Commit c83e49a7 authored by Muresan Mircea Paul's avatar Muresan Mircea Paul

modify sample by adding the checks in the parse function

some extra conditions added to the sample

changed scale

fixed some issues regarding the matching and the sample

modified expression for hamming lut

condition in confidence check

changed the name : bm to sgm for sample
parent e7ab49eb
......@@ -11,7 +11,7 @@ using namespace cv::stereo;
enum { STEREO_BINARY_BM, STEREO_BINARY_SGM };
static cv::CommandLineParser parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type);
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success);
int main(int argc, char** argv)
{
string left, right;
......@@ -19,6 +19,7 @@ int main(int argc, char** argv)
float scale = 4;
int algo = STEREO_BINARY_BM;
int binary_descriptor_type = 0;
int success;
// here we extract the values that were added as arguments
// we also test to see if they are provided correcly
cv::CommandLineParser parser =
......@@ -28,50 +29,12 @@ int main(int argc, char** argv)
aggregation_window,
P1, P2,
scale,
algo, binary_descriptor_type);
if (!parser.check())
algo, binary_descriptor_type,success);
if (!parser.check() || !success)
{
parser.printMessage();
return 1;
}
int fail = 0;
//TEST if the provided parameters are correct
if(binary_descriptor_type == CV_DENSE_CENSUS && kernel_size > 5)
{
cout << "For the dense census transform the maximum kernel size should be 5\n";
fail = 1;
}
if((binary_descriptor_type == CV_MEAN_VARIATION || binary_descriptor_type == CV_MODIFIED_CENSUS_TRANSFORM || binary_descriptor_type == CV_STAR_KERNEL) && kernel_size != 9)
{
cout <<" For Mean variation and the modified census transform the kernel size should be equal to 9\n";
fail = 1;
}
if((binary_descriptor_type == CV_CS_CENSUS || binary_descriptor_type == CV_MODIFIED_CS_CENSUS) && kernel_size > 7)
{
cout << " The kernel size should be smaller or equal to 7 for the CS census and modified center symetric census\n";
fail = 1;
}
if(binary_descriptor_type == CV_SPARSE_CENSUS && kernel_size > 11)
{
cout << "The kernel size for the sparse census must be smaller or equal to 11\n";
fail = 1;
}
if(number_of_disparities < 10)
{
cout << "Number of disparities should be greater than 10\n";
fail = 1;
}
if(P2 / P1 < 2)
{
cout << "You should probabilly choose a greater P2 penalty\n";
fail = 1;
}
if(fail == 1)
{
return 1;
}
// verify if the user inputs the correct number of parameters
Mat image1, image2;
// we read a pair of images from the disk
......@@ -85,7 +48,6 @@ int main(int argc, char** argv)
parser.printMessage();
return 1;
}
// we display the parsed parameters
const char *b[7] = { "CV_DENSE_CENSUS", "CV_SPARSE_CENSUS", "CV_CS_CENSUS", "CV_MODIFIED_CS_CENSUS",
"CV_MODIFIED_CENSUS_TRANSFORM", "CV_MEAN_VARIATION", "CV_STAR_KERNEL" };
......@@ -151,21 +113,20 @@ int main(int argc, char** argv)
return 0;
}
static cv::CommandLineParser parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type)
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success)
{
static const char* keys =
"{ @left | | }"
"{ @right | | }"
"{ k kernel_size | 9 | }"
"{ d disparity | 128 | }"
"{ w aggregation_window | 9 | }"
"{ P1 | 100 | }"
"{ P2 | 1000 | }"
"{ b binary_descriptor | 4 | Index of the descriptor type:\n 0 - CV_DENSE_CENSUS,\n 1 - CV_SPARSE_CENSUS,\n 2 - CV_CS_CENSUS,\n 3 - CV_MODIFIED_CS_CENSUS,\n 4 - CV_MODIFIED_CENSUS_TRANSFORM,\n 5 - CV_MEAN_VARIATION,\n 6 - CV_STAR_KERNEL}"
"{ s scale | 1.01593 | }"
"{ k kernel_size | 9 | }"
"{ d disparity | 128 | }"
"{ w aggregation_window | 9 | }"
"{ P1 | 100 | }"
"{ P2 | 1000 | }"
"{ b binary_descriptor | 4 | Index of the descriptor type:\n 0 - CV_DENSE_CENSUS,\n 1 - CV_SPARSE_CENSUS,\n 2 - CV_CS_CENSUS,\n 3 - CV_MODIFIED_CS_CENSUS,\n 4 - CV_MODIFIED_CENSUS_TRANSFORM,\n 5 - CV_MEAN_VARIATION,\n 6 - CV_STAR_KERNEL}"
"{ s scale | 1.01593 | }"
"{ a algorithm | sgm | }"
;
cv::CommandLineParser parser( argc, argv, keys );
left = parser.get<string>(0);
......@@ -181,5 +142,55 @@ static cv::CommandLineParser parse_argument_values(int argc, char **argv, string
parser.about("\nDemo stereo matching converting L and R images into disparity images using BM and SGBM\n");
success = 1;
//TEST if the provided parameters are correct
if(binary_descriptor_type == CV_DENSE_CENSUS && kernel_size > 5)
{
cout << "For the dense census transform the maximum kernel size should be 5\n";
success = 0;
}
if((binary_descriptor_type == CV_MEAN_VARIATION || binary_descriptor_type == CV_MODIFIED_CENSUS_TRANSFORM || binary_descriptor_type == CV_STAR_KERNEL) && kernel_size != 9)
{
cout <<" For Mean variation and the modified census transform the kernel size should be equal to 9\n";
success = 0;
}
if((binary_descriptor_type == CV_CS_CENSUS || binary_descriptor_type == CV_MODIFIED_CS_CENSUS) && kernel_size > 7)
{
cout << " The kernel size should be smaller or equal to 7 for the CS census and modified center symetric census\n";
success = 0;
}
if(binary_descriptor_type == CV_SPARSE_CENSUS && kernel_size > 11)
{
cout << "The kernel size for the sparse census must be smaller or equal to 11\n";
success = 0;
}
if(number_of_disparities < 10)
{
cout << "Number of disparities should be greater than 10\n";
success = 0;
}
if(aggregation_window < 3)
{
cout << "Aggregation window should be > 3";
success = 0;
}
if(scale < 1)
{
cout << "The scale should be a positive number \n";
success = 0;
}
if(P1 != 0)
{
if(P2 / P1 < 2)
{
cout << "You should probably choose a greater P2 penalty\n";
success = 0;
}
}
else
{
cout << " Penalties should be greater than 0\n";
success = 0;
}
return parser;
}
......@@ -95,8 +95,11 @@ namespace cv
mini3 = c[(iw + i * search_region) * widthDisp2 + i];
}
}
if (mini3 / mini <= confidence)
return index;
if(mini != 0)
{
if (mini3 / mini <= confidence)
return index;
}
return -1;
}
//!Interpolate in order to obtain better results
......@@ -171,7 +174,7 @@ namespace cv
#if CV_SSE4_1
c[(iwj)* (v + 1) + d] = (short)_mm_popcnt_u32(xorul);
#else
c[(iwj)* (v + 1) + d] = (short)(hammLut[xorul & MASK] + hammLut[xorul >> 16]);
c[(iwj)* (v + 1) + d] = (short)(hammLut[xorul & MASK] + hammLut[(xorul >> 16) & MASK]);
#endif
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment