<
"-heavy-pascal.caffemodel can be downloaded here:"
<<
endl
;
cerr
<<
"http://dl.caffe.berkeleyvision.org/"
<<
fcnType
<<
"-heavy-pascal.caffemodel"
<<
endl
;
exit
(
-
1
);
}
//! [Initialize network]
dnn
::
Net
net
;
importer
->
populateNet
(
net
);
importer
.
release
();
//We don't need importer anymore
//! [Initialize network]
//! [Prepare blob]
Mat
img
=
imread
(
imageFile
);
if
(
img
.
empty
())
{
cerr
<<
"Can't read image from the file: "
<<
imageFile
<<
endl
;
exit
(
-
1
);
}
resize
(
img
,
img
,
Size
(
500
,
500
));
//FCN accepts 500x500 RGB-images
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
img
);
//Convert Mat to dnn::Blob batch of images
//! [Prepare blob]
//! [Set input blob]
net
.
setBlob
(
".data"
,
inputBlob
);
//set the network input
//! [Set input blob]
//! [Make forward pass]
net
.
forward
();
//compute output
//! [Make forward pass]
//! [Gather output]
dnn
::
Blob
score
=
net
.
getBlob
(
"score"
);
cv
::
Mat
colorize
;
colorizeSegmentation
(
score
,
colors
,
colorize
);
cv
::
Mat
show
;
cv
::
addWeighted
(
img
,
0.4
,
colorize
,
0.6
,
0.0
,
show
);
cv
::
imshow
(
"show"
,
show
);
cv
::
waitKey
(
0
);
return
0
;
}
//main
modules/dnn/samples/pascal-classes.txt
0 → 100755
View file @
cc8442e4
background 0 0 0
aeroplane 128 0 0
bicycle 0 128 0
bird 128 128 0
boat 0 0 128
bottle 128 0 128
bus 0 128 128
car 128 128 128
cat 64 0 0
chair 192 0 0
cow 64 128 0
diningtable 192 128 0
dog 64 0 128
horse 192 0 128
motorbike 64 128 128
person 192 128 128
pottedplant 0 64 0
sheep 128 64 0
sofa 0 192 0
train 128 192 0
tvmonitor 0 64 128
modules/dnn/samples/rgb.jpg
0 → 100755
View file @
cc8442e4
46 KB
modules/dnn/src/caffe/caffe.proto
View file @
cc8442e4
...
@@ -73,6 +73,24 @@ message BlobProtoVector {
...
@@ -73,6 +73,24 @@ message BlobProtoVector {
repeated
BlobProto
blobs
=
1
;
repeated
BlobProto
blobs
=
1
;
}
}
message
CropParameter
{
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop,
// and `axis` may be negative to index from the end (e.g., -1 for the last
// axis).
optional
int32
axis
=
1
[
default
=
2
];
repeated
uint32
offset
=
2
;
}
message
Datum
{
message
Datum
{
optional
int32
channels
=
1
;
optional
int32
channels
=
1
;
optional
int32
height
=
2
;
optional
int32
height
=
2
;
...
@@ -317,7 +335,7 @@ message ParamSpec {
...
@@ -317,7 +335,7 @@ message ParamSpec {
// NOTE
// NOTE
// Update the next available ID when you add a new LayerParameter field.
// Update the next available ID when you add a new LayerParameter field.
//
//
// LayerParameter next available layer-specific ID: 13
7 (last added: reduction
_param)
// LayerParameter next available layer-specific ID: 13
8 (last added: crop
_param)
message
LayerParameter
{
message
LayerParameter
{
optional
string
name
=
1
;
// the layer name
optional
string
name
=
1
;
// the layer name
optional
string
type
=
2
;
// the layer type
optional
string
type
=
2
;
// the layer type
...
@@ -369,6 +387,7 @@ message LayerParameter {
...
@@ -369,6 +387,7 @@ message LayerParameter {
optional
ConcatParameter
concat_param
=
104
;
optional
ConcatParameter
concat_param
=
104
;
optional
ContrastiveLossParameter
contrastive_loss_param
=
105
;
optional
ContrastiveLossParameter
contrastive_loss_param
=
105
;
optional
ConvolutionParameter
convolution_param
=
106
;
optional
ConvolutionParameter
convolution_param
=
106
;
optional
CropParameter
crop_param
=
137
;
optional
DataParameter
data_param
=
107
;
optional
DataParameter
data_param
=
107
;
optional
DropoutParameter
dropout_param
=
108
;
optional
DropoutParameter
dropout_param
=
108
;
optional
DummyDataParameter
dummy_data_param
=
109
;
optional
DummyDataParameter
dummy_data_param
=
109
;
...
...
modules/dnn/src/caffe/compiled/caffe.tar.gz
View file @
cc8442e4
No preview for this file type
modules/dnn/src/caffe/layer_loaders.cpp
View file @
cc8442e4
...
@@ -271,6 +271,66 @@ Ptr<Layer> createLayerFromCaffe<PowerLayer>(LayerParams& params)
...
@@ -271,6 +271,66 @@ Ptr<Layer> createLayerFromCaffe<PowerLayer>(LayerParams& params)
return
Ptr
<
Layer
>
(
PowerLayer
::
create
(
power
,
scale
,
shift
));
return
Ptr
<
Layer
>
(
PowerLayer
::
create
(
power
,
scale
,
shift
));
}
}
template
<>
//CropLayer specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
CropLayer
>
(
LayerParams
&
params
)
{
int
start_axis
=
params
.
get
<
int
>
(
"axis"
);
if
(
4
<=
start_axis
)
CV_Error
(
Error
::
StsBadArg
,
"crop axis bigger than input dim"
);
DictValue
paramOffset
=
params
.
get
(
"offset"
);
std
::
vector
<
int
>
offset
(
4
,
0
);
if
(
1
<
paramOffset
.
size
())
{
if
(
4
-
start_axis
!=
paramOffset
.
size
())
CV_Error
(
Error
::
StsBadArg
,
"number of offset values specified must be equal to the number of dimensions following axis."
);
for
(
size_t
i
=
start_axis
;
i
<
offset
.
size
();
i
++
)
{
offset
[
i
]
=
paramOffset
.
get
<
int
>
(
i
);
}
}
else
{
const
int
offset_val
=
paramOffset
.
get
<
int
>
(
0
);
for
(
size_t
i
=
start_axis
;
i
<
offset
.
size
();
i
++
)
{
offset
[
i
]
=
offset_val
;
}
}
return
Ptr
<
Layer
>
(
CropLayer
::
create
(
start_axis
,
offset
));
}
template
<>
//Power specialization
Ptr
<
Layer
>
createLayerFromCaffe
<
EltwiseLayer
>
(
LayerParams
&
params
)
{
EltwiseLayer
::
EltwiseOp
op
=
EltwiseLayer
::
SUM
;
if
(
params
.
has
(
"operation"
))
{
String
operation
=
params
.
get
<
String
>
(
"operation"
).
toLowerCase
();
if
(
operation
==
"prod"
)
op
=
EltwiseLayer
::
PROD
;
else
if
(
operation
==
"sum"
)
op
=
EltwiseLayer
::
SUM
;
else
if
(
operation
==
"max"
)
op
=
EltwiseLayer
::
MAX
;
else
CV_Error
(
cv
::
Error
::
StsBadArg
,
"Unknown operaticon type
\"
"
+
operation
+
"
\"
"
);
}
std
::
vector
<
int
>
coeffs
;
if
(
params
.
has
(
"coeff"
))
{
DictValue
paramCoeff
=
params
.
get
(
"coeff"
);
coeffs
.
resize
(
paramCoeff
.
size
(),
1
);
for
(
int
i
=
0
;
i
<
paramCoeff
.
size
();
i
++
)
{
coeffs
[
i
]
=
paramCoeff
.
get
<
int
>
(
i
);
}
}
return
Ptr
<
Layer
>
(
EltwiseLayer
::
create
(
op
,
coeffs
));
}
//Explicit instantiation
//Explicit instantiation
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ConvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
ConvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
DeconvolutionLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
DeconvolutionLayer
>
(
LayerParams
&
);
...
@@ -290,5 +350,8 @@ template Ptr<Layer> createLayerFromCaffe<AbsLayer>(LayerParams&);
...
@@ -290,5 +350,8 @@ template Ptr<Layer> createLayerFromCaffe<AbsLayer>(LayerParams&);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
BNLLLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
BNLLLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
PowerLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
PowerLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
CropLayer
>
(
LayerParams
&
);
template
Ptr
<
Layer
>
createLayerFromCaffe
<
EltwiseLayer
>
(
LayerParams
&
);
}
}
}
}
modules/dnn/src/init.cpp
View file @
cc8442e4
...
@@ -85,7 +85,10 @@ void initModule()
...
@@ -85,7 +85,10 @@ void initModule()
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createLayerFromCaffe
<
BNLLLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
BNLL
,
createLayerFromCaffe
<
BNLLLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createLayerFromCaffe
<
AbsLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
AbsVal
,
createLayerFromCaffe
<
AbsLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Power
,
createLayerFromCaffe
<
PowerLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Power
,
createLayerFromCaffe
<
PowerLayer
>
);
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
)
REG_RUNTIME_LAYER_CLASS
(
Dropout
,
BlankLayer
);
REG_RUNTIME_LAYER_FUNC
(
Crop
,
createLayerFromCaffe
<
CropLayer
>
);
REG_RUNTIME_LAYER_FUNC
(
Eltwise
,
createLayerFromCaffe
<
EltwiseLayer
>
);
init
.
status
=
true
;
init
.
status
=
true
;
}
}
...
...
modules/dnn/src/layers/crop_layer.cpp
0 → 100755
View file @
cc8442e4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "crop_layer.hpp"
namespace
cv
{
namespace
dnn
{
CropLayerImpl
::
CropLayerImpl
(
int
start_axis_
,
const
std
::
vector
<
int
>
&
offset_
)
{
start_axis
=
start_axis_
;
offset
=
offset_
;
}
void
CropLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
2
==
inputs
.
size
());
const
Blob
&
inpBlob
=
*
inputs
[
0
];
CV_Assert
(
inpBlob
.
dims
()
==
4
&&
inpBlob
.
type
()
==
CV_32F
);
const
Blob
&
inpSzBlob
=
*
inputs
[
1
];
outSizes
.
resize
(
4
,
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
if
(
i
<
start_axis
)
outSizes
[
i
]
=
inpBlob
.
size
(
i
);
else
outSizes
[
i
]
=
inpSzBlob
.
size
(
i
);
if
(
offset
[
i
]
+
outSizes
[
i
]
>
inpBlob
.
size
(
i
))
CV_Error
(
Error
::
StsBadArg
,
"invalid crop parameters"
);
}
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
BlobShape
(
outSizes
));
}
void
CropLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
Blob
input
=
*
inputs
[
0
];
Blob
output
=
outputs
[
0
];
for
(
int
num
=
0
;
num
<
outSizes
[
0
];
++
num
)
{
for
(
int
ch
=
0
;
ch
<
outSizes
[
1
];
++
ch
)
{
for
(
int
row
=
0
;
row
<
outSizes
[
2
];
++
row
)
{
float
*
srcData
=
input
.
ptrf
(
num
+
offset
[
0
],
ch
+
offset
[
1
],
row
+
offset
[
2
]);
float
*
dstData
=
output
.
ptrf
(
num
,
ch
,
row
);
memcpy
(
dstData
,
srcData
+
offset
[
3
],
sizeof
(
float
)
*
outSizes
[
3
]);
}
}
}
}
Ptr
<
CropLayer
>
CropLayer
::
create
(
int
start_axis
,
const
std
::
vector
<
int
>
&
offset
)
{
return
Ptr
<
CropLayer
>
(
new
CropLayerImpl
(
start_axis
,
offset
));
}
}
}
modules/dnn/src/layers/crop_layer.hpp
0 → 100755
View file @
cc8442e4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_CROP_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_CROP_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
CropLayerImpl
:
public
CropLayer
{
int
start_axis
;
std
::
vector
<
int
>
offset
;
std
::
vector
<
int
>
outSizes
;
public
:
CropLayerImpl
(
int
start_axis
,
const
std
::
vector
<
int
>
&
offset
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
}
}
#endif
modules/dnn/src/layers/eltwise_layer.cpp
0 → 100755
View file @
cc8442e4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "eltwise_layer.hpp"
namespace
cv
{
namespace
dnn
{
EltwiseLayerImpl
::
EltwiseLayerImpl
(
EltwiseOp
op_
,
const
std
::
vector
<
int
>
&
coeffs_
)
{
op
=
op_
;
coeffs
=
coeffs_
;
}
void
EltwiseLayerImpl
::
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
CV_Assert
(
2
<=
inputs
.
size
());
CV_Assert
(
coeffs
.
size
()
==
0
||
coeffs
.
size
()
==
inputs
.
size
());
CV_Assert
(
op
==
SUM
||
coeffs
.
size
()
==
0
);
const
BlobShape
&
shape0
=
inputs
[
0
]
->
shape
();
for
(
size_t
i
=
1
;
i
<
inputs
.
size
();
++
i
)
{
CV_Assert
(
shape0
==
inputs
[
i
]
->
shape
());
}
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
shape0
);
}
void
EltwiseLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
switch
(
op
)
{
case
SUM
:
{
CV_Assert
(
coeffs
.
size
()
==
0
||
coeffs
.
size
()
==
inputs
.
size
());
Mat
&
output
=
outputs
[
0
].
matRef
();
output
.
setTo
(
0.
);
if
(
0
<
coeffs
.
size
())
{
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
output
+=
inputs
[
i
]
->
matRefConst
()
*
coeffs
[
i
];
}
}
else
{
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
output
+=
inputs
[
i
]
->
matRefConst
();
}
}
}
break
;
case
PROD
:
{
Mat
&
output
=
outputs
[
0
].
matRef
();
output
.
setTo
(
1.
);
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
output
=
output
.
mul
(
inputs
[
i
]
->
matRefConst
());
}
}
break
;
case
MAX
:
{
Mat
&
output
=
outputs
[
0
].
matRef
();
cv
::
max
(
inputs
[
0
]
->
matRefConst
(),
inputs
[
1
]
->
matRefConst
(),
output
);
for
(
size_t
i
=
2
;
i
<
inputs
.
size
();
i
++
)
{
cv
::
max
(
output
,
inputs
[
i
]
->
matRefConst
(),
output
);
}
}
break
;
default
:
CV_Assert
(
0
);
break
;
};
}
Ptr
<
EltwiseLayer
>
EltwiseLayer
::
create
(
EltwiseOp
op
,
const
std
::
vector
<
int
>
&
coeffs
)
{
return
Ptr
<
EltwiseLayer
>
(
new
EltwiseLayerImpl
(
op
,
coeffs
));
}
}
}
modules/dnn/src/layers/eltwise_layer.hpp
0 → 100755
View file @
cc8442e4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_ELTWISE_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_ELTWISE_LAYER_HPP__
#include "../precomp.hpp"
#include <opencv2/dnn/all_layers.hpp>
namespace
cv
{
namespace
dnn
{
class
EltwiseLayerImpl
:
public
EltwiseLayer
{
EltwiseOp
op
;
std
::
vector
<
int
>
coeffs
;
public
:
EltwiseLayerImpl
(
EltwiseOp
op
,
const
std
::
vector
<
int
>
&
coeffs
);
void
allocate
(
const
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
};
}
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment