Commit cb35f120 authored by Kurnianggoro's avatar Kurnianggoro

optimization

parent ffa6637b
...@@ -1204,7 +1204,11 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1204,7 +1204,11 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
- "GRAY" -- Use grayscale values as the feature - "GRAY" -- Use grayscale values as the feature
- "CN" -- Color-names feature - "CN" -- Color-names feature
*/ */
enum MODE {GRAY, CN, CN2}; enum MODE {
GRAY = (1u << 0),
CN = (1u << 1),
CUSTOM = (1u<<2)
};
struct CV_EXPORTS Params struct CV_EXPORTS Params
{ {
...@@ -1234,9 +1238,12 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1234,9 +1238,12 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
bool compress_feature; //!< activate the pca method to compress the features bool compress_feature; //!< activate the pca method to compress the features
int max_patch_size; //!< threshold for the ROI size int max_patch_size; //!< threshold for the ROI size
int compressed_size; //!< feature size after compression int compressed_size; //!< feature size after compression
MODE descriptor; //!< descriptor type unsigned int desc_pca; //!< compressed descriptors of TrackerKCF::MODE
unsigned int desc_npca; //!< non-compressed descriptors of TrackerKCF::MODE
}; };
virtual void setFeatureExtractor(void (*)(const Mat, const Rect, Mat&), bool pca_func = false);
/** @brief Constructor /** @brief Constructor
@param parameters KCF parameters TrackerKCF::Params @param parameters KCF parameters TrackerKCF::Params
*/ */
...@@ -1355,8 +1362,8 @@ Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true); ...@@ -1355,8 +1362,8 @@ Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true);
Rect2d CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, bool showCrossair = true, bool fromCenter = true); Rect2d CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
void CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true); void CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
//! @}
} /* namespace cv */ } /* namespace cv */
//! @}
#endif #endif
...@@ -73,6 +73,7 @@ namespace cv{ ...@@ -73,6 +73,7 @@ namespace cv{
TrackerKCFImpl( const TrackerKCF::Params &parameters = TrackerKCF::Params() ); TrackerKCFImpl( const TrackerKCF::Params &parameters = TrackerKCF::Params() );
void read( const FileNode& /*fn*/ ); void read( const FileNode& /*fn*/ );
void write( FileStorage& /*fs*/ ) const; void write( FileStorage& /*fs*/ ) const;
void setFeatureExtractor(void (*f)(const Mat, const Rect, Mat&), bool pca_func = false);
protected: protected:
/* /*
...@@ -86,19 +87,22 @@ namespace cv{ ...@@ -86,19 +87,22 @@ namespace cv{
/* /*
* KCF functions and vars * KCF functions and vars
*/ */
void createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const; void createHanningWindow(OutputArray dest, const cv::Size winSize, const int type) const;
void inline fft2(const Mat src, std::vector<Mat> & dest) const; void inline fft2(const Mat src, std::vector<Mat> & dest, std::vector<Mat> & layers_data) const;
void inline fft2(const Mat src, Mat & dest) const; void inline fft2(const Mat src, Mat & dest) const;
void inline ifft2(const Mat src, Mat & dest) const; void inline ifft2(const Mat src, Mat & dest) const;
void inline pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB=false) const; void inline pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB=false) const;
void inline sumChannels(std::vector<Mat> src, Mat & dest) const; void inline sumChannels(std::vector<Mat> src, Mat & dest) const;
void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx,double pca_rate, int compressed_sz) const; void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & proj_matrix,double pca_rate, int compressed_sz,
void inline compress(const Mat _proj_mtx, const Mat src, Mat & dest) const; std::vector<Mat> & layers_pca,std::vector<Scalar> & average, Mat pca_data, Mat new_cov, Mat w, Mat u, Mat v) const;
bool getSubWindow(const Mat img, const Rect roi, Mat& patch) const; void inline compress(const Mat proj_matrix, const Mat src, Mat & dest, Mat & data, Mat & compressed) const;
void extractCN(Mat _patch, Mat & cnFeatures) const; bool getSubWindow(const Mat img, const Rect roi, Mat& feat, Mat& patch, TrackerKCF::MODE desc = GRAY) const;
void denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const; bool getSubWindow(const Mat img, const Rect roi, Mat& feat, void (*f)(const Mat, const Rect, Mat& )) const;
void calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const; void extractCN(Mat patch_data, Mat & cnFeatures) const;
void calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const; void denseGaussKernel(const double sigma, const Mat , const Mat y_data, Mat & k_data,
std::vector<Mat> & layers_data,std::vector<Mat> & xf_data,std::vector<Mat> & yf_data, std::vector<Mat> xyf_v, Mat xy, Mat xyf ) const;
void calcResponse(const Mat alphaf_data, const Mat kf_data, Mat & response_data, Mat & spec_data) const;
void calcResponse(const Mat alphaf_data, const Mat alphaf_den_data, const Mat kf_data, Mat & response_data, Mat & spec_data, Mat & spec2_data) const;
void shiftRows(Mat& mat) const; void shiftRows(Mat& mat) const;
void shiftRows(Mat& mat, int n) const; void shiftRows(Mat& mat, int n) const;
...@@ -108,17 +112,46 @@ namespace cv{ ...@@ -108,17 +112,46 @@ namespace cv{
double output_sigma; double output_sigma;
Rect2d roi; Rect2d roi;
Mat hann; //hann window filter Mat hann; //hann window filter
Mat hann_cn; //10 dimensional hann-window filter for CN features,
Mat y,yf; // training response and its FFT Mat y,yf; // training response and its FFT
Mat x,xf; // observation and its FFT Mat x; // observation and its FFT
Mat k,kf; // dense gaussian kernel and its FFT Mat k,kf; // dense gaussian kernel and its FFT
Mat kf_lambda; // kf+lambda Mat kf_lambda; // kf+lambda
Mat new_alphaf, alphaf; // training coefficients Mat new_alphaf, alphaf; // training coefficients
Mat new_alphaf_den, alphaf_den; // for splitted training coefficients Mat new_alphaf_den, alphaf_den; // for splitted training coefficients
Mat z, new_z; // model Mat z; // model
Mat response; // detection result Mat response; // detection result
Mat old_cov_mtx, proj_mtx; // for feature compression Mat old_cov_mtx, proj_mtx; // for feature compression
// pre-defined Mat variables for optimization of private functions
Mat spec, spec2;
std::vector<Mat> layers;
std::vector<Mat> vxf,vyf,vxyf;
Mat xy_data,xyf_data;
Mat data_temp, compress_data;
std::vector<Mat> layers_pca_data;
std::vector<Scalar> average_data;
Mat img_Patch;
// storage for the extracted features, KRLS model, KRLS compressed model
Mat X[2],Z[2],Zc[2];
// storage of the extracted features
std::vector<Mat> features_pca;
std::vector<Mat> features_npca;
std::vector<MODE> descriptors_pca;
std::vector<MODE> descriptors_npca;
// optimization variables for updateProjectionMatrix
Mat data_pca, new_covar,w_data,u_data,vt_data;
// custom feature extractor
bool use_custom_extractor_pca;
bool use_custom_extractor_npca;
std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_pca;
std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_npca;
bool resizeImage; // resize the image whenever needed and the patch size is large bool resizeImage; // resize the image whenever needed and the patch size is large
int frame; int frame;
...@@ -135,8 +168,9 @@ namespace cv{ ...@@ -135,8 +168,9 @@ namespace cv{
{ {
isInit = false; isInit = false;
resizeImage = false; resizeImage = false;
use_custom_extractor_pca = false;
use_custom_extractor_npca = false;
CV_Assert(params.descriptor == GRAY || params.descriptor == CN /*|| params.descriptor == CN2*/);
} }
void TrackerKCFImpl::read( const cv::FileNode& fn ){ void TrackerKCFImpl::read( const cv::FileNode& fn ){
...@@ -179,10 +213,10 @@ namespace cv{ ...@@ -179,10 +213,10 @@ namespace cv{
// initialize the hann window filter // initialize the hann window filter
createHanningWindow(hann, roi.size(), CV_64F); createHanningWindow(hann, roi.size(), CV_64F);
if(params.descriptor==CN){
Mat layers[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann}; // hann window filter for CN feature
merge(layers, 10, hann); Mat _layer[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann};
} merge(_layer, 10, hann_cn);
// create gaussian response // create gaussian response
y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F); y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F);
...@@ -200,6 +234,28 @@ namespace cv{ ...@@ -200,6 +234,28 @@ namespace cv{
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params)); model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params));
// record the non-compressed descriptors
if((params.desc_npca & GRAY) == GRAY)descriptors_npca.push_back(GRAY);
if((params.desc_npca & CN) == CN)descriptors_npca.push_back(CN);
if(use_custom_extractor_npca)descriptors_npca.push_back(CUSTOM);
features_npca.resize(descriptors_npca.size());
// record the compressed descriptors
if((params.desc_pca & GRAY) == GRAY)descriptors_pca.push_back(GRAY);
if((params.desc_pca & CN) == CN)descriptors_pca.push_back(CN);
if(use_custom_extractor_pca)descriptors_pca.push_back(CUSTOM);
features_pca.resize(descriptors_pca.size());
// accept only the available descriptor modes
CV_Assert(
(params.desc_pca & GRAY) == GRAY
|| (params.desc_npca & GRAY) == GRAY
|| (params.desc_pca & CN) == CN
|| (params.desc_npca & CN) == CN
|| use_custom_extractor_pca
|| use_custom_extractor_npca
);
// TODO: return true only if roi inside the image // TODO: return true only if roi inside the image
return true; return true;
} }
...@@ -210,33 +266,71 @@ namespace cv{ ...@@ -210,33 +266,71 @@ namespace cv{
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){
double minVal, maxVal; // min-max response double minVal, maxVal; // min-max response
Point minLoc,maxLoc; // min-max location Point minLoc,maxLoc; // min-max location
Mat zc;
Mat img=image.clone(); Mat img=image.clone();
// check the channels of the input image, grayscale is preferred // check the channels of the input image, grayscale is preferred
CV_Assert(image.channels() == 1 || image.channels() == 3); CV_Assert(img.channels() == 1 || img.channels() == 3);
// resize the image whenever needed // resize the image whenever needed
if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2)); if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2));
// extract and pre-process the patch
if(!getSubWindow(img,roi, x))return false;
// detection part // detection part
if(frame>0){ if(frame>0){
// extract and pre-process the patch
// get non compressed descriptors
for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){
if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false;
}
//get non-compressed custom descriptors
for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){
if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false;
}
if(features_npca.size()>0)merge(features_npca,X[1]);
// get compressed descriptors
for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){
if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false;
}
//get compressed custom descriptors
for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){
if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false;
}
if(features_pca.size()>0)merge(features_pca,X[0]);
//compress the features and the KRSL model
if(params.desc_pca !=0){
compress(proj_mtx,X[0],X[0],data_temp,compress_data);
compress(proj_mtx,Z[0],Zc[0],data_temp,compress_data);
}
// copy the compressed KRLS model
Zc[1] = Z[1];
// merge all features
if(features_npca.size()==0){
x = X[0];
z = Zc[0];
}else if(features_pca.size()==0){
x = X[1];
z = Z[1];
}else{
merge(X,2,x);
merge(Zc,2,z);
}
//compute the gaussian kernel //compute the gaussian kernel
if(params.compress_feature){ denseGaussKernel(params.sigma,x,z,k,layers,vxf,vyf,vxyf,xy_data,xyf_data);
compress(proj_mtx,x,x);
compress(proj_mtx,z,zc); // compute the fourier transform of the kernel
denseGaussKernel(params.sigma,x,zc,k); fft2(k,kf);
}else if(frame==1)spec2=Mat_<Vec2d >(kf.rows, kf.cols);
denseGaussKernel(params.sigma,x,z,k);
// calculate filter response // calculate filter response
if(params.split_coeff) if(params.split_coeff)
calcResponse(alphaf,alphaf_den,k,response); calcResponse(alphaf,alphaf_den,kf,response, spec, spec2);
else else
calcResponse(alphaf,k,response); calcResponse(alphaf,kf,response, spec);
// extract the maximum response // extract the maximum response
minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc ); minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc );
...@@ -249,43 +343,84 @@ namespace cv{ ...@@ -249,43 +343,84 @@ namespace cv{
} }
// extract the patch for learning purpose // extract the patch for learning purpose
if(!getSubWindow(img,roi, x))return false; // get non compressed descriptors
for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){
if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false;
}
//get non-compressed custom descriptors
for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){
if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false;
}
if(features_npca.size()>0)merge(features_npca,X[1]);
// get compressed descriptors
for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){
if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false;
}
//get compressed custom descriptors
for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){
if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false;
}
if(features_pca.size()>0)merge(features_pca,X[0]);
//update the training data //update the training data
new_z=x.clone(); if(frame==0){
if(frame==0) Z[0] = X[0].clone();
z=x.clone(); Z[1] = X[1].clone();
else }else{
z=(1.0-params.interp_factor)*z+params.interp_factor*new_z; Z[0]=(1.0-params.interp_factor)*Z[0]+params.interp_factor*X[0];
Z[1]=(1.0-params.interp_factor)*Z[1]+params.interp_factor*X[1];
}
if(params.desc_pca !=0 || use_custom_extractor_pca){
// initialize the vector of Mat variables
if(frame==0){
layers_pca_data.resize(Z[0].channels());
average_data.resize(Z[0].channels());
}
if(params.compress_feature){
// feature compression // feature compression
updateProjectionMatrix(z,old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size); updateProjectionMatrix(Z[0],old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size,layers_pca_data,average_data,data_pca, new_covar,w_data,u_data,vt_data);
compress(proj_mtx,x,x); compress(proj_mtx,X[0],X[0],data_temp,compress_data);
}
// merge all features
if(features_npca.size()==0)
x = X[0];
else if(features_pca.size()==0)
x = X[1];
else
merge(X,2,x);
// initialize some required Mat variables
if(frame==0){
layers.resize(x.channels());
vxf.resize(x.channels());
vyf.resize(x.channels());
vxyf.resize(vyf.size());
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols);
} }
// Kernel Regularized Least-Squares, calculate alphas // Kernel Regularized Least-Squares, calculate alphas
denseGaussKernel(params.sigma,x,x,k); denseGaussKernel(params.sigma,x,x,k,layers,vxf,vyf,vxyf,xy_data,xyf_data);
// compute the fourier transform of the kernel and add a small value
fft2(k,kf); fft2(k,kf);
kf_lambda=kf+params.lambda; kf_lambda=kf+params.lambda;
/* TODO: optimize this element-wise division double den;
* new_alphaf=yf./kf
* z=(a+bi)/(c+di)[(ac+bd)+i(bc-ad)]/(c^2+d^2)
*/
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols);
std::complex<double> temp;
if(params.split_coeff){ if(params.split_coeff){
mulSpectrums(yf,kf,new_alphaf,0); mulSpectrums(yf,kf,new_alphaf,0);
mulSpectrums(kf,kf_lambda,new_alphaf_den,0); mulSpectrums(kf,kf_lambda,new_alphaf_den,0);
}else{ }else{
for(int i=0;i<yf.rows;i++){ for(int i=0;i<yf.rows;i++){
for(int j=0;j<yf.cols;j++){ for(int j=0;j<yf.cols;j++){
temp=std::complex<double>(yf.at<Vec2d>(i,j)[0],yf.at<Vec2d>(i,j)[1])/(std::complex<double>(kf_lambda.at<Vec2d>(i,j)[0],kf_lambda.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/); den = 1.0/(kf_lambda.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+kf_lambda.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1]);
new_alphaf.at<Vec2d >(i,j)[0]=temp.real();
new_alphaf.at<Vec2d >(i,j)[1]=temp.imag(); new_alphaf.at<Vec2d>(i,j)[0]=
(yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1])*den;
new_alphaf.at<Vec2d>(i,j)[1]=
(yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[0]-yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[1])*den;
} }
} }
} }
...@@ -311,11 +446,11 @@ namespace cv{ ...@@ -311,11 +446,11 @@ namespace cv{
/* /*
* hann window filter * hann window filter
*/ */
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const { void TrackerKCFImpl::createHanningWindow(OutputArray dest, const cv::Size winSize, const int type) const {
CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
_dst.create(winSize, type); dest.create(winSize, type);
Mat dst = _dst.getMat(); Mat dst = dest.getMat();
int rows = dst.rows, cols = dst.cols; int rows = dst.rows, cols = dst.cols;
...@@ -350,27 +485,14 @@ namespace cv{ ...@@ -350,27 +485,14 @@ namespace cv{
* simplification of fourier transform function in opencv * simplification of fourier transform function in opencv
*/ */
void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest) const { void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest) const {
std::vector<Mat> layers(src.channels()); dft(src,dest,DFT_COMPLEX_OUTPUT);
std::vector<Mat> outputs(src.channels());
split(src, layers);
for(int i=0;i<src.channels();i++){
dft(layers[i],outputs[i],DFT_COMPLEX_OUTPUT);
}
merge(outputs,dest);
} }
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest) const { void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest, std::vector<Mat> & layers_data) const {
std::vector<Mat> layers(src.channels()); split(src, layers_data);
dest.clear();
dest.resize(src.channels());
split(src, layers);
for(int i=0;i<src.channels();i++){ for(int i=0;i<src.channels();i++){
dft(layers[i],dest[i],DFT_COMPLEX_OUTPUT); dft(layers_data[i],dest[i],DFT_COMPLEX_OUTPUT);
} }
} }
...@@ -385,9 +507,6 @@ namespace cv{ ...@@ -385,9 +507,6 @@ namespace cv{
* Point-wise multiplication of two Multichannel Mat data * Point-wise multiplication of two Multichannel Mat data
*/ */
void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const { void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const {
dest.clear();
dest.resize(src1.size());
for(unsigned i=0;i<src1.size();i++){ for(unsigned i=0;i<src1.size();i++){
mulSpectrums(src1[i], src2[i], dest[i],flags,conjB); mulSpectrums(src1[i], src2[i], dest[i],flags,conjB);
} }
...@@ -406,55 +525,51 @@ namespace cv{ ...@@ -406,55 +525,51 @@ namespace cv{
/* /*
* obtains the projection matrix using PCA * obtains the projection matrix using PCA
*/ */
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx, double pca_rate, int compressed_sz) const { void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & proj_matrix, double pca_rate, int compressed_sz,
std::vector<Mat> & layers_pca,std::vector<Scalar> & average, Mat pca_data, Mat new_cov, Mat w, Mat u, Mat vt) const {
CV_Assert(compressed_sz<=src.channels()); CV_Assert(compressed_sz<=src.channels());
// compute average split(src,layers_pca);
std::vector<Mat> layers(src.channels());
std::vector<Scalar> average(src.channels());
split(src,layers);
for (int i=0;i<src.channels();i++){ for (int i=0;i<src.channels();i++){
average[i]=mean(layers[i]); average[i]=mean(layers_pca[i]);
layers[i]-=average[i]; layers_pca[i]-=average[i];
} }
// calc covariance matrix // calc covariance matrix
Mat data,new_cov; merge(layers_pca,pca_data);
merge(layers,data); pca_data=pca_data.reshape(1,src.rows*src.cols);
data=data.reshape(1,src.rows*src.cols);
new_cov=1.0/(double)(src.rows*src.cols-1)*(data.t()*data); new_cov=1.0/(double)(src.rows*src.cols-1)*(pca_data.t()*pca_data);
if(old_cov.rows==0)old_cov=new_cov.clone(); if(old_cov.rows==0)old_cov=new_cov.clone();
// calc PCA // calc PCA
Mat w, u, vt;
SVD::compute((1.0-pca_rate)*old_cov+pca_rate*new_cov, w, u, vt); SVD::compute((1.0-pca_rate)*old_cov+pca_rate*new_cov, w, u, vt);
// extract the projection matrix // extract the projection matrix
_proj_mtx=u(Rect(0,0,compressed_sz,src.channels())).clone(); proj_matrix=u(Rect(0,0,compressed_sz,src.channels())).clone();
Mat proj_vars=Mat::eye(compressed_sz,compressed_sz,_proj_mtx.type()); Mat proj_vars=Mat::eye(compressed_sz,compressed_sz,proj_matrix.type());
for(int i=0;i<compressed_sz;i++){ for(int i=0;i<compressed_sz;i++){
proj_vars.at<double>(i,i)=w.at<double>(i); proj_vars.at<double>(i,i)=w.at<double>(i);
} }
// update the covariance matrix // update the covariance matrix
old_cov=(1.0-pca_rate)*old_cov+pca_rate*_proj_mtx*proj_vars*_proj_mtx.t(); old_cov=(1.0-pca_rate)*old_cov+pca_rate*proj_matrix*proj_vars*proj_matrix.t();
} }
/* /*
* compress the features * compress the features
*/ */
void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest) const { void inline TrackerKCFImpl::compress(const Mat proj_matrix, const Mat src, Mat & dest, Mat & data, Mat & compressed) const {
Mat data=src.reshape(1,src.rows*src.cols); data=src.reshape(1,src.rows*src.cols);
Mat compressed=data*_proj_mtx; compressed=data*proj_matrix;
dest=compressed.reshape(_proj_mtx.cols,src.rows).clone(); dest=compressed.reshape(proj_matrix.cols,src.rows).clone();
} }
/* /*
* obtain the patch and apply hann window filter to it * obtain the patch and apply hann window filter to it
*/ */
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const { bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& feat, Mat& patch, TrackerKCF::MODE desc) const {
Rect region=_roi; Rect region=_roi;
...@@ -486,77 +601,108 @@ namespace cv{ ...@@ -486,77 +601,108 @@ namespace cv{
if(patch.rows==0 || patch.cols==0)return false; if(patch.rows==0 || patch.cols==0)return false;
// extract the desired descriptors // extract the desired descriptors
switch(params.descriptor){ switch(desc){
case GRAY:
if(img.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY);
patch.convertTo(patch,CV_64F);
patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5
break;
case CN: case CN:
CV_Assert(img.channels() == 3); CV_Assert(img.channels() == 3);
extractCN(patch,patch); extractCN(patch,feat);
feat=feat.mul(hann_cn); // hann window filter
break; break;
case CN2: default: // GRAY
if(patch.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY); if(img.channels()>1)
cvtColor(patch,feat, CV_BGR2GRAY);
else
feat=patch;
feat.convertTo(feat,CV_64F);
feat=feat/255.0-0.5; // normalize to range -0.5 .. 0.5
feat=feat.mul(hann); // hann window filter
break; break;
} }
patch=patch.mul(hann); // hann window filter
return true; return true;
} }
/*
* get feature using external function
*/
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& feat, void (*f)(const Mat, const Rect, Mat& )) const{
// return false if roi is outside the image
if((_roi.x+_roi.width<0)
||(_roi.y+_roi.height<0)
||(_roi.x>=img.cols)
||(_roi.y>=img.rows)
)return false;
f(img, _roi, feat);
if(_roi.width != feat.cols || _roi.height != feat.rows){
printf("error in customized function of features extractor!\n");
printf("Rules: roi.width==feat.cols && roi.height = feat.rows \n");
}
Mat hann_win;
std::vector<Mat> _layers;
for(int i=0;i<feat.channels();i++)
_layers.push_back(hann);
merge(_layers, hann_win);
feat=feat.mul(hann_win); // hann window filter
return true;
}
/* Convert BGR to ColorNames /* Convert BGR to ColorNames
*/ */
void TrackerKCFImpl::extractCN(Mat _patch, Mat & cnFeatures) const { void TrackerKCFImpl::extractCN(Mat patch_data, Mat & cnFeatures) const {
Vec3b & pixel = _patch.at<Vec3b>(0,0); Vec3b & pixel = patch_data.at<Vec3b>(0,0);
unsigned index; unsigned index;
Mat temp = Mat::zeros(_patch.rows,_patch.cols,CV_64FC(10)); if(cnFeatures.type() != CV_64FC(10))
cnFeatures = Mat::zeros(patch_data.rows,patch_data.cols,CV_64FC(10));
for(int i=0;i<_patch.rows;i++){ for(int i=0;i<patch_data.rows;i++){
for(int j=0;j<_patch.cols;j++){ for(int j=0;j<patch_data.cols;j++){
pixel=_patch.at<Vec3b>(i,j); pixel=patch_data.at<Vec3b>(i,j);
index=(unsigned)(floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8)); index=(unsigned)(floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8));
//copy the values //copy the values
for(int _k=0;_k<10;_k++){ for(int _k=0;_k<10;_k++){
temp.at<Vec<double,10> >(i,j)[_k]=ColorNames[index][_k]; cnFeatures.at<Vec<double,10> >(i,j)[_k]=ColorNames[index][_k];
} }
} }
} }
cnFeatures=temp.clone();
} }
/* /*
* dense gauss kernel function * dense gauss kernel function
*/ */
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const { void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat x_data, const Mat y_data, Mat & k_data,
std::vector<Mat> _xf,_yf,xyf_v; std::vector<Mat> & layers_data,std::vector<Mat> & xf_data,std::vector<Mat> & yf_data, std::vector<Mat> xyf_v, Mat xy, Mat xyf ) const {
Mat xy,xyf;
double normX, normY; double normX, normY;
fft2(_x,_xf); fft2(x_data,xf_data,layers_data);
fft2(_y,_yf); fft2(y_data,yf_data,layers_data);
normX=norm(_x); normX=norm(x_data);
normX*=normX; normX*=normX;
normY=norm(_y); normY=norm(y_data);
normY*=normY; normY*=normY;
pixelWiseMult(_xf,_yf,xyf_v,0,true); pixelWiseMult(xf_data,yf_data,xyf_v,0,true);
sumChannels(xyf_v,xyf); sumChannels(xyf_v,xyf);
ifft2(xyf,xyf); ifft2(xyf,xyf);
if(params.wrap_kernel){ if(params.wrap_kernel){
shiftRows(xyf, _x.rows/2); shiftRows(xyf, x_data.rows/2);
shiftCols(xyf, _x.cols/2); shiftCols(xyf, x_data.cols/2);
} }
//(xx + yy - 2 * xy) / numel(x) //(xx + yy - 2 * xy) / numel(x)
xy=(normX+normY-2*xyf)/(_x.rows*_x.cols*_x.channels()); xy=(normX+normY-2*xyf)/(x_data.rows*x_data.cols*x_data.channels());
// TODO: check wether we really need thresholding or not // TODO: check wether we really need thresholding or not
//threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x)) //threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x))
...@@ -568,7 +714,7 @@ namespace cv{ ...@@ -568,7 +714,7 @@ namespace cv{
double sig=-1.0/(sigma*sigma); double sig=-1.0/(sigma*sigma);
xy=sig*xy; xy=sig*xy;
exp(xy,_k); exp(xy,k_data);
} }
...@@ -626,36 +772,42 @@ namespace cv{ ...@@ -626,36 +772,42 @@ namespace cv{
/* /*
* calculate the detection response * calculate the detection response
*/ */
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const { void TrackerKCFImpl::calcResponse(const Mat alphaf_data, const Mat kf_data, Mat & response_data, Mat & spec_data) const {
//alpha f--> 2channels ; k --> 1 channel; //alpha f--> 2channels ; k --> 1 channel;
Mat _kf; mulSpectrums(alphaf_data,kf_data,spec_data,0,false);
fft2(_k,_kf); ifft2(spec_data,response_data);
Mat spec;
mulSpectrums(_alphaf,_kf,spec,0,false);
ifft2(spec,_response);
} }
/* /*
* calculate the detection response for splitted form * calculate the detection response for splitted form
*/ */
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const { void TrackerKCFImpl::calcResponse(const Mat alphaf_data, const Mat _alphaf_den, const Mat kf_data, Mat & response_data, Mat & spec_data, Mat & spec2_data) const {
Mat _kf;
fft2(_k,_kf); mulSpectrums(alphaf_data,kf_data,spec_data,0,false);
Mat spec;
Mat spec2=Mat_<Vec2d >(_k.rows, _k.cols); //z=(a+bi)/(c+di)=[(ac+bd)+i(bc-ad)]/(c^2+d^2)
std::complex<double> temp; double den;
for(int i=0;i<kf_data.rows;i++){
mulSpectrums(_alphaf,_kf,spec,0,false); for(int j=0;j<kf_data.cols;j++){
den=1.0/(_alphaf_den.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[0]+_alphaf_den.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[1]);
for(int i=0;i<_k.rows;i++){ spec2_data.at<Vec2d>(i,j)[0]=
for(int j=0;j<_k.cols;j++){ (spec_data.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[0]+spec_data.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[1])*den;
temp=std::complex<double>(spec.at<Vec2d>(i,j)[0],spec.at<Vec2d>(i,j)[1])/(std::complex<double>(_alphaf_den.at<Vec2d>(i,j)[0],_alphaf_den.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/); spec2_data.at<Vec2d>(i,j)[1]=
spec2.at<Vec2d >(i,j)[0]=temp.real(); (spec_data.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[0]-spec_data.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[1])*den;
spec2.at<Vec2d >(i,j)[1]=temp.imag();
} }
} }
ifft2(spec2,_response); ifft2(spec2_data,response_data);
}
void TrackerKCFImpl::setFeatureExtractor(void (*f)(const Mat, const Rect, Mat&), bool pca_func){
if(pca_func){
extractor_pca.push_back(f);
use_custom_extractor_pca = true;
}else{
extractor_npca.push_back(f);
use_custom_extractor_npca = true;
}
} }
/*----------------------------------------------------------------------*/ /*----------------------------------------------------------------------*/
...@@ -669,9 +821,10 @@ namespace cv{ ...@@ -669,9 +821,10 @@ namespace cv{
output_sigma_factor=1.0/16.0; output_sigma_factor=1.0/16.0;
resize=true; resize=true;
max_patch_size=80*80; max_patch_size=80*80;
descriptor=CN;
split_coeff=true; split_coeff=true;
wrap_kernel=false; wrap_kernel=false;
desc_npca = GRAY;
desc_pca = CN;
//feature compression //feature compression
compress_feature=true; compress_feature=true;
...@@ -683,4 +836,6 @@ namespace cv{ ...@@ -683,4 +836,6 @@ namespace cv{
void TrackerKCF::Params::write( cv::FileStorage& /*fs*/ ) const{} void TrackerKCF::Params::write( cv::FileStorage& /*fs*/ ) const{}
void TrackerKCF::setFeatureExtractor(void (*)(const Mat, const Rect, Mat&), bool ){};
} /* namespace cv */ } /* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment