Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
c9e3e220
Commit
c9e3e220
authored
Jan 19, 2016
by
Maximilien Cuony
Committed by
Maximilien Cuony
Jan 20, 2016
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implementation of SelectiveSearchSegmentation
parent
ef4dd5e5
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1463 additions
and
46 deletions
+1463
-46
README.md
modules/ximgproc/README.md
+1
-0
ximgproc.bib
modules/ximgproc/doc/ximgproc.bib
+12
-0
segmentation.hpp
modules/ximgproc/include/opencv2/ximgproc/segmentation.hpp
+165
-37
graphsegmentation_demo.cpp
modules/ximgproc/samples/graphsegmentation_demo.cpp
+12
-9
selectivesearchsegmentation_demo.cpp
...les/ximgproc/samples/selectivesearchsegmentation_demo.cpp
+115
-0
graphsegmentation.cpp
modules/ximgproc/src/graphsegmentation.cpp
+50
-0
selectivesearchsegmentation.cpp
modules/ximgproc/src/selectivesearchsegmentation.cpp
+1108
-0
No files found.
modules/ximgproc/README.md
View file @
c9e3e220
...
@@ -8,3 +8,4 @@ Extended Image Processing
...
@@ -8,3 +8,4 @@ Extended Image Processing
5.
Joint Bilateral Filter
5.
Joint Bilateral Filter
6.
Superpixels
6.
Superpixels
7.
Graph segmentation
7.
Graph segmentation
8.
Selective search from segmentation
modules/ximgproc/doc/ximgproc.bib
View file @
c9e3e220
...
@@ -67,6 +67,18 @@
...
@@ -67,6 +67,18 @@
publisher={Springer}
publisher={Springer}
}
}
@article{uijlings2013selective,
title={Selective search for object recognition},
author={Uijlings, Jasper RR and van de Sande, Koen EA and Gevers, Theo and Smeulders, Arnold WM},
journal={International journal of computer vision},
volume={104},
number={2},
pages={154--171},
year={2013},
publisher={Springer}
}
@article{Min2014,
@article{Min2014,
title={Fast global image smoothing based on weighted least squares},
title={Fast global image smoothing based on weighted least squares},
author={Min, Dongbo and Choi, Sunghwan and Lu, Jiangbo and Ham, Bumsub and Sohn, Kwanghoon and Do, Minh N},
author={Min, Dongbo and Choi, Sunghwan and Lu, Jiangbo and Ham, Bumsub and Sohn, Kwanghoon and Do, Minh N},
...
...
modules/ximgproc/include/opencv2/ximgproc/segmentation.hpp
View file @
c9e3e220
...
@@ -67,55 +67,183 @@ namespace cv {
...
@@ -67,55 +67,183 @@ namespace cv {
@param min_size The minimum size of segments
@param min_size The minimum size of segments
*/
*/
CV_EXPORTS_W
Ptr
<
GraphSegmentation
>
createGraphSegmentation
(
double
sigma
=
0.5
,
float
k
=
300
,
int
min_size
=
100
);
CV_EXPORTS_W
Ptr
<
GraphSegmentation
>
createGraphSegmentation
(
double
sigma
=
0.5
,
float
k
=
300
,
int
min_size
=
100
);
//! @}
// Represent an edge between two pixels
/** @brief Strategie for the selective search segmentation algorithm
class
Edge
{
The class implements a generic stragery for the algorithm described in @cite uijlings2013selective.
public
:
*/
int
from
;
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategy
:
public
Algorithm
{
int
to
;
public
:
float
weight
;
/** @brief Set a initial image, with a segementation.
@param img The input image. Any number of channel can be provided
@param regions A segementation of the image. The parameter must be the same size of img.
@param sizes The sizes of different regions
@param image_id If not set to -1, try to cache pre-computations. If the same set og (img, regions, size) is used, the image_id need to be the same.
*/
CV_WRAP
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
)
=
0
;
bool
operator
<
(
const
Edge
&
e
)
const
{
/** @brief Return the score between two regions (between 0 and 1)
return
weight
<
e
.
weight
;
@param r1 The first region
}
@param r2 The second region
};
*/
CV_WRAP
virtual
float
get
(
int
r1
,
int
r2
)
=
0
;
// A point in the sets of points
/** @brief Inform the strategy that two regions will be merged
class
PointSetElement
{
@param r1 The first region
public
:
@param r2 The second region
int
p
;
*/
int
size
;
CV_WRAP
virtual
void
merge
(
int
r1
,
int
r2
)
=
0
;
};
/** @brief Color-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategyColor
:
public
SelectiveSearchSegmentationStrategy
{
};
/** @brief Create a new color-based strategy */
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
createSelectiveSearchSegmentationStrategyColor
();
/** @brief Size-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategySize
:
public
SelectiveSearchSegmentationStrategy
{
};
PointSetElement
()
{
}
/** @brief Create a new size-based strategy */
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategySize
>
createSelectiveSearchSegmentationStrategySize
();
PointSetElement
(
int
p_
)
{
/** @brief Texture-based strategy for the selective search segmentation algorithm
p
=
p_
;
The class is implemented from the algorithm described in @cite uijlings2013selective.
size
=
1
;
*/
}
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategyTexture
:
public
SelectiveSearchSegmentationStrategy
{
};
};
// An object to manage set of points, who can be fusionned
/** @brief Create a new size-based strategy */
class
PointSet
{
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
createSelectiveSearchSegmentationStrategyTexture
();
public
:
PointSet
(
int
nb_elements_
);
~
PointSet
();
int
nb_elements
;
/** @brief Fill-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategyFill
:
public
SelectiveSearchSegmentationStrategy
{
};
/
/ Return the main point of the point's set
/
** @brief Create a new fill-based strategy */
int
getBasePoint
(
int
p
);
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
createSelectiveSearchSegmentationStrategyFill
(
);
// Join two sets of points, based on their main point
/** @brief Regroup multiple strategies for the selective search segmentation algorithm
void
joinPoints
(
int
p_a
,
int
p_b
);
*/
class
CV_EXPORTS_W
SelectiveSearchSegmentationStrategyMultiple
:
public
SelectiveSearchSegmentationStrategy
{
public
:
// Return the set size of a set (based on the main point)
/** @brief Add a new sub-strategy
int
size
(
unsigned
int
p
)
{
return
mapping
[
p
].
size
;
}
@param g The strategy
@param weight The weight of the strategy
*/
CV_WRAP
virtual
void
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
g
,
float
weight
)
=
0
;
/** @brief Remove all sub-strategies
*/
CV_WRAP
virtual
void
clearStrategies
()
=
0
;
};
private
:
/** @brief Create a new multiple strategy */
PointSetElement
*
mapping
;
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
();
/** @brief Create a new multiple strategy and set one subtrategy
@param s1 The first strategy
*/
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
);
/** @brief Create a new multiple strategy and set two subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
*/
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
);
/** @brief Create a new multiple strategy and set three subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
@param s3 The third strategy
*/
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s3
);
/** @brief Create a new multiple strategy and set four subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
@param s3 The third strategy
@param s4 The forth strategy
*/
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s3
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s4
);
/** @brief Selective search segmentation algorithm
The class implements the algorithm described in @cite uijlings2013selective.
*/
class
CV_EXPORTS_W
SelectiveSearchSegmentation
:
public
Algorithm
{
public
:
};
/** @brief Set a image used by switch* functions to initialize the class
@param img The image
*/
CV_WRAP
virtual
void
setBaseImage
(
InputArray
img
)
=
0
;
/** @brief Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.
@param k The k parameter for the graph segmentation
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP
virtual
void
switchToSingleStrategy
(
int
k
=
200
,
float
sigma
=
0.8
f
)
=
0
;
/** @brief Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
@param base_k The k parameter for the first graph segmentation
@param inc_k The increment of the k parameter for all graph segmentations
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP
virtual
void
switchToSelectiveSearchFast
(
int
base_k
=
150
,
int
inc_k
=
150
,
float
sigma
=
0.8
f
)
=
0
;
/** @brief Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
@param base_k The k parameter for the first graph segmentation
@param inc_k The increment of the k parameter for all graph segmentations
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP
virtual
void
switchToSelectiveSearchQuality
(
int
base_k
=
150
,
int
inc_k
=
150
,
float
sigma
=
0.8
f
)
=
0
;
/** @brief Add a new image in the list of images to process.
@param img The image
*/
CV_WRAP
virtual
void
addImage
(
InputArray
img
)
=
0
;
/** @brief Clear the list of images to process
*/
CV_WRAP
virtual
void
clearImages
()
=
0
;
/** @brief Add a new graph segmentation in the list of graph segementations to process.
@param g The graph segmentation
*/
CV_WRAP
virtual
void
addGraphSegmentation
(
Ptr
<
GraphSegmentation
>
g
)
=
0
;
/** @brief Clear the list of graph segmentations to process;
*/
CV_WRAP
virtual
void
clearGraphSegmentations
()
=
0
;
/** @brief Add a new strategy in the list of strategy to process.
@param s The strategy
*/
CV_WRAP
virtual
void
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s
)
=
0
;
/** @brief Clear the list of strategy to process;
*/
CV_WRAP
virtual
void
clearStrategies
()
=
0
;
/** @brief Based on all images, graph segmentations and stragies, computes all possible rects and return them
@param rects The list of rects. The first ones are more relevents than the lasts ones.
*/
CV_WRAP
virtual
void
process
(
std
::
vector
<
Rect
>&
rects
)
=
0
;
};
/** @brief Create a new SelectiveSearchSegmentation class.
*/
CV_EXPORTS_W
Ptr
<
SelectiveSearchSegmentation
>
createSelectiveSearchSegmentation
();
//! @}
}
}
}
}
...
...
modules/ximgproc/samples/
cpp/
graphsegmentation_demo.cpp
→
modules/ximgproc/samples/graphsegmentation_demo.cpp
View file @
c9e3e220
...
@@ -32,13 +32,16 @@ the use of this software, even if advised of the possibility of such damage.
...
@@ -32,13 +32,16 @@ the use of this software, even if advised of the possibility of such damage.
#include "opencv2/ximgproc/segmentation.hpp"
#include "opencv2/ximgproc/segmentation.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/highgui.hpp"
#include
<opencv2/core/utility.hpp>
#include
"opencv2/core.hpp"
#include
<opencv2/opencv.hpp>
#include
"opencv2/imgproc.hpp"
#include <iostream>
#include <iostream>
using
namespace
cv
;
using
namespace
cv
;
using
namespace
cv
::
ximgproc
::
segmentation
;
using
namespace
cv
::
ximgproc
::
segmentation
;
Scalar
hsv_to_rgb
(
Scalar
);
Scalar
color_mapping
(
int
);
static
void
help
()
{
static
void
help
()
{
std
::
cout
<<
std
::
endl
<<
std
::
cout
<<
std
::
endl
<<
"A program demonstrating the use and capabilities of a particular graph based image"
<<
std
::
endl
<<
"A program demonstrating the use and capabilities of a particular graph based image"
<<
std
::
endl
<<
...
@@ -55,9 +58,9 @@ Scalar hsv_to_rgb(Scalar c) {
...
@@ -55,9 +58,9 @@ Scalar hsv_to_rgb(Scalar c) {
float
*
p
=
in
.
ptr
<
float
>
(
0
);
float
*
p
=
in
.
ptr
<
float
>
(
0
);
p
[
0
]
=
c
[
0
]
*
360
;
p
[
0
]
=
(
float
)
c
[
0
]
*
360.0
f
;
p
[
1
]
=
c
[
1
];
p
[
1
]
=
(
float
)
c
[
1
];
p
[
2
]
=
c
[
2
];
p
[
2
]
=
(
float
)
c
[
2
];
cvtColor
(
in
,
out
,
COLOR_HSV2RGB
);
cvtColor
(
in
,
out
,
COLOR_HSV2RGB
);
...
@@ -97,7 +100,7 @@ int main(int argc, char** argv) {
...
@@ -97,7 +100,7 @@ int main(int argc, char** argv) {
gs
->
setSigma
(
atof
(
argv
[
3
]));
gs
->
setSigma
(
atof
(
argv
[
3
]));
if
(
argc
>
4
)
if
(
argc
>
4
)
gs
->
setK
(
atoi
(
argv
[
4
]));
gs
->
setK
(
(
float
)
atoi
(
argv
[
4
]));
if
(
argc
>
5
)
if
(
argc
>
5
)
gs
->
setMinSize
(
atoi
(
argv
[
5
]));
gs
->
setMinSize
(
atoi
(
argv
[
5
]));
...
@@ -137,9 +140,9 @@ int main(int argc, char** argv) {
...
@@ -137,9 +140,9 @@ int main(int argc, char** argv) {
for
(
int
j
=
0
;
j
<
output
.
cols
;
j
++
)
{
for
(
int
j
=
0
;
j
<
output
.
cols
;
j
++
)
{
Scalar
color
=
color_mapping
(
p
[
j
]);
Scalar
color
=
color_mapping
(
p
[
j
]);
p2
[
j
*
3
]
=
color
[
0
];
p2
[
j
*
3
]
=
(
uchar
)
color
[
0
];
p2
[
j
*
3
+
1
]
=
color
[
1
];
p2
[
j
*
3
+
1
]
=
(
uchar
)
color
[
1
];
p2
[
j
*
3
+
2
]
=
color
[
2
];
p2
[
j
*
3
+
2
]
=
(
uchar
)
color
[
2
];
}
}
}
}
...
...
modules/ximgproc/samples/selectivesearchsegmentation_demo.cpp
0 → 100644
View file @
c9e3e220
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "opencv2/ximgproc/segmentation.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <ctime>
using
namespace
cv
;
using
namespace
cv
::
ximgproc
::
segmentation
;
static
void
help
()
{
std
::
cout
<<
std
::
endl
<<
"A program demonstrating the use and capabilities of a particular image segmentation algorithm described"
<<
std
::
endl
<<
" in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders: "
<<
std
::
endl
<<
"
\"
Selective Search for Object Recognition
\"
"
<<
std
::
endl
<<
"International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013"
<<
std
::
endl
<<
std
::
endl
<<
"Usage:"
<<
std
::
endl
<<
"./selectivesearchsegmentation_demo input_image (single|fast|quality)"
<<
std
::
endl
<<
"Use a to display less rects, d to display more rects, q to quit"
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
<
3
)
{
help
();
return
-
1
;
}
setUseOptimized
(
true
);
setNumThreads
(
8
);
std
::
srand
((
int
)
std
::
time
(
0
));
Mat
img
=
imread
(
argv
[
1
]);
Ptr
<
SelectiveSearchSegmentation
>
gs
=
createSelectiveSearchSegmentation
();
gs
->
setBaseImage
(
img
);
if
(
argv
[
2
][
0
]
==
's'
)
{
gs
->
switchToSingleStrategy
();
}
else
if
(
argv
[
2
][
0
]
==
'f'
)
{
gs
->
switchToSelectiveSearchFast
();
}
else
if
(
argv
[
2
][
0
]
==
'q'
)
{
gs
->
switchToSelectiveSearchQuality
();
}
else
{
help
();
return
-
2
;
}
std
::
vector
<
Rect
>
rects
;
gs
->
process
(
rects
);
int
nb_rects
=
10
;
char
c
=
(
char
)
waitKey
();
while
(
c
!=
'q'
)
{
Mat
wimg
=
img
.
clone
();
int
i
=
0
;
for
(
std
::
vector
<
Rect
>::
iterator
it
=
rects
.
begin
();
it
!=
rects
.
end
();
++
it
)
{
if
(
i
++
<
nb_rects
)
{
rectangle
(
wimg
,
*
it
,
Scalar
(
0
,
0
,
255
));
}
}
imshow
(
"Output"
,
wimg
);
c
=
(
char
)
waitKey
();
if
(
c
==
'd'
)
{
nb_rects
+=
10
;
}
if
(
c
==
'a'
&&
nb_rects
>
10
)
{
nb_rects
-=
10
;
}
}
return
0
;
}
modules/ximgproc/src/graphsegmentation.cpp
View file @
c9e3e220
...
@@ -47,6 +47,56 @@ namespace cv {
...
@@ -47,6 +47,56 @@ namespace cv {
namespace
ximgproc
{
namespace
ximgproc
{
namespace
segmentation
{
namespace
segmentation
{
// Helpers
// Represent an edge between two pixels
class
Edge
{
public
:
int
from
;
int
to
;
float
weight
;
bool
operator
<
(
const
Edge
&
e
)
const
{
return
weight
<
e
.
weight
;
}
};
// A point in the sets of points
class
PointSetElement
{
public
:
int
p
;
int
size
;
PointSetElement
()
{
}
PointSetElement
(
int
p_
)
{
p
=
p_
;
size
=
1
;
}
};
// An object to manage set of points, who can be fusionned
class
PointSet
{
public
:
PointSet
(
int
nb_elements_
);
~
PointSet
();
int
nb_elements
;
// Return the main point of the point's set
int
getBasePoint
(
int
p
);
// Join two sets of points, based on their main point
void
joinPoints
(
int
p_a
,
int
p_b
);
// Return the set size of a set (based on the main point)
int
size
(
unsigned
int
p
)
{
return
mapping
[
p
].
size
;
}
private
:
PointSetElement
*
mapping
;
};
class
GraphSegmentationImpl
:
public
GraphSegmentation
{
class
GraphSegmentationImpl
:
public
GraphSegmentation
{
public
:
public
:
GraphSegmentationImpl
()
{
GraphSegmentationImpl
()
{
...
...
modules/ximgproc/src/selectivesearchsegmentation.cpp
0 → 100644
View file @
c9e3e220
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
/*******************************************************************************\
* Selective search segmentation *
* This code implements the segmentation method described in: *
* Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, *
* Arnold W. M. Smeulders: "Selective Search for Object Recognition " *
* International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013 *
* Author: Maximilien Cuony / LTS2 / EPFL / 2016 *
********************************************************************************/
#include "precomp.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ximgproc/segmentation.hpp"
#include <iostream>
namespace
cv
{
namespace
ximgproc
{
namespace
segmentation
{
// Helpers
// Represent a regsion
class
Region
{
public
:
int
id
;
int
level
;
int
merged_to
;
double
rank
;
Rect
bounding_box
;
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Region
&
n
);
bool
operator
<
(
const
Region
&
n
)
const
{
return
rank
<
n
.
rank
;
}
};
// Comparator to sort cv::rect (used for a std::map).
struct
rectComparator
{
bool
operator
()(
const
cv
::
Rect_
<
int
>&
a
,
const
cv
::
Rect_
<
int
>&
b
)
const
{
if
(
a
.
x
<
b
.
x
)
{
return
true
;
}
if
(
a
.
x
>
b
.
x
)
{
return
false
;
}
if
(
a
.
y
<
b
.
y
)
{
return
true
;
}
if
(
a
.
y
>
b
.
y
)
{
return
false
;
}
if
(
a
.
width
<
b
.
width
)
{
return
true
;
}
if
(
a
.
width
>
b
.
width
)
{
return
false
;
}
if
(
a
.
height
<
b
.
height
)
{
return
true
;
}
if
(
a
.
height
>
b
.
height
)
{
return
false
;
}
return
false
;
}
};
// Represent a neighboor
class
Neighbour
{
public
:
int
from
;
int
to
;
float
similarity
;
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Neighbour
&
n
);
bool
operator
<
(
const
Neighbour
&
n
)
const
{
return
similarity
<
n
.
similarity
;
}
};
/****************************************
* Stragegy / Color
***************************************/
class
SelectiveSearchSegmentationStrategyColorImpl
:
public
SelectiveSearchSegmentationStrategyColor
{
public
:
SelectiveSearchSegmentationStrategyColorImpl
()
{
name_
=
"SelectiveSearchSegmentationStrategyColor"
;
last_image_id
=
-
1
;
}
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
);
virtual
float
get
(
int
r1
,
int
r2
);
virtual
void
merge
(
int
r1
,
int
r2
);
private
:
String
name_
;
Mat
histograms
;
// [Region X Histogram]
Mat
sizes
;
int
histogram_size
;
int
last_image_id
;
// If the image_id is not equal to -1 and the same as the previous call for setImage, computations are used again
Mat
last_histograms
;
};
void
SelectiveSearchSegmentationStrategyColorImpl
::
setImage
(
InputArray
img_
,
InputArray
regions_
,
InputArray
sizes_
,
int
image_id
)
{
Mat
img
=
img_
.
getMat
();
Mat
regions
=
regions_
.
getMat
();
sizes
=
sizes_
.
getMat
();
if
(
image_id
!=
-
1
&&
last_image_id
!=
image_id
)
{
std
::
vector
<
Mat
>
img_planes
;
split
(
img
,
img_planes
);
int
histogram_bins_size
=
25
;
float
range
[]
=
{
0
,
256
};
const
float
*
histogram_ranges
=
{
range
};
double
min
,
max
;
minMaxLoc
(
regions
,
&
min
,
&
max
);
int
nb_segs
=
(
int
)
max
+
1
;
histogram_size
=
histogram_bins_size
*
img
.
channels
();
histograms
=
Mat_
<
float
>
(
nb_segs
,
histogram_size
);
for
(
int
r
=
0
;
r
<
nb_segs
;
r
++
)
{
// Generate mask
Mat
mask
=
Mat
(
img
.
rows
,
img
.
cols
,
CV_8UC1
);
int
*
regions_data
=
(
int
*
)
regions
.
data
;
char
*
mask_data
=
(
char
*
)
mask
.
data
;
for
(
unsigned
int
x
=
0
;
x
<
regions
.
total
();
x
++
)
{
mask_data
[
x
]
=
regions_data
[
x
]
==
r
?
255
:
0
;
}
// Compute histogram for each channels
float
tt
=
0
;
Mat
tmp_hists
=
Mat
(
histogram_size
,
1
,
CV_32F
);
float
*
tmp_histogram
=
tmp_hists
.
ptr
<
float
>
(
0
);
int
h_pos
=
0
;
Mat
tmp_hist
;
for
(
int
p
=
0
;
p
<
img
.
channels
();
p
++
)
{
calcHist
(
&
img_planes
[
p
],
1
,
0
,
mask
,
tmp_hist
,
1
,
&
histogram_bins_size
,
&
histogram_ranges
);
float
*
tmp_hist_
=
tmp_hist
.
ptr
<
float
>
(
0
);
// Copy local histogram to global histogram
for
(
int
pos
=
0
;
pos
<
histogram_bins_size
;
pos
++
)
{
tmp_histogram
[
pos
+
h_pos
]
=
tmp_hist_
[
pos
];
tt
+=
tmp_histogram
[
pos
+
h_pos
];
}
h_pos
+=
histogram_bins_size
;
}
// Normalize historgrams
float
*
histogram
=
histograms
.
ptr
<
float
>
(
r
);
for
(
int
h_pos2
=
0
;
h_pos2
<
histogram_size
;
h_pos2
++
)
{
histogram
[
h_pos2
]
=
tmp_histogram
[
h_pos2
]
/
tt
;
}
}
// Save cache if we have an image id
if
(
image_id
!=
-
1
)
{
last_histograms
=
histograms
.
clone
();
last_image_id
=
image_id
;
}
}
else
{
// last_image_id == image_id
// Use cache
histograms
=
last_histograms
.
clone
();
}
}
float
SelectiveSearchSegmentationStrategyColorImpl
::
get
(
int
r1
,
int
r2
)
{
float
r
=
0
;
float
*
h1
=
histograms
.
ptr
<
float
>
(
r1
);
float
*
h2
=
histograms
.
ptr
<
float
>
(
r2
);
for
(
int
i
=
0
;
i
<
histogram_size
;
i
++
)
{
r
+=
min
(
h1
[
i
],
h2
[
i
]);
}
return
r
;
}
void
SelectiveSearchSegmentationStrategyColorImpl
::
merge
(
int
r1
,
int
r2
)
{
int
size_r1
=
sizes
.
at
<
int
>
(
r1
);
int
size_r2
=
sizes
.
at
<
int
>
(
r2
);
float
*
h1
=
histograms
.
ptr
<
float
>
(
r1
);
float
*
h2
=
histograms
.
ptr
<
float
>
(
r2
);
for
(
int
i
=
0
;
i
<
histogram_size
;
i
++
)
{
h1
[
i
]
=
(
h1
[
i
]
*
size_r1
+
h2
[
i
]
*
size_r2
)
/
(
size_r1
+
size_r2
);
h2
[
i
]
=
h1
[
i
];
}
}
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
createSelectiveSearchSegmentationStrategyColor
()
{
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyColorImpl
>
();
return
s
;
}
/****************************************
* Stragegy / Multiple
***************************************/
class
SelectiveSearchSegmentationStrategyMultipleImpl
:
public
SelectiveSearchSegmentationStrategyMultiple
{
public
:
SelectiveSearchSegmentationStrategyMultipleImpl
()
{
name_
=
"SelectiveSearchSegmentationStrategyMultiple"
;
weights_total
=
0
;
}
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
);
virtual
float
get
(
int
r1
,
int
r2
);
virtual
void
merge
(
int
r1
,
int
r2
);
virtual
void
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
g
,
float
weight
);
virtual
void
clearStrategies
();
private
:
String
name_
;
std
::
vector
<
Ptr
<
SelectiveSearchSegmentationStrategy
>
>
strategies
;
std
::
vector
<
float
>
weights
;
float
weights_total
;
};
void
SelectiveSearchSegmentationStrategyMultipleImpl
::
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
g
,
float
weight
)
{
strategies
.
push_back
(
g
);
weights
.
push_back
(
weight
);
weights_total
+=
weight
;
}
void
SelectiveSearchSegmentationStrategyMultipleImpl
::
clearStrategies
()
{
strategies
.
clear
();
weights
.
clear
();
weights_total
=
0
;
}
void
SelectiveSearchSegmentationStrategyMultipleImpl
::
setImage
(
InputArray
img_
,
InputArray
regions_
,
InputArray
sizes_
,
int
image_id
)
{
for
(
unsigned
int
i
=
0
;
i
<
strategies
.
size
();
i
++
)
{
strategies
[
i
]
->
setImage
(
img_
,
regions_
,
sizes_
,
image_id
);
}
}
float
SelectiveSearchSegmentationStrategyMultipleImpl
::
get
(
int
r1
,
int
r2
)
{
float
tt
=
0
;
for
(
unsigned
int
i
=
0
;
i
<
strategies
.
size
();
i
++
)
{
tt
+=
weights
[
i
]
*
strategies
[
i
]
->
get
(
r1
,
r2
);
}
return
tt
/
weights_total
;
}
void
SelectiveSearchSegmentationStrategyMultipleImpl
::
merge
(
int
r1
,
int
r2
)
{
for
(
unsigned
int
i
=
0
;
i
<
strategies
.
size
();
i
++
)
{
strategies
[
i
]
->
merge
(
r1
,
r2
);
}
}
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
()
{
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyMultipleImpl
>
();
return
s
;
}
// Helpers to quickly create a multiple stragegy with 1 to 4 equal strageries
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
)
{
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyMultipleImpl
>
();
s
->
addStrategy
(
s1
,
1.0
f
);
return
s
;
}
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
)
{
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyMultipleImpl
>
();
s
->
addStrategy
(
s1
,
0.5
f
);
s
->
addStrategy
(
s2
,
0.5
f
);
return
s
;
}
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s3
)
{
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyMultipleImpl
>
();
s
->
addStrategy
(
s1
,
0.3333
f
);
s
->
addStrategy
(
s2
,
0.3333
f
);
s
->
addStrategy
(
s3
,
0.3333
f
);
return
s
;
}
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
createSelectiveSearchSegmentationStrategyMultiple
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s1
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s2
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s3
,
Ptr
<
SelectiveSearchSegmentationStrategy
>
s4
)
{
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyMultipleImpl
>
();
s
->
addStrategy
(
s1
,
0.25
f
);
s
->
addStrategy
(
s2
,
0.25
f
);
s
->
addStrategy
(
s3
,
0.25
f
);
s
->
addStrategy
(
s4
,
0.25
f
);
return
s
;
}
/****************************************
* Stragegy / Size
***************************************/
class
SelectiveSearchSegmentationStrategySizeImpl
:
public
SelectiveSearchSegmentationStrategySize
{
public
:
SelectiveSearchSegmentationStrategySizeImpl
()
{
name_
=
"SelectiveSearchSegmentationStrategySize"
;
}
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
);
virtual
float
get
(
int
r1
,
int
r2
);
virtual
void
merge
(
int
r1
,
int
r2
);
private
:
String
name_
;
Mat
sizes
;
int
size_image
;
};
void
SelectiveSearchSegmentationStrategySizeImpl
::
setImage
(
InputArray
img_
,
InputArray
,
InputArray
sizes_
,
int
/* image_id */
)
{
Mat
img
=
img_
.
getMat
();
size_image
=
img
.
rows
*
img
.
cols
;
sizes
=
sizes_
.
getMat
();
}
float
SelectiveSearchSegmentationStrategySizeImpl
::
get
(
int
r1
,
int
r2
)
{
int
size_r1
=
sizes
.
at
<
int
>
(
r1
);
int
size_r2
=
sizes
.
at
<
int
>
(
r2
);
return
max
(
min
(
1.0
f
-
(
float
)(
size_r1
+
size_r2
)
/
(
float
)(
size_image
),
1.0
f
),
0.0
f
);
}
void
SelectiveSearchSegmentationStrategySizeImpl
::
merge
(
int
/* r1 */
,
int
/* r2 */
)
{
// Nothing to do (sizes are merged at parent level)
}
Ptr
<
SelectiveSearchSegmentationStrategySize
>
createSelectiveSearchSegmentationStrategySize
()
{
Ptr
<
SelectiveSearchSegmentationStrategySize
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategySizeImpl
>
();
return
s
;
}
/****************************************
* Stragegy / Fill
***************************************/
class
SelectiveSearchSegmentationStrategyFillImpl
:
public
SelectiveSearchSegmentationStrategyFill
{
public
:
SelectiveSearchSegmentationStrategyFillImpl
()
{
name_
=
"SelectiveSearchSegmentationStrategyFill"
;
}
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
);
virtual
float
get
(
int
r1
,
int
r2
);
virtual
void
merge
(
int
r1
,
int
r2
);
private
:
String
name_
;
Mat
sizes
;
int
size_image
;
std
::
vector
<
Rect
>
bounding_rects
;
};
void
SelectiveSearchSegmentationStrategyFillImpl
::
setImage
(
InputArray
img_
,
InputArray
regions_
,
InputArray
sizes_
,
int
/* image_id */
)
{
Mat
img
=
img_
.
getMat
();
sizes
=
sizes_
.
getMat
();
Mat
regions
=
regions_
.
getMat
();
size_image
=
img
.
rows
*
img
.
cols
;
// Build initial bouding rects
double
min
,
max
;
minMaxLoc
(
regions
,
&
min
,
&
max
);
int
nb_segs
=
(
int
)
max
+
1
;
// Build a list of points for each regions
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>
points
;
points
.
resize
(
nb_segs
);
for
(
int
i
=
0
;
i
<
(
int
)
regions
.
rows
;
i
++
)
{
const
int
*
p
=
regions
.
ptr
<
int
>
(
i
);
for
(
int
j
=
0
;
j
<
(
int
)
regions
.
cols
;
j
++
)
{
points
[
p
[
j
]].
push_back
(
cv
::
Point
(
j
,
i
));
}
}
// Compute bounding rects for each regions
bounding_rects
.
resize
(
nb_segs
);
for
(
int
seg
=
0
;
seg
<
nb_segs
;
seg
++
)
{
bounding_rects
[
seg
]
=
cv
::
boundingRect
(
points
[
seg
]);
}
}
float
SelectiveSearchSegmentationStrategyFillImpl
::
get
(
int
r1
,
int
r2
)
{
int
size_r1
=
sizes
.
at
<
int
>
(
r1
);
int
size_r2
=
sizes
.
at
<
int
>
(
r2
);
int
bounding_rect_size
=
(
bounding_rects
[
r1
]
|
bounding_rects
[
r2
]).
area
();
return
max
(
min
(
1.0
f
-
(
float
)(
bounding_rect_size
-
size_r1
-
size_r2
)
/
(
float
)(
size_image
),
1.0
f
),
0.0
f
);
}
void
SelectiveSearchSegmentationStrategyFillImpl
::
merge
(
int
r1
,
int
r2
)
{
bounding_rects
[
r1
]
=
bounding_rects
[
r1
]
|
bounding_rects
[
r2
];
bounding_rects
[
r2
]
=
bounding_rects
[
r1
];
}
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
createSelectiveSearchSegmentationStrategyFill
()
{
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyFillImpl
>
();
return
s
;
}
/****************************************
* Stragegy / Texture
***************************************/
class
SelectiveSearchSegmentationStrategyTextureImpl
:
public
SelectiveSearchSegmentationStrategyTexture
{
public
:
SelectiveSearchSegmentationStrategyTextureImpl
()
{
name_
=
"SelectiveSearchSegmentationStrategyTexture"
;
last_image_id
=
-
1
;
}
virtual
void
setImage
(
InputArray
img
,
InputArray
regions
,
InputArray
sizes
,
int
image_id
=
-
1
);
virtual
float
get
(
int
r1
,
int
r2
);
virtual
void
merge
(
int
r1
,
int
r2
);
private
:
String
name_
;
Mat
histograms
;
//[Region X Histogram]
Mat
sizes
;
int
histogram_size
;
int
last_image_id
;
// If the image_id is not equal to -1 and the same as the previous call for setImage, computations are used again
Mat
last_histograms
;
};
void
SelectiveSearchSegmentationStrategyTextureImpl
::
setImage
(
InputArray
img_
,
InputArray
regions_
,
InputArray
sizes_
,
int
image_id
)
{
Mat
img
=
img_
.
getMat
();
Mat
regions
=
regions_
.
getMat
();
sizes
=
sizes_
.
getMat
();
if
(
image_id
!=
-
1
&&
last_image_id
!=
image_id
)
{
std
::
vector
<
Mat
>
img_planes
;
split
(
img
,
img_planes
);
int
histogram_bins_size
=
10
;
float
range
[]
=
{
0.0
,
256.0
};
double
min
,
max
;
minMaxLoc
(
regions
,
&
min
,
&
max
);
int
nb_segs
=
(
int
)
max
+
1
;
histogram_size
=
histogram_bins_size
*
img
.
channels
()
*
8
;
histograms
=
Mat_
<
float
>
(
nb_segs
,
histogram_size
);
// Compute, for each channels, the 8 gaussians
std
::
vector
<
Mat
>
img_gaussians
;
for
(
int
p
=
0
;
p
<
img
.
channels
();
p
++
)
{
Mat
tmp_gradiant
;
Mat
tmp_gradiant_pos
,
tmp_gradiant_neg
;
Mat
img_plane_rotated
;
Mat
tmp_rot
;
// X, no rot
Scharr
(
img_planes
[
p
],
tmp_gradiant
,
CV_32F
,
1
,
0
);
threshold
(
tmp_gradiant
,
tmp_gradiant_pos
,
0
,
0
,
THRESH_TOZERO
);
threshold
(
tmp_gradiant
,
tmp_gradiant_neg
,
0
,
0
,
THRESH_TOZERO_INV
);
img_gaussians
.
push_back
(
tmp_gradiant_pos
.
clone
());
img_gaussians
.
push_back
(
tmp_gradiant_neg
.
clone
());
// Y, no rot
Scharr
(
img_planes
[
p
],
tmp_gradiant
,
CV_32F
,
0
,
1
);
threshold
(
tmp_gradiant
,
tmp_gradiant_pos
,
0
,
0
,
THRESH_TOZERO
);
threshold
(
tmp_gradiant
,
tmp_gradiant_neg
,
0
,
0
,
THRESH_TOZERO_INV
);
img_gaussians
.
push_back
(
tmp_gradiant_pos
.
clone
());
img_gaussians
.
push_back
(
tmp_gradiant_neg
.
clone
());
Point2f
center
(
img
.
cols
/
2.0
f
,
img
.
rows
/
2.0
f
);
Mat
rot
=
cv
::
getRotationMatrix2D
(
center
,
45.0
,
1.0
);
Rect
bbox
=
cv
::
RotatedRect
(
center
,
img
.
size
(),
45.0
).
boundingRect
();
rot
.
at
<
double
>
(
0
,
2
)
+=
bbox
.
width
/
2.0
-
center
.
x
;
rot
.
at
<
double
>
(
1
,
2
)
+=
bbox
.
height
/
2.0
-
center
.
y
;
warpAffine
(
img_planes
[
p
],
img_plane_rotated
,
rot
,
bbox
.
size
());
// X, rot
Scharr
(
img_plane_rotated
,
tmp_gradiant
,
CV_32F
,
1
,
0
);
center
=
Point
((
int
)(
img_plane_rotated
.
cols
/
2.0
),
(
int
)(
img_plane_rotated
.
rows
/
2.0
));
rot
=
cv
::
getRotationMatrix2D
(
center
,
-
45.0
,
1.0
);
warpAffine
(
tmp_gradiant
,
tmp_rot
,
rot
,
bbox
.
size
());
tmp_gradiant
=
tmp_rot
(
Rect
((
bbox
.
width
-
img
.
cols
)
/
2
,
(
bbox
.
height
-
img
.
rows
)
/
2
,
img
.
cols
,
img
.
rows
));
threshold
(
tmp_gradiant
,
tmp_gradiant_pos
,
0
,
0
,
THRESH_TOZERO
);
threshold
(
tmp_gradiant
,
tmp_gradiant_neg
,
0
,
0
,
THRESH_TOZERO_INV
);
img_gaussians
.
push_back
(
tmp_gradiant_pos
.
clone
());
img_gaussians
.
push_back
(
tmp_gradiant_neg
.
clone
());
// Y, rot
Scharr
(
img_plane_rotated
,
tmp_gradiant
,
CV_32F
,
0
,
1
);
center
=
Point
((
int
)(
img_plane_rotated
.
cols
/
2.0
),
(
int
)(
img_plane_rotated
.
rows
/
2.0
));
rot
=
cv
::
getRotationMatrix2D
(
center
,
-
45.0
,
1.0
);
warpAffine
(
tmp_gradiant
,
tmp_rot
,
rot
,
bbox
.
size
());
tmp_gradiant
=
tmp_rot
(
Rect
((
bbox
.
width
-
img
.
cols
)
/
2
,
(
bbox
.
height
-
img
.
rows
)
/
2
,
img
.
cols
,
img
.
rows
));
threshold
(
tmp_gradiant
,
tmp_gradiant_pos
,
0
,
0
,
THRESH_TOZERO
);
threshold
(
tmp_gradiant
,
tmp_gradiant_neg
,
0
,
0
,
THRESH_TOZERO_INV
);
img_gaussians
.
push_back
(
tmp_gradiant_pos
.
clone
());
img_gaussians
.
push_back
(
tmp_gradiant_neg
.
clone
());
}
// Normalisze gaussiaans in 0-255 range (for faster computation of histograms)
for
(
int
i
=
0
;
i
<
img
.
channels
()
*
8
;
i
++
)
{
double
hmin
,
hmax
;
minMaxLoc
(
img_gaussians
[
i
],
&
hmin
,
&
hmax
);
Mat
tmp
;
img_gaussians
[
i
].
convertTo
(
tmp
,
CV_8U
,
(
range
[
1
]
-
1
)
/
(
hmax
-
hmin
),
-
(
range
[
1
]
-
1
)
*
hmin
/
(
hmax
-
hmin
));
img_gaussians
[
i
]
=
tmp
;
}
// We compute histograms manualy, directly addings bins based on the region instead of computing multiple histograms
// This speedup significantly computations
std
::
vector
<
int
>
totals
;
totals
.
resize
(
nb_segs
);
// Bins for histograms
Mat_
<
int
>
tmp_histograms
=
Mat_
<
int
>::
zeros
(
nb_segs
,
histogram_size
);
int
*
regions_data
=
(
int
*
)
regions
.
data
;
for
(
unsigned
int
x
=
0
;
x
<
regions
.
total
();
x
++
)
{
int
region
=
regions_data
[
x
];
int
*
histogram
=
tmp_histograms
.
ptr
<
int
>
(
region
);
for
(
int
p
=
0
;
p
<
img
.
channels
();
p
++
)
{
for
(
unsigned
int
i
=
0
;
i
<
8
;
i
++
)
{
int
val
=
(
int
)((
unsigned
char
*
)
img_gaussians
[
p
*
8
+
i
].
data
)[
x
];
int
bin
=
(
int
)((
float
)
val
/
(
range
[
1
]
/
histogram_bins_size
));
histogram
[(
p
*
8
+
i
)
*
histogram_bins_size
+
bin
]
++
;
totals
[
region
]
++
;
}
}
}
// Normalisation per segments
for
(
int
r
=
0
;
r
<
nb_segs
;
r
++
)
{
float
*
histogram
=
histograms
.
ptr
<
float
>
(
r
);
int
*
tmp_histogram
=
tmp_histograms
.
ptr
<
int
>
(
r
);
for
(
int
h_pos2
=
0
;
h_pos2
<
histogram_size
;
h_pos2
++
)
{
histogram
[
h_pos2
]
=
(
float
)
tmp_histogram
[
h_pos2
]
/
(
float
)
totals
[
r
];
}
}
if
(
image_id
!=
-
1
)
{
// Save cache if it's apply
last_histograms
=
histograms
.
clone
();
last_image_id
=
image_id
;
}
}
else
{
// image_id == last_image_id
histograms
=
last_histograms
.
clone
();
// Use cache
}
}
float
SelectiveSearchSegmentationStrategyTextureImpl
::
get
(
int
r1
,
int
r2
)
{
float
r
=
0
;
float
*
h1
=
histograms
.
ptr
<
float
>
(
r1
);
float
*
h2
=
histograms
.
ptr
<
float
>
(
r2
);
for
(
int
i
=
0
;
i
<
histogram_size
;
i
++
)
{
r
+=
min
(
h1
[
i
],
h2
[
i
]);
}
return
r
;
}
void
SelectiveSearchSegmentationStrategyTextureImpl
::
merge
(
int
r1
,
int
r2
)
{
int
size_r1
=
sizes
.
at
<
int
>
(
r1
);
int
size_r2
=
sizes
.
at
<
int
>
(
r2
);
float
*
h1
=
histograms
.
ptr
<
float
>
(
r1
);
float
*
h2
=
histograms
.
ptr
<
float
>
(
r2
);
for
(
int
i
=
0
;
i
<
histogram_size
;
i
++
)
{
h1
[
i
]
=
(
h1
[
i
]
*
size_r1
+
h2
[
i
]
*
size_r2
)
/
(
size_r1
+
size_r2
);
h2
[
i
]
=
h1
[
i
];
}
}
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
createSelectiveSearchSegmentationStrategyTexture
()
{
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
s
=
makePtr
<
SelectiveSearchSegmentationStrategyTextureImpl
>
();
return
s
;
}
// Core
class
SelectiveSearchSegmentationImpl
:
public
SelectiveSearchSegmentation
{
public
:
SelectiveSearchSegmentationImpl
()
{
name_
=
"SelectiveSearchSegmentation"
;
}
~
SelectiveSearchSegmentationImpl
()
{
};
virtual
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"name"
<<
name_
;
}
virtual
void
read
(
const
FileNode
&
fn
)
{
CV_Assert
(
(
String
)
fn
[
"name"
]
==
name_
);
}
virtual
void
setBaseImage
(
InputArray
img
);
virtual
void
switchToSingleStrategy
(
int
k
=
200
,
float
sigma
=
0.8
);
virtual
void
switchToSelectiveSearchFast
(
int
base_k
=
150
,
int
inc_k
=
150
,
float
sigma
=
0.8
);
virtual
void
switchToSelectiveSearchQuality
(
int
base_k
=
150
,
int
inc_k
=
150
,
float
sigma
=
0.8
);
virtual
void
addImage
(
InputArray
img
);
virtual
void
clearImages
();
virtual
void
addGraphSegmentation
(
Ptr
<
GraphSegmentation
>
g
);
virtual
void
clearGraphSegmentations
();
virtual
void
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s
);
virtual
void
clearStrategies
();
virtual
void
process
(
std
::
vector
<
Rect
>&
rects
);
private
:
String
name_
;
Mat
base_image
;
std
::
vector
<
Mat
>
images
;
std
::
vector
<
Ptr
<
GraphSegmentation
>
>
segmentations
;
std
::
vector
<
Ptr
<
SelectiveSearchSegmentationStrategy
>
>
strategies
;
void
hierarchicalGrouping
(
const
Mat
&
img
,
Ptr
<
SelectiveSearchSegmentationStrategy
>&
s
,
const
Mat
&
img_regions
,
const
Mat_
<
char
>&
is_neighbour
,
const
Mat_
<
int
>&
sizes
,
int
&
nb_segs
,
const
std
::
vector
<
Rect
>&
bounding_rects
,
std
::
vector
<
Region
>&
regions
,
int
region_id
);
};
void
SelectiveSearchSegmentationImpl
::
setBaseImage
(
InputArray
img
)
{
base_image
=
img
.
getMat
();
}
void
SelectiveSearchSegmentationImpl
::
addImage
(
InputArray
img
)
{
images
.
push_back
(
img
.
getMat
());
}
void
SelectiveSearchSegmentationImpl
::
clearImages
()
{
images
.
clear
();
}
void
SelectiveSearchSegmentationImpl
::
addGraphSegmentation
(
Ptr
<
GraphSegmentation
>
g
)
{
segmentations
.
push_back
(
g
);
}
void
SelectiveSearchSegmentationImpl
::
clearGraphSegmentations
()
{
segmentations
.
clear
();
}
void
SelectiveSearchSegmentationImpl
::
addStrategy
(
Ptr
<
SelectiveSearchSegmentationStrategy
>
s
)
{
strategies
.
push_back
(
s
);
}
void
SelectiveSearchSegmentationImpl
::
clearStrategies
()
{
strategies
.
clear
();
}
void
SelectiveSearchSegmentationImpl
::
switchToSingleStrategy
(
int
k
,
float
sigma
)
{
clearImages
();
clearGraphSegmentations
();
clearStrategies
();
Mat
hsv
;
cvtColor
(
base_image
,
hsv
,
COLOR_BGR2HSV
);
addImage
(
hsv
);
Ptr
<
GraphSegmentation
>
gs
=
createGraphSegmentation
();
gs
->
setK
((
float
)
k
);
gs
->
setSigma
(
sigma
);
addGraphSegmentation
(
gs
);
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
color
=
createSelectiveSearchSegmentationStrategyColor
();
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill
=
createSelectiveSearchSegmentationStrategyFill
();
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
texture
=
createSelectiveSearchSegmentationStrategyTexture
();
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size
=
createSelectiveSearchSegmentationStrategySize
();
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
m
=
createSelectiveSearchSegmentationStrategyMultiple
(
color
,
fill
,
texture
,
size
);
addStrategy
(
m
);
}
void
SelectiveSearchSegmentationImpl
::
switchToSelectiveSearchFast
(
int
base_k
,
int
inc_k
,
float
sigma
)
{
clearImages
();
clearGraphSegmentations
();
clearStrategies
();
Mat
hsv
;
cvtColor
(
base_image
,
hsv
,
COLOR_BGR2HSV
);
addImage
(
hsv
);
Mat
lab
;
cvtColor
(
base_image
,
lab
,
COLOR_BGR2Lab
);
addImage
(
lab
);
for
(
int
k
=
base_k
;
k
<=
base_k
+
inc_k
*
2
;
k
+=
inc_k
)
{
Ptr
<
GraphSegmentation
>
gs
=
createGraphSegmentation
();
gs
->
setK
((
float
)
k
);
gs
->
setSigma
(
sigma
);
addGraphSegmentation
(
gs
);
}
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
color
=
createSelectiveSearchSegmentationStrategyColor
();
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill
=
createSelectiveSearchSegmentationStrategyFill
();
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
texture
=
createSelectiveSearchSegmentationStrategyTexture
();
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size
=
createSelectiveSearchSegmentationStrategySize
();
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
m
=
createSelectiveSearchSegmentationStrategyMultiple
(
color
,
fill
,
texture
,
size
);
addStrategy
(
m
);
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill2
=
createSelectiveSearchSegmentationStrategyFill
();
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
texture2
=
createSelectiveSearchSegmentationStrategyTexture
();
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size2
=
createSelectiveSearchSegmentationStrategySize
();
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
m2
=
createSelectiveSearchSegmentationStrategyMultiple
(
fill
,
texture
,
size
);
addStrategy
(
m2
);
}
void
SelectiveSearchSegmentationImpl
::
switchToSelectiveSearchQuality
(
int
base_k
,
int
inc_k
,
float
sigma
)
{
clearImages
();
clearGraphSegmentations
();
clearStrategies
();
Mat
hsv
;
cvtColor
(
base_image
,
hsv
,
COLOR_BGR2HSV
);
addImage
(
hsv
);
Mat
lab
;
cvtColor
(
base_image
,
lab
,
COLOR_BGR2Lab
);
addImage
(
lab
);
Mat
I
;
cvtColor
(
base_image
,
I
,
COLOR_BGR2GRAY
);
addImage
(
I
);
Mat
channel
[
3
];
split
(
hsv
,
channel
);
addImage
(
channel
[
0
]);
split
(
base_image
,
channel
);
std
::
vector
<
Mat
>
channel2
;
channel2
.
push_back
(
channel
[
2
]);
channel2
.
push_back
(
channel
[
1
]);
channel2
.
push_back
(
I
);
Mat
rgI
;
merge
(
channel2
,
rgI
);
addImage
(
rgI
);
for
(
int
k
=
base_k
;
k
<=
base_k
+
inc_k
*
4
;
k
+=
inc_k
)
{
Ptr
<
GraphSegmentation
>
gs
=
createGraphSegmentation
();
gs
->
setK
((
float
)
k
);
gs
->
setSigma
(
sigma
);
addGraphSegmentation
(
gs
);
}
Ptr
<
SelectiveSearchSegmentationStrategyColor
>
color
=
createSelectiveSearchSegmentationStrategyColor
();
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill
=
createSelectiveSearchSegmentationStrategyFill
();
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
texture
=
createSelectiveSearchSegmentationStrategyTexture
();
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size
=
createSelectiveSearchSegmentationStrategySize
();
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
m
=
createSelectiveSearchSegmentationStrategyMultiple
(
color
,
fill
,
texture
,
size
);
addStrategy
(
m
);
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill2
=
createSelectiveSearchSegmentationStrategyFill
();
Ptr
<
SelectiveSearchSegmentationStrategyTexture
>
texture2
=
createSelectiveSearchSegmentationStrategyTexture
();
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size2
=
createSelectiveSearchSegmentationStrategySize
();
Ptr
<
SelectiveSearchSegmentationStrategyMultiple
>
m2
=
createSelectiveSearchSegmentationStrategyMultiple
(
fill
,
texture
,
size
);
addStrategy
(
m2
);
Ptr
<
SelectiveSearchSegmentationStrategyFill
>
fill3
=
createSelectiveSearchSegmentationStrategyFill
();
addStrategy
(
fill3
);
Ptr
<
SelectiveSearchSegmentationStrategySize
>
size3
=
createSelectiveSearchSegmentationStrategySize
();
addStrategy
(
size3
);
}
void
SelectiveSearchSegmentationImpl
::
process
(
std
::
vector
<
Rect
>&
rects
)
{
std
::
vector
<
Region
>
all_regions
;
int
image_id
=
0
;
for
(
std
::
vector
<
Mat
>::
iterator
image
=
images
.
begin
();
image
!=
images
.
end
();
++
image
)
{
for
(
std
::
vector
<
Ptr
<
GraphSegmentation
>
>::
iterator
gs
=
segmentations
.
begin
();
gs
!=
segmentations
.
end
();
++
gs
)
{
Mat
img_regions
;
Mat_
<
char
>
is_neighbour
;
Mat_
<
int
>
sizes
;
// Compute initial segmentation
(
*
gs
)
->
processImage
(
*
image
,
img_regions
);
// Get number of regions
double
min
,
max
;
minMaxLoc
(
img_regions
,
&
min
,
&
max
);
int
nb_segs
=
(
int
)
max
+
1
;
// Compute bouding rects and neighbours
std
::
vector
<
Rect
>
bounding_rects
;
bounding_rects
.
resize
(
nb_segs
);
std
::
vector
<
std
::
vector
<
cv
::
Point
>
>
points
;
points
.
resize
(
nb_segs
);
is_neighbour
=
Mat
::
zeros
(
nb_segs
,
nb_segs
,
CV_8UC1
);
sizes
=
Mat
::
zeros
(
nb_segs
,
1
,
CV_32SC1
);
const
int
*
previous_p
=
NULL
;
for
(
int
i
=
0
;
i
<
(
int
)
img_regions
.
rows
;
i
++
)
{
const
int
*
p
=
img_regions
.
ptr
<
int
>
(
i
);
for
(
int
j
=
0
;
j
<
(
int
)
img_regions
.
cols
;
j
++
)
{
points
[
p
[
j
]].
push_back
(
cv
::
Point
(
j
,
i
));
sizes
.
at
<
int
>
(
p
[
j
],
0
)
=
sizes
.
at
<
int
>
(
p
[
j
],
0
)
+
1
;
if
(
i
>
0
&&
j
>
0
)
{
is_neighbour
.
at
<
char
>
(
p
[
j
],
p
[
j
-
1
])
=
1
;
is_neighbour
.
at
<
char
>
(
p
[
j
],
previous_p
[
j
])
=
1
;
is_neighbour
.
at
<
char
>
(
p
[
j
],
previous_p
[
j
-
1
])
=
1
;
is_neighbour
.
at
<
char
>
(
p
[
j
-
1
],
p
[
j
])
=
1
;
is_neighbour
.
at
<
char
>
(
previous_p
[
j
],
p
[
j
])
=
1
;
is_neighbour
.
at
<
char
>
(
previous_p
[
j
-
1
],
p
[
j
])
=
1
;
}
}
previous_p
=
p
;
}
for
(
int
seg
=
0
;
seg
<
nb_segs
;
seg
++
)
{
bounding_rects
[
seg
]
=
cv
::
boundingRect
(
points
[
seg
]);
}
for
(
std
::
vector
<
Ptr
<
SelectiveSearchSegmentationStrategy
>
>::
iterator
strategy
=
strategies
.
begin
();
strategy
!=
strategies
.
end
();
++
strategy
)
{
std
::
vector
<
Region
>
regions
;
hierarchicalGrouping
(
*
image
,
*
strategy
,
img_regions
,
is_neighbour
,
sizes
,
nb_segs
,
bounding_rects
,
regions
,
image_id
);
for
(
std
::
vector
<
Region
>::
iterator
region
=
regions
.
begin
();
region
!=
regions
.
end
();
++
region
)
{
all_regions
.
push_back
(
*
region
);
}
}
image_id
++
;
}
}
std
::
sort
(
all_regions
.
begin
(),
all_regions
.
end
());
std
::
map
<
Rect
,
char
,
rectComparator
>
processed_rect
;
rects
.
clear
();
// Remove duplicate in rect list
for
(
std
::
vector
<
Region
>::
iterator
region
=
all_regions
.
begin
();
region
!=
all_regions
.
end
();
++
region
)
{
if
(
processed_rect
.
find
((
*
region
).
bounding_box
)
==
processed_rect
.
end
())
{
processed_rect
[(
*
region
).
bounding_box
]
=
true
;
rects
.
push_back
((
*
region
).
bounding_box
);
}
}
}
void
SelectiveSearchSegmentationImpl
::
hierarchicalGrouping
(
const
Mat
&
img
,
Ptr
<
SelectiveSearchSegmentationStrategy
>&
s
,
const
Mat
&
img_regions
,
const
Mat_
<
char
>&
is_neighbour
,
const
Mat_
<
int
>&
sizes_
,
int
&
nb_segs
,
const
std
::
vector
<
Rect
>&
bounding_rects
,
std
::
vector
<
Region
>&
regions
,
int
image_id
)
{
Mat
sizes
=
sizes_
.
clone
();
std
::
vector
<
Neighbour
>
similarities
;
regions
.
clear
();
/////////////////////////////////////////
s
->
setImage
(
img
,
img_regions
,
sizes
,
image_id
);
// Compute initial similarities
for
(
int
i
=
0
;
i
<
nb_segs
;
i
++
)
{
Region
r
;
r
.
id
=
i
;
r
.
level
=
1
;
r
.
merged_to
=
-
1
;
r
.
bounding_box
=
bounding_rects
[
i
];
regions
.
push_back
(
r
);
for
(
int
j
=
i
+
1
;
j
<
nb_segs
;
j
++
)
{
if
(
is_neighbour
.
at
<
char
>
(
i
,
j
))
{
Neighbour
n
;
n
.
from
=
i
;
n
.
to
=
j
;
n
.
similarity
=
s
->
get
(
i
,
j
);
similarities
.
push_back
(
n
);
}
}
}
while
(
similarities
.
size
()
>
0
)
{
std
::
sort
(
similarities
.
begin
(),
similarities
.
end
());
// for(std::vector<Neighbour>::iterator similarity = similarities.begin(); similarity != similarities.end(); ++similarity) {
// std::cout << *similarity << std::endl;
// }
Neighbour
p
=
similarities
.
back
();
similarities
.
pop_back
();
Region
region_from
=
regions
[
p
.
from
];
Region
region_to
=
regions
[
p
.
to
];
Region
new_r
;
new_r
.
id
=
std
::
min
(
region_from
.
id
,
region_to
.
id
);
// Should be the smalest, working ID
new_r
.
level
=
std
::
max
(
region_from
.
level
,
region_to
.
level
)
+
1
;
new_r
.
merged_to
=
-
1
;
new_r
.
bounding_box
=
region_from
.
bounding_box
|
region_to
.
bounding_box
;
regions
.
push_back
(
new_r
);
regions
[
p
.
from
].
merged_to
=
(
int
)
regions
.
size
()
-
1
;
regions
[
p
.
to
].
merged_to
=
(
int
)
regions
.
size
()
-
1
;
// Merge
s
->
merge
(
region_from
.
id
,
region_to
.
id
);
// Update size
sizes
.
at
<
int
>
(
region_from
.
id
,
0
)
+=
sizes
.
at
<
int
>
(
region_to
.
id
,
0
);
sizes
.
at
<
int
>
(
region_to
.
id
,
0
)
=
sizes
.
at
<
int
>
(
region_from
.
id
,
0
);
std
::
vector
<
int
>
local_neighbours
;
for
(
std
::
vector
<
Neighbour
>::
iterator
similarity
=
similarities
.
begin
();
similarity
!=
similarities
.
end
();)
{
if
((
*
similarity
).
from
==
p
.
from
||
(
*
similarity
).
to
==
p
.
from
||
(
*
similarity
).
from
==
p
.
to
||
(
*
similarity
).
to
==
p
.
to
)
{
int
from
=
0
;
if
((
*
similarity
).
from
==
p
.
from
||
(
*
similarity
).
from
==
p
.
to
)
{
from
=
(
*
similarity
).
to
;
}
else
{
from
=
(
*
similarity
).
from
;
}
bool
already_neighboor
=
false
;
for
(
std
::
vector
<
int
>::
iterator
local_neighbour
=
local_neighbours
.
begin
();
local_neighbour
!=
local_neighbours
.
end
();
local_neighbour
++
)
{
if
(
*
local_neighbour
==
from
)
{
already_neighboor
=
true
;
}
}
if
(
!
already_neighboor
)
{
local_neighbours
.
push_back
(
from
);
}
similarity
=
similarities
.
erase
(
similarity
);
}
else
{
similarity
++
;
}
}
for
(
std
::
vector
<
int
>::
iterator
local_neighbour
=
local_neighbours
.
begin
();
local_neighbour
!=
local_neighbours
.
end
();
local_neighbour
++
)
{
Neighbour
n
;
n
.
from
=
(
int
)
regions
.
size
()
-
1
;
n
.
to
=
*
local_neighbour
;
n
.
similarity
=
s
->
get
(
regions
[
n
.
from
].
id
,
regions
[
n
.
to
].
id
);
similarities
.
push_back
(
n
);
}
}
// Compute regions' rank
for
(
std
::
vector
<
Region
>::
iterator
region
=
regions
.
begin
();
region
!=
regions
.
end
();
++
region
)
{
// Note: this is inverted from the paper, but we keep the lover region first so it's works
(
*
region
).
rank
=
((
double
)
rand
()
/
(
RAND_MAX
))
*
((
*
region
).
level
);
}
}
Ptr
<
SelectiveSearchSegmentation
>
createSelectiveSearchSegmentation
()
{
Ptr
<
SelectiveSearchSegmentation
>
s
=
makePtr
<
SelectiveSearchSegmentationImpl
>
();
return
s
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Neighbour
&
n
)
{
os
<<
"Neighbour["
<<
n
.
from
<<
"->"
<<
n
.
to
<<
","
<<
n
.
similarity
<<
"]"
;
return
os
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Region
&
r
)
{
os
<<
"Region[WID"
<<
r
.
id
<<
", L"
<<
r
.
level
<<
", merged to "
<<
r
.
merged_to
<<
", R:"
<<
r
.
rank
<<
", "
<<
r
.
bounding_box
<<
"]"
;
return
os
;
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment