Commit c9e3e220 authored by Maximilien Cuony's avatar Maximilien Cuony Committed by Maximilien Cuony

Implementation of SelectiveSearchSegmentation

parent ef4dd5e5
......@@ -8,3 +8,4 @@ Extended Image Processing
5. Joint Bilateral Filter
6. Superpixels
7. Graph segmentation
8. Selective search from segmentation
......@@ -67,6 +67,18 @@
publisher={Springer}
}
@article{uijlings2013selective,
title={Selective search for object recognition},
author={Uijlings, Jasper RR and van de Sande, Koen EA and Gevers, Theo and Smeulders, Arnold WM},
journal={International journal of computer vision},
volume={104},
number={2},
pages={154--171},
year={2013},
publisher={Springer}
}
@article{Min2014,
title={Fast global image smoothing based on weighted least squares},
author={Min, Dongbo and Choi, Sunghwan and Lu, Jiangbo and Ham, Bumsub and Sohn, Kwanghoon and Do, Minh N},
......
......@@ -67,55 +67,183 @@ namespace cv {
@param min_size The minimum size of segments
*/
CV_EXPORTS_W Ptr<GraphSegmentation> createGraphSegmentation(double sigma=0.5, float k=300, int min_size=100);
//! @}
// Represent an edge between two pixels
class Edge {
public:
int from;
int to;
float weight;
/** @brief Strategie for the selective search segmentation algorithm
The class implements a generic stragery for the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategy : public Algorithm {
public:
/** @brief Set a initial image, with a segementation.
@param img The input image. Any number of channel can be provided
@param regions A segementation of the image. The parameter must be the same size of img.
@param sizes The sizes of different regions
@param image_id If not set to -1, try to cache pre-computations. If the same set og (img, regions, size) is used, the image_id need to be the same.
*/
CV_WRAP virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1) = 0;
bool operator <(const Edge& e) const {
return weight < e.weight;
}
};
/** @brief Return the score between two regions (between 0 and 1)
@param r1 The first region
@param r2 The second region
*/
CV_WRAP virtual float get(int r1, int r2) = 0;
// A point in the sets of points
class PointSetElement {
public:
int p;
int size;
/** @brief Inform the strategy that two regions will be merged
@param r1 The first region
@param r2 The second region
*/
CV_WRAP virtual void merge(int r1, int r2) = 0;
};
/** @brief Color-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategyColor : public SelectiveSearchSegmentationStrategy {
};
/** @brief Create a new color-based strategy */
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyColor> createSelectiveSearchSegmentationStrategyColor();
/** @brief Size-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategySize : public SelectiveSearchSegmentationStrategy {
};
PointSetElement() { }
/** @brief Create a new size-based strategy */
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategySize> createSelectiveSearchSegmentationStrategySize();
PointSetElement(int p_) {
p = p_;
size = 1;
}
};
/** @brief Texture-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategyTexture : public SelectiveSearchSegmentationStrategy {
};
// An object to manage set of points, who can be fusionned
class PointSet {
public:
PointSet(int nb_elements_);
~PointSet();
/** @brief Create a new size-based strategy */
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyTexture> createSelectiveSearchSegmentationStrategyTexture();
int nb_elements;
/** @brief Fill-based strategy for the selective search segmentation algorithm
The class is implemented from the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategyFill : public SelectiveSearchSegmentationStrategy {
};
// Return the main point of the point's set
int getBasePoint(int p);
/** @brief Create a new fill-based strategy */
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyFill> createSelectiveSearchSegmentationStrategyFill();
// Join two sets of points, based on their main point
void joinPoints(int p_a, int p_b);
/** @brief Regroup multiple strategies for the selective search segmentation algorithm
*/
class CV_EXPORTS_W SelectiveSearchSegmentationStrategyMultiple : public SelectiveSearchSegmentationStrategy {
public:
// Return the set size of a set (based on the main point)
int size(unsigned int p) { return mapping[p].size; }
/** @brief Add a new sub-strategy
@param g The strategy
@param weight The weight of the strategy
*/
CV_WRAP virtual void addStrategy(Ptr<SelectiveSearchSegmentationStrategy> g, float weight) = 0;
/** @brief Remove all sub-strategies
*/
CV_WRAP virtual void clearStrategies() = 0;
};
private:
PointSetElement* mapping;
/** @brief Create a new multiple strategy */
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple();
/** @brief Create a new multiple strategy and set one subtrategy
@param s1 The first strategy
*/
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1);
/** @brief Create a new multiple strategy and set two subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
*/
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2);
/** @brief Create a new multiple strategy and set three subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
@param s3 The third strategy
*/
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2, Ptr<SelectiveSearchSegmentationStrategy> s3);
/** @brief Create a new multiple strategy and set four subtrategies, with equal weights
@param s1 The first strategy
@param s2 The second strategy
@param s3 The third strategy
@param s4 The forth strategy
*/
CV_EXPORTS_W Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2, Ptr<SelectiveSearchSegmentationStrategy> s3, Ptr<SelectiveSearchSegmentationStrategy> s4);
/** @brief Selective search segmentation algorithm
The class implements the algorithm described in @cite uijlings2013selective.
*/
class CV_EXPORTS_W SelectiveSearchSegmentation : public Algorithm {
public:
};
/** @brief Set a image used by switch* functions to initialize the class
@param img The image
*/
CV_WRAP virtual void setBaseImage(InputArray img) = 0;
/** @brief Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.
@param k The k parameter for the graph segmentation
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP virtual void switchToSingleStrategy(int k = 200, float sigma = 0.8f) = 0;
/** @brief Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
@param base_k The k parameter for the first graph segmentation
@param inc_k The increment of the k parameter for all graph segmentations
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP virtual void switchToSelectiveSearchFast(int base_k = 150, int inc_k = 150, float sigma = 0.8f) = 0;
/** @brief Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
@param base_k The k parameter for the first graph segmentation
@param inc_k The increment of the k parameter for all graph segmentations
@param sigma The sigma parameter for the graph segmentation
*/
CV_WRAP virtual void switchToSelectiveSearchQuality(int base_k = 150, int inc_k = 150, float sigma = 0.8f) = 0;
/** @brief Add a new image in the list of images to process.
@param img The image
*/
CV_WRAP virtual void addImage(InputArray img) = 0;
/** @brief Clear the list of images to process
*/
CV_WRAP virtual void clearImages() = 0;
/** @brief Add a new graph segmentation in the list of graph segementations to process.
@param g The graph segmentation
*/
CV_WRAP virtual void addGraphSegmentation(Ptr<GraphSegmentation> g) = 0;
/** @brief Clear the list of graph segmentations to process;
*/
CV_WRAP virtual void clearGraphSegmentations() = 0;
/** @brief Add a new strategy in the list of strategy to process.
@param s The strategy
*/
CV_WRAP virtual void addStrategy(Ptr<SelectiveSearchSegmentationStrategy> s) = 0;
/** @brief Clear the list of strategy to process;
*/
CV_WRAP virtual void clearStrategies() = 0;
/** @brief Based on all images, graph segmentations and stragies, computes all possible rects and return them
@param rects The list of rects. The first ones are more relevents than the lasts ones.
*/
CV_WRAP virtual void process(std::vector<Rect>& rects) = 0;
};
/** @brief Create a new SelectiveSearchSegmentation class.
*/
CV_EXPORTS_W Ptr<SelectiveSearchSegmentation> createSelectiveSearchSegmentation();
//! @}
}
}
......
......@@ -32,13 +32,16 @@ the use of this software, even if advised of the possibility of such damage.
#include "opencv2/ximgproc/segmentation.hpp"
#include "opencv2/highgui.hpp"
#include <opencv2/core/utility.hpp>
#include <opencv2/opencv.hpp>
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace cv::ximgproc::segmentation;
Scalar hsv_to_rgb(Scalar);
Scalar color_mapping(int);
static void help() {
std::cout << std::endl <<
"A program demonstrating the use and capabilities of a particular graph based image" << std::endl <<
......@@ -55,9 +58,9 @@ Scalar hsv_to_rgb(Scalar c) {
float * p = in.ptr<float>(0);
p[0] = c[0] * 360;
p[1] = c[1];
p[2] = c[2];
p[0] = (float)c[0] * 360.0f;
p[1] = (float)c[1];
p[2] = (float)c[2];
cvtColor(in, out, COLOR_HSV2RGB);
......@@ -97,7 +100,7 @@ int main(int argc, char** argv) {
gs->setSigma(atof(argv[3]));
if (argc > 4)
gs->setK(atoi(argv[4]));
gs->setK((float)atoi(argv[4]));
if (argc > 5)
gs->setMinSize(atoi(argv[5]));
......@@ -137,9 +140,9 @@ int main(int argc, char** argv) {
for (int j = 0; j < output.cols; j++) {
Scalar color = color_mapping(p[j]);
p2[j*3] = color[0];
p2[j*3 + 1] = color[1];
p2[j*3 + 2] = color[2];
p2[j*3] = (uchar)color[0];
p2[j*3 + 1] = (uchar)color[1];
p2[j*3 + 2] = (uchar)color[2];
}
}
......
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "opencv2/ximgproc/segmentation.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <ctime>
using namespace cv;
using namespace cv::ximgproc::segmentation;
static void help() {
std::cout << std::endl <<
"A program demonstrating the use and capabilities of a particular image segmentation algorithm described" << std::endl <<
" in Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders: " << std::endl <<
" \"Selective Search for Object Recognition\"" << std::endl <<
"International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013" << std::endl << std::endl <<
"Usage:" << std::endl <<
"./selectivesearchsegmentation_demo input_image (single|fast|quality)" << std::endl <<
"Use a to display less rects, d to display more rects, q to quit" << std::endl;
}
int main(int argc, char** argv) {
if (argc < 3) {
help();
return -1;
}
setUseOptimized(true);
setNumThreads(8);
std::srand((int)std::time(0));
Mat img = imread(argv[1]);
Ptr<SelectiveSearchSegmentation> gs = createSelectiveSearchSegmentation();
gs->setBaseImage(img);
if (argv[2][0] == 's') {
gs->switchToSingleStrategy();
} else if (argv[2][0] == 'f') {
gs->switchToSelectiveSearchFast();
} else if (argv[2][0] == 'q') {
gs->switchToSelectiveSearchQuality();
} else {
help();
return -2;
}
std::vector<Rect> rects;
gs->process(rects);
int nb_rects = 10;
char c = (char)waitKey();
while(c != 'q') {
Mat wimg = img.clone();
int i = 0;
for(std::vector<Rect>::iterator it = rects.begin(); it != rects.end(); ++it) {
if (i++ < nb_rects) {
rectangle(wimg, *it, Scalar(0, 0, 255));
}
}
imshow("Output", wimg);
c = (char)waitKey();
if (c == 'd') {
nb_rects += 10;
}
if (c == 'a' && nb_rects > 10) {
nb_rects -= 10;
}
}
return 0;
}
......@@ -47,6 +47,56 @@ namespace cv {
namespace ximgproc {
namespace segmentation {
// Helpers
// Represent an edge between two pixels
class Edge {
public:
int from;
int to;
float weight;
bool operator <(const Edge& e) const {
return weight < e.weight;
}
};
// A point in the sets of points
class PointSetElement {
public:
int p;
int size;
PointSetElement() { }
PointSetElement(int p_) {
p = p_;
size = 1;
}
};
// An object to manage set of points, who can be fusionned
class PointSet {
public:
PointSet(int nb_elements_);
~PointSet();
int nb_elements;
// Return the main point of the point's set
int getBasePoint(int p);
// Join two sets of points, based on their main point
void joinPoints(int p_a, int p_b);
// Return the set size of a set (based on the main point)
int size(unsigned int p) { return mapping[p].size; }
private:
PointSetElement* mapping;
};
class GraphSegmentationImpl : public GraphSegmentation {
public:
GraphSegmentationImpl() {
......
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
/*******************************************************************************\
* Selective search segmentation *
* This code implements the segmentation method described in: *
* Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, *
* Arnold W. M. Smeulders: "Selective Search for Object Recognition " *
* International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013 *
* Author: Maximilien Cuony / LTS2 / EPFL / 2016 *
********************************************************************************/
#include "precomp.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/ximgproc/segmentation.hpp"
#include <iostream>
namespace cv {
namespace ximgproc {
namespace segmentation {
// Helpers
// Represent a regsion
class Region {
public:
int id;
int level;
int merged_to;
double rank;
Rect bounding_box;
friend std::ostream& operator<<(std::ostream& os, const Region& n);
bool operator <(const Region& n) const {
return rank < n.rank;
}
};
// Comparator to sort cv::rect (used for a std::map).
struct rectComparator {
bool operator()(const cv::Rect_<int>& a, const cv::Rect_<int>& b) const {
if (a.x < b.x) {
return true;
}
if (a.x > b.x) {
return false;
}
if (a.y < b.y) {
return true;
}
if (a.y > b.y) {
return false;
}
if (a.width < b.width) {
return true;
}
if (a.width > b.width) {
return false;
}
if (a.height < b.height) {
return true;
}
if (a.height > b.height) {
return false;
}
return false;
}
};
// Represent a neighboor
class Neighbour {
public:
int from;
int to;
float similarity;
friend std::ostream& operator<<(std::ostream& os, const Neighbour& n);
bool operator <(const Neighbour& n) const {
return similarity < n.similarity;
}
};
/****************************************
* Stragegy / Color
***************************************/
class SelectiveSearchSegmentationStrategyColorImpl : public SelectiveSearchSegmentationStrategyColor {
public:
SelectiveSearchSegmentationStrategyColorImpl() {
name_ = "SelectiveSearchSegmentationStrategyColor";
last_image_id = -1;
}
virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1);
virtual float get(int r1, int r2);
virtual void merge(int r1, int r2);
private:
String name_;
Mat histograms; // [Region X Histogram]
Mat sizes;
int histogram_size;
int last_image_id; // If the image_id is not equal to -1 and the same as the previous call for setImage, computations are used again
Mat last_histograms;
};
void SelectiveSearchSegmentationStrategyColorImpl::setImage(InputArray img_, InputArray regions_, InputArray sizes_, int image_id) {
Mat img = img_.getMat();
Mat regions = regions_.getMat();
sizes = sizes_.getMat();
if (image_id != -1 && last_image_id != image_id) {
std::vector<Mat> img_planes;
split(img, img_planes);
int histogram_bins_size = 25;
float range[] = {0, 256};
const float* histogram_ranges = {range};
double min, max;
minMaxLoc(regions, &min, &max);
int nb_segs = (int)max + 1;
histogram_size = histogram_bins_size * img.channels();
histograms = Mat_<float>(nb_segs, histogram_size);
for (int r = 0; r < nb_segs; r++) {
// Generate mask
Mat mask = Mat(img.rows, img.cols, CV_8UC1);
int* regions_data = (int*)regions.data;
char* mask_data = (char*)mask.data;
for (unsigned int x = 0; x < regions.total(); x++) {
mask_data[x] = regions_data[x] == r ? 255 : 0;
}
// Compute histogram for each channels
float tt = 0;
Mat tmp_hists = Mat(histogram_size, 1, CV_32F);
float *tmp_histogram = tmp_hists.ptr<float>(0);
int h_pos = 0;
Mat tmp_hist;
for (int p = 0; p < img.channels(); p++) {
calcHist(&img_planes[p], 1, 0, mask, tmp_hist, 1, &histogram_bins_size, &histogram_ranges);
float *tmp_hist_ = tmp_hist.ptr<float>(0);
// Copy local histogram to global histogram
for (int pos = 0; pos < histogram_bins_size; pos++) {
tmp_histogram[pos + h_pos] = tmp_hist_[pos];
tt += tmp_histogram[pos + h_pos];
}
h_pos += histogram_bins_size;
}
// Normalize historgrams
float* histogram = histograms.ptr<float>(r);
for (int h_pos2 = 0; h_pos2 < histogram_size; h_pos2++) {
histogram[h_pos2] = tmp_histogram[h_pos2] / tt;
}
}
// Save cache if we have an image id
if (image_id != -1) {
last_histograms = histograms.clone();
last_image_id = image_id;
}
} else { // last_image_id == image_id
// Use cache
histograms = last_histograms.clone();
}
}
float SelectiveSearchSegmentationStrategyColorImpl::get(int r1, int r2) {
float r = 0;
float* h1 = histograms.ptr<float>(r1);
float* h2 = histograms.ptr<float>(r2);
for (int i = 0; i < histogram_size; i++) {
r += min(h1[i], h2[i]);
}
return r;
}
void SelectiveSearchSegmentationStrategyColorImpl::merge(int r1, int r2) {
int size_r1 = sizes.at<int>(r1);
int size_r2 = sizes.at<int>(r2);
float* h1 = histograms.ptr<float>(r1);
float* h2 = histograms.ptr<float>(r2);
for (int i = 0; i < histogram_size; i++) {
h1[i] = (h1[i] * size_r1 + h2[i] * size_r2) / (size_r1 + size_r2);
h2[i] = h1[i];
}
}
Ptr<SelectiveSearchSegmentationStrategyColor> createSelectiveSearchSegmentationStrategyColor() {
Ptr<SelectiveSearchSegmentationStrategyColor> s = makePtr<SelectiveSearchSegmentationStrategyColorImpl>();
return s;
}
/****************************************
* Stragegy / Multiple
***************************************/
class SelectiveSearchSegmentationStrategyMultipleImpl : public SelectiveSearchSegmentationStrategyMultiple {
public:
SelectiveSearchSegmentationStrategyMultipleImpl() {
name_ = "SelectiveSearchSegmentationStrategyMultiple";
weights_total = 0;
}
virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1);
virtual float get(int r1, int r2);
virtual void merge(int r1, int r2);
virtual void addStrategy(Ptr<SelectiveSearchSegmentationStrategy> g, float weight);
virtual void clearStrategies();
private:
String name_;
std::vector<Ptr<SelectiveSearchSegmentationStrategy> > strategies;
std::vector<float> weights;
float weights_total;
};
void SelectiveSearchSegmentationStrategyMultipleImpl::addStrategy(Ptr<SelectiveSearchSegmentationStrategy> g, float weight) {
strategies.push_back(g);
weights.push_back(weight);
weights_total += weight;
}
void SelectiveSearchSegmentationStrategyMultipleImpl::clearStrategies() {
strategies.clear();
weights.clear();
weights_total = 0;
}
void SelectiveSearchSegmentationStrategyMultipleImpl::setImage(InputArray img_, InputArray regions_, InputArray sizes_, int image_id) {
for (unsigned int i = 0; i < strategies.size(); i++) {
strategies[i]->setImage(img_, regions_, sizes_, image_id);
}
}
float SelectiveSearchSegmentationStrategyMultipleImpl::get(int r1, int r2) {
float tt = 0;
for (unsigned int i = 0; i < strategies.size(); i++) {
tt += weights[i] * strategies[i]->get(r1, r2);
}
return tt / weights_total;
}
void SelectiveSearchSegmentationStrategyMultipleImpl::merge(int r1, int r2) {
for (unsigned int i = 0; i < strategies.size(); i++) {
strategies[i]->merge(r1, r2);
}
}
Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple() {
Ptr<SelectiveSearchSegmentationStrategyMultiple> s = makePtr<SelectiveSearchSegmentationStrategyMultipleImpl>();
return s;
}
// Helpers to quickly create a multiple stragegy with 1 to 4 equal strageries
Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1) {
Ptr<SelectiveSearchSegmentationStrategyMultiple> s = makePtr<SelectiveSearchSegmentationStrategyMultipleImpl>();
s->addStrategy(s1, 1.0f);
return s;
}
Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2) {
Ptr<SelectiveSearchSegmentationStrategyMultiple> s = makePtr<SelectiveSearchSegmentationStrategyMultipleImpl>();
s->addStrategy(s1, 0.5f);
s->addStrategy(s2, 0.5f);
return s;
}
Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2, Ptr<SelectiveSearchSegmentationStrategy> s3) {
Ptr<SelectiveSearchSegmentationStrategyMultiple> s = makePtr<SelectiveSearchSegmentationStrategyMultipleImpl>();
s->addStrategy(s1, 0.3333f);
s->addStrategy(s2, 0.3333f);
s->addStrategy(s3, 0.3333f);
return s;
}
Ptr<SelectiveSearchSegmentationStrategyMultiple> createSelectiveSearchSegmentationStrategyMultiple(Ptr<SelectiveSearchSegmentationStrategy> s1, Ptr<SelectiveSearchSegmentationStrategy> s2, Ptr<SelectiveSearchSegmentationStrategy> s3, Ptr<SelectiveSearchSegmentationStrategy> s4) {
Ptr<SelectiveSearchSegmentationStrategyMultiple> s = makePtr<SelectiveSearchSegmentationStrategyMultipleImpl>();
s->addStrategy(s1, 0.25f);
s->addStrategy(s2, 0.25f);
s->addStrategy(s3, 0.25f);
s->addStrategy(s4, 0.25f);
return s;
}
/****************************************
* Stragegy / Size
***************************************/
class SelectiveSearchSegmentationStrategySizeImpl : public SelectiveSearchSegmentationStrategySize {
public:
SelectiveSearchSegmentationStrategySizeImpl() {
name_ = "SelectiveSearchSegmentationStrategySize";
}
virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1);
virtual float get(int r1, int r2);
virtual void merge(int r1, int r2);
private:
String name_;
Mat sizes;
int size_image;
};
void SelectiveSearchSegmentationStrategySizeImpl::setImage(InputArray img_, InputArray, InputArray sizes_, int /* image_id */) {
Mat img = img_.getMat();
size_image = img.rows * img.cols;
sizes = sizes_.getMat();
}
float SelectiveSearchSegmentationStrategySizeImpl::get(int r1, int r2) {
int size_r1 = sizes.at<int>(r1);
int size_r2 = sizes.at<int>(r2);
return max(min(1.0f - (float)(size_r1 + size_r2) / (float)(size_image), 1.0f), 0.0f);
}
void SelectiveSearchSegmentationStrategySizeImpl::merge(int /* r1 */, int /* r2 */) {
// Nothing to do (sizes are merged at parent level)
}
Ptr<SelectiveSearchSegmentationStrategySize> createSelectiveSearchSegmentationStrategySize() {
Ptr<SelectiveSearchSegmentationStrategySize> s = makePtr<SelectiveSearchSegmentationStrategySizeImpl>();
return s;
}
/****************************************
* Stragegy / Fill
***************************************/
class SelectiveSearchSegmentationStrategyFillImpl : public SelectiveSearchSegmentationStrategyFill {
public:
SelectiveSearchSegmentationStrategyFillImpl() {
name_ = "SelectiveSearchSegmentationStrategyFill";
}
virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1);
virtual float get(int r1, int r2);
virtual void merge(int r1, int r2);
private:
String name_;
Mat sizes;
int size_image;
std::vector<Rect> bounding_rects;
};
void SelectiveSearchSegmentationStrategyFillImpl::setImage(InputArray img_, InputArray regions_, InputArray sizes_, int /* image_id */) {
Mat img = img_.getMat();
sizes = sizes_.getMat();
Mat regions = regions_.getMat();
size_image = img.rows * img.cols;
// Build initial bouding rects
double min, max;
minMaxLoc(regions, &min, &max);
int nb_segs = (int)max + 1;
// Build a list of points for each regions
std::vector<std::vector<cv::Point> > points;
points.resize(nb_segs);
for (int i = 0; i < (int)regions.rows; i++) {
const int* p = regions.ptr<int>(i);
for (int j = 0; j < (int)regions.cols; j++) {
points[p[j]].push_back(cv::Point(j, i));
}
}
// Compute bounding rects for each regions
bounding_rects.resize(nb_segs);
for(int seg = 0; seg < nb_segs; seg++) {
bounding_rects[seg] = cv::boundingRect(points[seg]);
}
}
float SelectiveSearchSegmentationStrategyFillImpl::get(int r1, int r2) {
int size_r1 = sizes.at<int>(r1);
int size_r2 = sizes.at<int>(r2);
int bounding_rect_size = (bounding_rects[r1] | bounding_rects[r2]).area();
return max(min(1.0f - (float)(bounding_rect_size - size_r1 - size_r2) / (float)(size_image), 1.0f), 0.0f);
}
void SelectiveSearchSegmentationStrategyFillImpl::merge(int r1, int r2) {
bounding_rects[r1] = bounding_rects[r1] | bounding_rects[r2];
bounding_rects[r2] = bounding_rects[r1];
}
Ptr<SelectiveSearchSegmentationStrategyFill> createSelectiveSearchSegmentationStrategyFill() {
Ptr<SelectiveSearchSegmentationStrategyFill> s = makePtr<SelectiveSearchSegmentationStrategyFillImpl>();
return s;
}
/****************************************
* Stragegy / Texture
***************************************/
class SelectiveSearchSegmentationStrategyTextureImpl : public SelectiveSearchSegmentationStrategyTexture {
public:
SelectiveSearchSegmentationStrategyTextureImpl() {
name_ = "SelectiveSearchSegmentationStrategyTexture";
last_image_id = -1;
}
virtual void setImage(InputArray img, InputArray regions, InputArray sizes, int image_id = -1);
virtual float get(int r1, int r2);
virtual void merge(int r1, int r2);
private:
String name_;
Mat histograms; //[Region X Histogram]
Mat sizes;
int histogram_size;
int last_image_id; // If the image_id is not equal to -1 and the same as the previous call for setImage, computations are used again
Mat last_histograms;
};
void SelectiveSearchSegmentationStrategyTextureImpl::setImage(InputArray img_, InputArray regions_, InputArray sizes_, int image_id) {
Mat img = img_.getMat();
Mat regions = regions_.getMat();
sizes = sizes_.getMat();
if (image_id != -1 && last_image_id != image_id) {
std::vector<Mat> img_planes;
split(img, img_planes);
int histogram_bins_size = 10;
float range[] = {0.0, 256.0};
double min, max;
minMaxLoc(regions, &min, &max);
int nb_segs = (int)max + 1;
histogram_size = histogram_bins_size * img.channels() * 8;
histograms = Mat_<float>(nb_segs, histogram_size);
// Compute, for each channels, the 8 gaussians
std::vector<Mat> img_gaussians;
for (int p = 0; p < img.channels(); p++) {
Mat tmp_gradiant;
Mat tmp_gradiant_pos, tmp_gradiant_neg;
Mat img_plane_rotated;
Mat tmp_rot;
// X, no rot
Scharr(img_planes[p], tmp_gradiant, CV_32F, 1, 0);
threshold(tmp_gradiant, tmp_gradiant_pos, 0, 0, THRESH_TOZERO);
threshold(tmp_gradiant, tmp_gradiant_neg, 0, 0, THRESH_TOZERO_INV);
img_gaussians.push_back(tmp_gradiant_pos.clone());
img_gaussians.push_back(tmp_gradiant_neg.clone());
// Y, no rot
Scharr(img_planes[p], tmp_gradiant, CV_32F, 0, 1);
threshold(tmp_gradiant, tmp_gradiant_pos, 0, 0, THRESH_TOZERO);
threshold(tmp_gradiant, tmp_gradiant_neg, 0, 0, THRESH_TOZERO_INV);
img_gaussians.push_back(tmp_gradiant_pos.clone());
img_gaussians.push_back(tmp_gradiant_neg.clone());
Point2f center(img.cols / 2.0f, img.rows / 2.0f);
Mat rot = cv::getRotationMatrix2D(center, 45.0, 1.0);
Rect bbox = cv::RotatedRect(center, img.size(), 45.0).boundingRect();
rot.at<double>(0,2) += bbox.width/2.0 - center.x;
rot.at<double>(1,2) += bbox.height/2.0 - center.y;
warpAffine(img_planes[p], img_plane_rotated, rot, bbox.size());
// X, rot
Scharr(img_plane_rotated, tmp_gradiant, CV_32F, 1, 0);
center = Point((int)(img_plane_rotated.cols / 2.0), (int)(img_plane_rotated.rows / 2.0));
rot = cv::getRotationMatrix2D(center, -45.0, 1.0);
warpAffine(tmp_gradiant, tmp_rot, rot, bbox.size());
tmp_gradiant = tmp_rot(Rect((bbox.width - img.cols) / 2, (bbox.height - img.rows) / 2, img.cols, img.rows));
threshold(tmp_gradiant, tmp_gradiant_pos, 0, 0, THRESH_TOZERO);
threshold(tmp_gradiant, tmp_gradiant_neg, 0, 0, THRESH_TOZERO_INV);
img_gaussians.push_back(tmp_gradiant_pos.clone());
img_gaussians.push_back(tmp_gradiant_neg.clone());
// Y, rot
Scharr(img_plane_rotated, tmp_gradiant, CV_32F, 0, 1);
center = Point((int)(img_plane_rotated.cols / 2.0), (int)(img_plane_rotated.rows / 2.0));
rot = cv::getRotationMatrix2D(center, -45.0, 1.0);
warpAffine(tmp_gradiant, tmp_rot, rot, bbox.size());
tmp_gradiant = tmp_rot(Rect((bbox.width - img.cols) / 2, (bbox.height - img.rows) / 2, img.cols, img.rows));
threshold(tmp_gradiant, tmp_gradiant_pos, 0, 0, THRESH_TOZERO);
threshold(tmp_gradiant, tmp_gradiant_neg, 0, 0, THRESH_TOZERO_INV);
img_gaussians.push_back(tmp_gradiant_pos.clone());
img_gaussians.push_back(tmp_gradiant_neg.clone());
}
// Normalisze gaussiaans in 0-255 range (for faster computation of histograms)
for (int i = 0; i < img.channels() * 8; i++) {
double hmin, hmax;
minMaxLoc(img_gaussians[i], &hmin, &hmax);
Mat tmp;
img_gaussians[i].convertTo(tmp, CV_8U, (range[1] - 1) / (hmax - hmin), -(range[1] - 1) * hmin / (hmax - hmin));
img_gaussians[i] = tmp;
}
// We compute histograms manualy, directly addings bins based on the region instead of computing multiple histograms
// This speedup significantly computations
std::vector<int> totals;
totals.resize(nb_segs);
// Bins for histograms
Mat_<int> tmp_histograms = Mat_<int>::zeros(nb_segs, histogram_size);
int* regions_data = (int*)regions.data;
for (unsigned int x = 0; x < regions.total(); x++) {
int region = regions_data[x];
int* histogram = tmp_histograms.ptr<int>(region);
for (int p = 0; p < img.channels(); p++) {
for (unsigned int i = 0; i < 8; i++) {
int val = (int)((unsigned char*)img_gaussians[p * 8 + i].data)[x];
int bin = (int)((float)val / (range[1] / histogram_bins_size));
histogram[(p * 8 + i) * histogram_bins_size + bin]++;
totals[region]++;
}
}
}
// Normalisation per segments
for (int r = 0; r < nb_segs; r++) {
float* histogram = histograms.ptr<float>(r);
int* tmp_histogram = tmp_histograms.ptr<int>(r);
for (int h_pos2 = 0; h_pos2 < histogram_size; h_pos2++) {
histogram[h_pos2] = (float)tmp_histogram[h_pos2] / (float)totals[r];
}
}
if (image_id != -1) { // Save cache if it's apply
last_histograms = histograms.clone();
last_image_id = image_id;
}
} else { // image_id == last_image_id
histograms = last_histograms.clone(); // Use cache
}
}
float SelectiveSearchSegmentationStrategyTextureImpl::get(int r1, int r2) {
float r = 0;
float* h1 = histograms.ptr<float>(r1);
float* h2 = histograms.ptr<float>(r2);
for (int i = 0; i < histogram_size; i++) {
r += min(h1[i], h2[i]);
}
return r;
}
void SelectiveSearchSegmentationStrategyTextureImpl::merge(int r1, int r2) {
int size_r1 = sizes.at<int>(r1);
int size_r2 = sizes.at<int>(r2);
float* h1 = histograms.ptr<float>(r1);
float* h2 = histograms.ptr<float>(r2);
for (int i = 0; i < histogram_size; i++) {
h1[i] = (h1[i] * size_r1 + h2[i] * size_r2) / (size_r1 + size_r2);
h2[i] = h1[i];
}
}
Ptr<SelectiveSearchSegmentationStrategyTexture> createSelectiveSearchSegmentationStrategyTexture() {
Ptr<SelectiveSearchSegmentationStrategyTexture> s = makePtr<SelectiveSearchSegmentationStrategyTextureImpl>();
return s;
}
// Core
class SelectiveSearchSegmentationImpl : public SelectiveSearchSegmentation {
public:
SelectiveSearchSegmentationImpl() {
name_ = "SelectiveSearchSegmentation";
}
~SelectiveSearchSegmentationImpl() {
};
virtual void write(FileStorage& fs) const {
fs << "name" << name_;
}
virtual void read(const FileNode& fn) {
CV_Assert( (String)fn["name"] == name_);
}
virtual void setBaseImage(InputArray img);
virtual void switchToSingleStrategy(int k = 200, float sigma = 0.8);
virtual void switchToSelectiveSearchFast(int base_k = 150, int inc_k = 150, float sigma = 0.8);
virtual void switchToSelectiveSearchQuality(int base_k = 150, int inc_k = 150, float sigma = 0.8);
virtual void addImage(InputArray img);
virtual void clearImages();
virtual void addGraphSegmentation(Ptr<GraphSegmentation> g);
virtual void clearGraphSegmentations();
virtual void addStrategy(Ptr<SelectiveSearchSegmentationStrategy> s);
virtual void clearStrategies();
virtual void process(std::vector<Rect>& rects);
private:
String name_;
Mat base_image;
std::vector<Mat> images;
std::vector<Ptr<GraphSegmentation> > segmentations;
std::vector<Ptr<SelectiveSearchSegmentationStrategy> > strategies;
void hierarchicalGrouping(const Mat& img, Ptr<SelectiveSearchSegmentationStrategy>& s, const Mat& img_regions, const Mat_<char>& is_neighbour, const Mat_<int>& sizes, int& nb_segs, const std::vector<Rect>& bounding_rects, std::vector<Region>& regions, int region_id);
};
void SelectiveSearchSegmentationImpl::setBaseImage(InputArray img) {
base_image = img.getMat();
}
void SelectiveSearchSegmentationImpl::addImage(InputArray img) {
images.push_back(img.getMat());
}
void SelectiveSearchSegmentationImpl::clearImages() {
images.clear();
}
void SelectiveSearchSegmentationImpl::addGraphSegmentation(Ptr<GraphSegmentation> g) {
segmentations.push_back(g);
}
void SelectiveSearchSegmentationImpl::clearGraphSegmentations() {
segmentations.clear();
}
void SelectiveSearchSegmentationImpl::addStrategy(Ptr<SelectiveSearchSegmentationStrategy> s) {
strategies.push_back(s);
}
void SelectiveSearchSegmentationImpl::clearStrategies() {
strategies.clear();
}
void SelectiveSearchSegmentationImpl::switchToSingleStrategy(int k, float sigma) {
clearImages();
clearGraphSegmentations();
clearStrategies();
Mat hsv;
cvtColor(base_image, hsv, COLOR_BGR2HSV);
addImage(hsv);
Ptr<GraphSegmentation> gs = createGraphSegmentation();
gs->setK((float)k);
gs->setSigma(sigma);
addGraphSegmentation(gs);
Ptr<SelectiveSearchSegmentationStrategyColor> color = createSelectiveSearchSegmentationStrategyColor();
Ptr<SelectiveSearchSegmentationStrategyFill> fill = createSelectiveSearchSegmentationStrategyFill();
Ptr<SelectiveSearchSegmentationStrategyTexture> texture = createSelectiveSearchSegmentationStrategyTexture();
Ptr<SelectiveSearchSegmentationStrategySize> size = createSelectiveSearchSegmentationStrategySize();
Ptr<SelectiveSearchSegmentationStrategyMultiple> m = createSelectiveSearchSegmentationStrategyMultiple(color, fill, texture, size);
addStrategy(m);
}
void SelectiveSearchSegmentationImpl::switchToSelectiveSearchFast(int base_k, int inc_k, float sigma) {
clearImages();
clearGraphSegmentations();
clearStrategies();
Mat hsv;
cvtColor(base_image, hsv, COLOR_BGR2HSV);
addImage(hsv);
Mat lab;
cvtColor(base_image, lab, COLOR_BGR2Lab);
addImage(lab);
for (int k = base_k; k <= base_k + inc_k * 2; k+= inc_k) {
Ptr<GraphSegmentation> gs = createGraphSegmentation();
gs->setK((float)k);
gs->setSigma(sigma);
addGraphSegmentation(gs);
}
Ptr<SelectiveSearchSegmentationStrategyColor> color = createSelectiveSearchSegmentationStrategyColor();
Ptr<SelectiveSearchSegmentationStrategyFill> fill = createSelectiveSearchSegmentationStrategyFill();
Ptr<SelectiveSearchSegmentationStrategyTexture> texture = createSelectiveSearchSegmentationStrategyTexture();
Ptr<SelectiveSearchSegmentationStrategySize> size = createSelectiveSearchSegmentationStrategySize();
Ptr<SelectiveSearchSegmentationStrategyMultiple> m = createSelectiveSearchSegmentationStrategyMultiple(color, fill, texture, size);
addStrategy(m);
Ptr<SelectiveSearchSegmentationStrategyFill> fill2 = createSelectiveSearchSegmentationStrategyFill();
Ptr<SelectiveSearchSegmentationStrategyTexture> texture2 = createSelectiveSearchSegmentationStrategyTexture();
Ptr<SelectiveSearchSegmentationStrategySize> size2 = createSelectiveSearchSegmentationStrategySize();
Ptr<SelectiveSearchSegmentationStrategyMultiple> m2 = createSelectiveSearchSegmentationStrategyMultiple(fill, texture, size);
addStrategy(m2);
}
void SelectiveSearchSegmentationImpl::switchToSelectiveSearchQuality(int base_k, int inc_k, float sigma) {
clearImages();
clearGraphSegmentations();
clearStrategies();
Mat hsv;
cvtColor(base_image, hsv, COLOR_BGR2HSV);
addImage(hsv);
Mat lab;
cvtColor(base_image, lab, COLOR_BGR2Lab);
addImage(lab);
Mat I;
cvtColor(base_image, I, COLOR_BGR2GRAY);
addImage(I);
Mat channel[3];
split(hsv, channel);
addImage(channel[0]);
split(base_image, channel);
std::vector<Mat> channel2;
channel2.push_back(channel[2]);
channel2.push_back(channel[1]);
channel2.push_back(I);
Mat rgI;
merge(channel2, rgI);
addImage(rgI);
for (int k = base_k; k <= base_k + inc_k * 4; k+= inc_k) {
Ptr<GraphSegmentation> gs = createGraphSegmentation();
gs->setK((float)k);
gs->setSigma(sigma);
addGraphSegmentation(gs);
}
Ptr<SelectiveSearchSegmentationStrategyColor> color = createSelectiveSearchSegmentationStrategyColor();
Ptr<SelectiveSearchSegmentationStrategyFill> fill = createSelectiveSearchSegmentationStrategyFill();
Ptr<SelectiveSearchSegmentationStrategyTexture> texture = createSelectiveSearchSegmentationStrategyTexture();
Ptr<SelectiveSearchSegmentationStrategySize> size = createSelectiveSearchSegmentationStrategySize();
Ptr<SelectiveSearchSegmentationStrategyMultiple> m = createSelectiveSearchSegmentationStrategyMultiple(color, fill, texture, size);
addStrategy(m);
Ptr<SelectiveSearchSegmentationStrategyFill> fill2 = createSelectiveSearchSegmentationStrategyFill();
Ptr<SelectiveSearchSegmentationStrategyTexture> texture2 = createSelectiveSearchSegmentationStrategyTexture();
Ptr<SelectiveSearchSegmentationStrategySize> size2 = createSelectiveSearchSegmentationStrategySize();
Ptr<SelectiveSearchSegmentationStrategyMultiple> m2 = createSelectiveSearchSegmentationStrategyMultiple(fill, texture, size);
addStrategy(m2);
Ptr<SelectiveSearchSegmentationStrategyFill> fill3 = createSelectiveSearchSegmentationStrategyFill();
addStrategy(fill3);
Ptr<SelectiveSearchSegmentationStrategySize> size3 = createSelectiveSearchSegmentationStrategySize();
addStrategy(size3);
}
void SelectiveSearchSegmentationImpl::process(std::vector<Rect>& rects) {
std::vector<Region> all_regions;
int image_id = 0;
for(std::vector<Mat>::iterator image = images.begin(); image != images.end(); ++image) {
for(std::vector<Ptr<GraphSegmentation> >::iterator gs = segmentations.begin(); gs != segmentations.end(); ++gs) {
Mat img_regions;
Mat_<char> is_neighbour;
Mat_<int> sizes;
// Compute initial segmentation
(*gs)->processImage(*image, img_regions);
// Get number of regions
double min, max;
minMaxLoc(img_regions, &min, &max);
int nb_segs = (int)max + 1;
// Compute bouding rects and neighbours
std::vector<Rect> bounding_rects;
bounding_rects.resize(nb_segs);
std::vector<std::vector<cv::Point> > points;
points.resize(nb_segs);
is_neighbour = Mat::zeros(nb_segs, nb_segs, CV_8UC1);
sizes = Mat::zeros(nb_segs, 1, CV_32SC1);
const int* previous_p = NULL;
for (int i = 0; i < (int)img_regions.rows; i++) {
const int* p = img_regions.ptr<int>(i);
for (int j = 0; j < (int)img_regions.cols; j++) {
points[p[j]].push_back(cv::Point(j, i));
sizes.at<int>(p[j], 0) = sizes.at<int>(p[j], 0) + 1;
if (i > 0 && j > 0) {
is_neighbour.at<char>(p[j], p[j - 1]) = 1;
is_neighbour.at<char>(p[j], previous_p[j]) = 1;
is_neighbour.at<char>(p[j], previous_p[j - 1]) = 1;
is_neighbour.at<char>(p[j - 1], p[j]) = 1;
is_neighbour.at<char>(previous_p[j], p[j]) = 1;
is_neighbour.at<char>(previous_p[j - 1], p[j]) = 1;
}
}
previous_p = p;
}
for(int seg = 0; seg < nb_segs; seg++) {
bounding_rects[seg] = cv::boundingRect(points[seg]);
}
for(std::vector<Ptr<SelectiveSearchSegmentationStrategy> >::iterator strategy = strategies.begin(); strategy != strategies.end(); ++strategy) {
std::vector<Region> regions;
hierarchicalGrouping(*image, *strategy, img_regions, is_neighbour, sizes, nb_segs, bounding_rects, regions, image_id);
for(std::vector<Region>::iterator region = regions.begin(); region != regions.end(); ++region) {
all_regions.push_back(*region);
}
}
image_id++;
}
}
std::sort(all_regions.begin(), all_regions.end());
std::map<Rect, char, rectComparator> processed_rect;
rects.clear();
// Remove duplicate in rect list
for(std::vector<Region>::iterator region = all_regions.begin(); region != all_regions.end(); ++region) {
if (processed_rect.find((*region).bounding_box) == processed_rect.end()) {
processed_rect[(*region).bounding_box] = true;
rects.push_back((*region).bounding_box);
}
}
}
void SelectiveSearchSegmentationImpl::hierarchicalGrouping(const Mat& img, Ptr<SelectiveSearchSegmentationStrategy>& s, const Mat& img_regions, const Mat_<char>& is_neighbour, const Mat_<int>& sizes_, int& nb_segs, const std::vector<Rect>& bounding_rects, std::vector<Region>& regions, int image_id) {
Mat sizes = sizes_.clone();
std::vector<Neighbour> similarities;
regions.clear();
/////////////////////////////////////////
s->setImage(img, img_regions, sizes, image_id);
// Compute initial similarities
for (int i = 0; i < nb_segs; i++) {
Region r;
r.id = i;
r.level = 1;
r.merged_to = -1;
r.bounding_box = bounding_rects[i];
regions.push_back(r);
for (int j = i + 1; j < nb_segs; j++) {
if (is_neighbour.at<char>(i, j)) {
Neighbour n;
n.from = i;
n.to = j;
n.similarity = s->get(i, j);
similarities.push_back(n);
}
}
}
while(similarities.size() > 0) {
std::sort(similarities.begin(), similarities.end());
// for(std::vector<Neighbour>::iterator similarity = similarities.begin(); similarity != similarities.end(); ++similarity) {
// std::cout << *similarity << std::endl;
// }
Neighbour p = similarities.back();
similarities.pop_back();
Region region_from = regions[p.from];
Region region_to = regions[p.to];
Region new_r;
new_r.id = std::min(region_from.id, region_to.id); // Should be the smalest, working ID
new_r.level = std::max(region_from.level, region_to.level) + 1;
new_r.merged_to = -1;
new_r.bounding_box = region_from.bounding_box | region_to.bounding_box;
regions.push_back(new_r);
regions[p.from].merged_to = (int)regions.size() - 1;
regions[p.to].merged_to = (int)regions.size() - 1;
// Merge
s->merge(region_from.id, region_to.id);
// Update size
sizes.at<int>(region_from.id, 0) += sizes.at<int>(region_to.id, 0);
sizes.at<int>(region_to.id, 0) = sizes.at<int>(region_from.id, 0);
std::vector<int> local_neighbours;
for(std::vector<Neighbour>::iterator similarity = similarities.begin(); similarity != similarities.end();) {
if ((*similarity).from == p.from || (*similarity).to == p.from || (*similarity).from == p.to || (*similarity).to == p.to) {
int from = 0;
if ((*similarity).from == p.from || (*similarity).from == p.to) {
from = (*similarity).to;
} else {
from = (*similarity).from;
}
bool already_neighboor = false;
for(std::vector<int>::iterator local_neighbour = local_neighbours.begin(); local_neighbour != local_neighbours.end(); local_neighbour++) {
if (*local_neighbour == from) {
already_neighboor = true;
}
}
if (!already_neighboor) {
local_neighbours.push_back(from);
}
similarity = similarities.erase(similarity);
} else {
similarity++;
}
}
for(std::vector<int>::iterator local_neighbour = local_neighbours.begin(); local_neighbour != local_neighbours.end(); local_neighbour++) {
Neighbour n;
n.from = (int)regions.size() - 1;
n.to = *local_neighbour;
n.similarity = s->get(regions[n.from].id, regions[n.to].id);
similarities.push_back(n);
}
}
// Compute regions' rank
for(std::vector<Region>::iterator region = regions.begin(); region != regions.end(); ++region) {
// Note: this is inverted from the paper, but we keep the lover region first so it's works
(*region).rank = ((double) rand() / (RAND_MAX)) * ((*region).level);
}
}
Ptr<SelectiveSearchSegmentation> createSelectiveSearchSegmentation() {
Ptr<SelectiveSearchSegmentation> s = makePtr<SelectiveSearchSegmentationImpl>();
return s;
}
std::ostream& operator<<(std::ostream& os, const Neighbour& n) {
os << "Neighbour[" << n.from << "->" << n.to << "," << n.similarity << "]";
return os;
}
std::ostream& operator<<(std::ostream& os, const Region& r) {
os << "Region[WID" << r.id << ", L" << r.level << ", merged to " << r.merged_to << ", R:" << r.rank << ", " << r.bounding_box << "]";
return os;
}
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment