Commit c6e54d17 authored by Baisheng Lai's avatar Baisheng Lai

update tutorial and doxygen

upload an example data in tutorial
parent 1bce1441
......@@ -50,8 +50,42 @@
namespace cv
{
/* @defgroup calib3d_omnidir Omnidirectional camera model
/* @defgroup calib3d_omnidir Omnidirectional camera model\
Here is a brief description of implenmented omnidirectional camera model. This model can be
used for both catadioptric and fisheye cameras. Especially, catadioptric cameras have very
large field of view (FOV), i.e., a 360 degrees of horizontal FOV, means the scene around the
camera can be all taken in a singel photo. Compared with perspective cameras, omnidirectional
cameras get more information in a single shot and avoid things like image stitching.
The large FOV of omnidirectional cameras also introduces large distortion, so that it is
not vivid for human's eye. Rectification that removes distortion is also included in this module.
For a 3D point Xw in world coordinate, it is first transformed to camera coordinate:
\f[X_c = R X_w + T \f]
where R and T are rotation and translation matrix. Then \f$ X_c \f$ is then projected to unit sphere:
\f[ X_s = \frac{Xc}{||Xc||} \f]
Let \f$ X_s = (x, y, z) \f$, then \f$ X_s \f$ is projected to normalized plane:
\f[ (x_u, y_u, 1) = (\frac{x}{z + \xi}, \frac{y}{z + \xi}, 1) \f]
where \f$ \xi \f$ is a parameter of camera. So far the point contains no distortion, add distortion by
\f[ x_d = (1 + k_1 r^2 + k_2 r^4 )*x_u + 2p_1 x_u y_u + p_2(r^2 + 2x_u^2 ) \\
y_d = (1 + k_1 r^2 + k_2 r^4 )*y_u + p_1 (r^2 + 2y_u^2) + 2p_2 x_u y_u \f]
where \f$ r^2 = x_u^2 + y_u^2\f$ and \f$(k_1, k_2, p_1, p_2)\f$ are distortion coefficients.
At last, convert to pixel coordinates:
\f[ u = f_x x_d + s y_d + c_x \\
v = f_y y_d + c_y \f]
where \f$ s\f$ is the skew coefficient and \f$ (cx, cy\f$ are image centers.
*/
/** @brief The methods in this namespace is to calibrate omnidirectional cameras.
This module was accepted as a GSoC 2015 project for OpenCV, authored by
......
<?xml version="1.0"?>
<opencv_storage>
<objectPoints>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"3d"</dt>
<data>
0. 0. 0. 2.0000000000000001e-001 0. 0. 4.0000000000000002e-001 0.
0. 6.0000000000000009e-001 0. 0. 8.0000000000000004e-001 0. 0. 1.
0. 0. 0. 2.0000000000000001e-001 0. 2.0000000000000001e-001
2.0000000000000001e-001 0. 4.0000000000000002e-001
2.0000000000000001e-001 0. 6.0000000000000009e-001
2.0000000000000001e-001 0. 8.0000000000000004e-001
2.0000000000000001e-001 0. 1. 2.0000000000000001e-001 0. 0.
4.0000000000000002e-001 0. 2.0000000000000001e-001
4.0000000000000002e-001 0. 4.0000000000000002e-001
4.0000000000000002e-001 0. 6.0000000000000009e-001
4.0000000000000002e-001 0. 8.0000000000000004e-001
4.0000000000000002e-001 0. 1. 4.0000000000000002e-001 0. 0.
6.0000000000000009e-001 0. 2.0000000000000001e-001
6.0000000000000009e-001 0. 4.0000000000000002e-001
6.0000000000000009e-001 0. 6.0000000000000009e-001
6.0000000000000009e-001 0. 8.0000000000000004e-001
6.0000000000000009e-001 0. 1. 6.0000000000000009e-001 0. 0.
8.0000000000000004e-001 0. 2.0000000000000001e-001
8.0000000000000004e-001 0. 4.0000000000000002e-001
8.0000000000000004e-001 0. 6.0000000000000009e-001
8.0000000000000004e-001 0. 8.0000000000000004e-001
8.0000000000000004e-001 0. 1. 8.0000000000000004e-001 0. 0. 1. 0.
2.0000000000000001e-001 1. 0. 4.0000000000000002e-001 1. 0.
6.0000000000000009e-001 1. 0. 8.0000000000000004e-001 1. 0. 1. 1.
0. 0. 1.2000000000000002e+000 0. 2.0000000000000001e-001
1.2000000000000002e+000 0. 4.0000000000000002e-001
1.2000000000000002e+000 0. 6.0000000000000009e-001
1.2000000000000002e+000 0. 8.0000000000000004e-001
1.2000000000000002e+000 0. 1. 1.2000000000000002e+000 0. 0.
1.4000000000000001e+000 0. 2.0000000000000001e-001
1.4000000000000001e+000 0. 4.0000000000000002e-001
1.4000000000000001e+000 0. 6.0000000000000009e-001
1.4000000000000001e+000 0. 8.0000000000000004e-001
1.4000000000000001e+000 0. 1. 1.4000000000000001e+000 0. 0.
1.6000000000000001e+000 0. 2.0000000000000001e-001
1.6000000000000001e+000 0. 4.0000000000000002e-001
1.6000000000000001e+000 0. 6.0000000000000009e-001
1.6000000000000001e+000 0. 8.0000000000000004e-001
1.6000000000000001e+000 0. 1. 1.6000000000000001e+000 0.</data></_></objectPoints>
<imagePoints>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
6.75490112e+002 2.58054169e+002 6.56950867e+002 2.73248138e+002
6.36838318e+002 2.90432434e+002 6.16385193e+002 3.13483246e+002
5.91500000e+002 337. 569. 359. 6.61358582e+002 2.31272415e+002
6.40136780e+002 2.45905136e+002 6.18555176e+002 2.64595276e+002
5.92727356e+002 2.85703613e+002 5.65221863e+002 3.12442780e+002
5.42423889e+002 3.41452393e+002 6.43457520e+002 2.03086868e+002
6.21402466e+002 2.17740417e+002 5.93600830e+002 2.37447601e+002
5.65232788e+002 2.59174164e+002 5.37838196e+002 2.84915863e+002
5.12503052e+002 3.16757507e+002 6.24005432e+002 1.74736618e+002
5.97496338e+002 1.88732834e+002 5.67288635e+002 2.07220291e+002
5.38015198e+002 2.30461014e+002 5.07095947e+002 2.58994263e+002
4.77491852e+002 2.92051727e+002 6.01037720e+002 1.46273209e+002
5.73469177e+002 1.59748337e+002 5.40935669e+002 1.77509201e+002
5.06503784e+002 2.02032761e+002 4.74068848e+002 2.32182053e+002
4.42500122e+002 2.66570831e+002 5.77138550e+002 1.19448029e+002
5.45628052e+002 1.32241302e+002 5.11336334e+002 1.50559265e+002
4.76117249e+002 1.75316269e+002 4.40502075e+002 2.05725952e+002
4.07965607e+002 2.41970963e+002 5.51863831e+002 9.43849182e+001
5.18395569e+002 1.07406387e+002 4.82542755e+002 1.26161377e+002
4.44942627e+002 1.51338882e+002 4.08494537e+002 1.82473099e+002
3.74957062e+002 2.19434235e+002 5.26199463e+002 7.13332672e+001
4.90725861e+002 8.47979507e+001 4.54244202e+002 1.03585014e+002
4.15386475e+002 1.29469131e+002 3.77955872e+002 1.61422897e+002
3.44593353e+002 1.99354340e+002 5.00305573e+002 4.98030853e+001
4.63683289e+002 6.37438354e+001 4.25043182e+002 8.33283768e+001
3.87471771e+002 1.09548264e+002 3.49389191e+002 1.41874283e+002
3.16625092e+002 1.79468613e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
7.84090210e+002 3.88017731e+002 7.58447571e+002 3.71531097e+002
7.31788330e+002 3.55191376e+002 7.01500000e+002 341. 674. 329.
6.47506470e+002 3.17759216e+002 8.03502258e+002 3.63574219e+002
7.75521851e+002 3.44961121e+002 746. 328. 715. 3.12500000e+002
6.84290955e+002 3.00195953e+002 655. 289. 8.23624084e+002
3.35837616e+002 7.93792664e+002 3.16025818e+002 7.60739319e+002
2.97872772e+002 7.29195923e+002 2.81551361e+002 6.95991028e+002
2.68595581e+002 6.64197266e+002 2.57892395e+002 8.43718933e+002
3.07062378e+002 8.12469604e+002 2.84912384e+002 7.79037659e+002
2.66707306e+002 7.41777527e+002 2.49394852e+002 7.07556702e+002
2.34234406e+002 6.72774292e+002 2.27675980e+002 8.61286499e+002
2.75579224e+002 8.30026917e+002 2.53900146e+002 7.93825806e+002
2.32928696e+002 7.57441345e+002 2.16481247e+002 7.20349548e+002
2.02759094e+002 6.83531921e+002 1.94480438e+002 8.79620789e+002
2.44113449e+002 8.46151184e+002 2.20349777e+002 8.09496887e+002
2.00622604e+002 7.70929443e+002 1.82847610e+002 7.30988708e+002
1.70821991e+002 6.93835693e+002 1.63439514e+002 8.94767029e+002
2.13258896e+002 8.60505676e+002 1.89982834e+002 8.22427734e+002
1.68008087e+002 7.82129700e+002 1.51629501e+002 7.41957092e+002
1.40314484e+002 7.03475403e+002 1.33016800e+002 9.08190430e+002
1.83071915e+002 8.72554749e+002 1.58984772e+002 8.33662354e+002
1.38905655e+002 7.93456970e+002 1.22534683e+002 7.52483276e+002
1.12002495e+002 7.12622009e+002 1.05611115e+002 9.20126831e+002
1.53868591e+002 8.83432190e+002 1.30497757e+002 8.43475952e+002
1.10962593e+002 8.02609802e+002 9.46659164e+001 7.62433105e+002
8.44985809e+001 7.22421509e+002 7.95673294e+001</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
7.92344788e+002 1.23433441e+002 7.83113831e+002 1.56123978e+002
7.73464417e+002 1.87453384e+002 7.63411438e+002 2.17998337e+002
7.53567810e+002 2.45984650e+002 7.44753601e+002 2.71632080e+002
7.60217590e+002 1.08415695e+002 7.52620911e+002 1.42628448e+002
7.44526428e+002 1.76912338e+002 7.35988892e+002 2.09661407e+002
7.28117737e+002 2.39632019e+002 7.19922302e+002 2.67545227e+002
7.22557617e+002 9.39710464e+001 7.16941467e+002 1.30629669e+002
7.10926208e+002 1.67611130e+002 7.04934631e+002 2.02370895e+002
6.98490540e+002 2.34473831e+002 6.93224060e+002 2.63872314e+002
6.80145203e+002 8.36722336e+001 6.76818970e+002 1.22316780e+002
6.73215637e+002 1.60653091e+002 6.70026489e+002 1.97099380e+002
6.66568665e+002 2.31376785e+002 6.62879944e+002 2.62516785e+002
6.32677307e+002 7.81240692e+001 6.32470459e+002 1.17437523e+002
6.32117493e+002 1.57589417e+002 6.32748596e+002 1.95813293e+002
6.30779907e+002 2.31080444e+002 6.31525696e+002 2.61573303e+002
5.83167114e+002 7.81999664e+001 5.86345337e+002 1.18803757e+002
5.89284363e+002 1.58127457e+002 5.92464355e+002 1.96512299e+002
5.95569031e+002 2.31983124e+002 599. 2.63500000e+002
5.34004700e+002 8.45869598e+001 5.39235229e+002 1.25196678e+002
5.46483337e+002 1.64360748e+002 5.52699951e+002 2.01743942e+002
5.59695923e+002 2.36428940e+002 5.66886475e+002 2.66694885e+002
4.87107574e+002 9.68924789e+001 4.96528351e+002 1.36307755e+002
5.05490631e+002 1.73577209e+002 5.15388550e+002 2.10275955e+002
5.25177612e+002 2.43547882e+002 5.34730652e+002 2.73751343e+002
4.44378540e+002 1.13022438e+002 4.55947266e+002 1.51598907e+002
4.68412659e+002 1.86861725e+002 4.80615326e+002 2.21379471e+002
4.92385834e+002 2.51911041e+002 5.05001953e+002 2.81006958e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
4.81378052e+002 3.22624115e+002 4.80406860e+002 3.48465851e+002
4.79837738e+002 3.75912994e+002 4.81462616e+002 4.04819092e+002
4.83980530e+002 4.33634308e+002 4.87793243e+002 4.60171875e+002
4.54013733e+002 3.18167145e+002 4.51625885e+002 3.45765320e+002
4.50526794e+002 3.75426971e+002 4.51838287e+002 4.06206909e+002
4.53470581e+002 4.38935760e+002 4.58468933e+002 4.69474152e+002
4.23284729e+002 3.13804901e+002 4.19377289e+002 3.43510986e+002
4.17511902e+002 3.76080963e+002 4.18134125e+002 4.09680328e+002
4.21365753e+002 4.44091339e+002 4.26660858e+002 4.77992554e+002
3.89624908e+002 3.10471985e+002 3.84562958e+002 3.42330597e+002
3.81837799e+002 3.76874817e+002 3.82294586e+002 4.13676239e+002
3.85513824e+002 4.50580383e+002 3.92000275e+002 4.87093964e+002
3.53710693e+002 3.08246033e+002 3.47404022e+002 3.42408508e+002
3.44254639e+002 3.79191742e+002 3.43830841e+002 4.18523499e+002
3.48014771e+002 4.58329376e+002 3.55914246e+002 4.96030151e+002
3.17335358e+002 3.06980377e+002 3.09772308e+002 3.42725769e+002
3.05612762e+002 3.82554993e+002 3.05464905e+002 4.24428253e+002
3.09292694e+002 4.66695251e+002 3.18388306e+002 5.07142700e+002
2.80019928e+002 3.07089233e+002 2.71911407e+002 3.44642975e+002
2.66643463e+002 3.86568085e+002 2.65566803e+002 4.30820862e+002
2.70939453e+002 4.74563324e+002 2.81078247e+002 5.16716125e+002
2.40957367e+002 3.08758362e+002 2.31442734e+002 3.48210541e+002
2.27068802e+002 3.91975769e+002 2.25384995e+002 4.37844238e+002
2.31651993e+002 4.83715027e+002 2.42571533e+002 5.28483398e+002
2.02110733e+002 3.09812042e+002 1.94327621e+002 3.51957764e+002
1.87146088e+002 3.98251556e+002 1.87980118e+002 4.44944000e+002
1.91585983e+002 4.91924042e+002 2.04436539e+002 5.38972961e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
2.98078094e+002 2.37883362e+002 3.35515320e+002 2.48331757e+002
3.71690491e+002 2.59992523e+002 4.05996399e+002 2.71813202e+002
4.38327240e+002 2.84377747e+002 4.67610535e+002 2.96125549e+002
2.76246307e+002 2.72641418e+002 3.17697021e+002 2.81506042e+002
3.55573639e+002 2.91446899e+002 3.93156860e+002 3.01325012e+002
4.27950684e+002 3.12004181e+002 4.59678680e+002 3.22413574e+002
2.56363251e+002 3.13856415e+002 2.99295868e+002 3.21094360e+002
3.40440948e+002 3.28280487e+002 3.80945679e+002 3.35933075e+002
4.18308960e+002 3.43917114e+002 4.52452362e+002 3.51947723e+002
2.39919037e+002 3.61791626e+002 2.85563354e+002 3.65437958e+002
3.28859955e+002 3.69890686e+002 3.70934082e+002 3.74754761e+002
4.11297394e+002 3.79269104e+002 4.46561798e+002 3.84470093e+002
2.29331482e+002 4.13949615e+002 2.76502441e+002 4.14469330e+002
3.21892761e+002 4.15404633e+002 3.65014740e+002 4.16746887e+002
4.05875916e+002 4.18226929e+002 4.42373169e+002 4.19298706e+002
2.25439499e+002 4.66823242e+002 2.73527618e+002 4.65384979e+002
3.19782501e+002 4.63428619e+002 3.62731781e+002 4.60680084e+002
4.04263794e+002 4.57940735e+002 4.40636688e+002 4.55776001e+002
2.30218567e+002 5.20786621e+002 2.77071594e+002 5.14983215e+002
3.23104034e+002 5.08725159e+002 3.65094299e+002 5.03015442e+002
4.05360077e+002 4.97127014e+002 4.41966370e+002 4.91036346e+002
2.40612778e+002 5.70426086e+002 2.85953003e+002 5.62237854e+002
3.30600311e+002 5.52684509e+002 3.71975464e+002 5.42622925e+002
4.09923431e+002 5.33989502e+002 4.44944977e+002 5.25030884e+002
2.55944458e+002 6.14003845e+002 2.99916656e+002 6.03268311e+002
3.41513885e+002 5.91473389e+002 3.80401947e+002 5.79480225e+002
4.16935638e+002 5.67436584e+002 4.50069733e+002 5.56018372e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
3.50848297e+002 7.14228760e+002 3.39568451e+002 6.80527710e+002
3.31520844e+002 6.47583862e+002 3.25584290e+002 6.16500488e+002
3.22707947e+002 5.87258911e+002 3.21184540e+002 5.60773315e+002
3.77261963e+002 7.01518982e+002 3.65311646e+002 6.68576538e+002
3.55806183e+002 6.36336304e+002 3.49578125e+002 6.06026062e+002
3.45301941e+002 5.77650146e+002 3.42621765e+002 5.51476318e+002
4.04504059e+002 6.87412781e+002 3.91320770e+002 6.55220886e+002
3.80983765e+002 6.24722473e+002 3.73301453e+002 5.95179749e+002
3.68130768e+002 5.67810120e+002 3.65298218e+002 5.42442078e+002
4.31546967e+002 6.72458313e+002 4.17646942e+002 6.42048096e+002
4.06438263e+002 6.12466675e+002 3.98071136e+002 5.83806885e+002
3.92286835e+002 5.57391174e+002 3.88171814e+002 5.32996887e+002
4.58466370e+002 6.56727600e+002 4.44212433e+002 6.27420959e+002
4.32595306e+002 5.99160889e+002 4.23473755e+002 5.71937195e+002
4.16379791e+002 5.47057983e+002 4.11460785e+002 5.23456848e+002
4.85465790e+002 6.40406189e+002 4.70502625e+002 6.12528503e+002
4.58568359e+002 5.85643738e+002 4.48552917e+002 5.59496521e+002
4.39335297e+002 5.35315491e+002 4.35449188e+002 5.11826019e+002
5.11575684e+002 6.23271973e+002 4.96589050e+002 5.97307983e+002
4.83748962e+002 5.71929810e+002 4.74580475e+002 5.48551331e+002
4.64500000e+002 5.25500000e+002 4.57500000e+002 504.
5.36280518e+002 6.06423767e+002 5.21435181e+002 5.81569031e+002
5.08335693e+002 5.58358887e+002 4.96972076e+002 5.35987671e+002
4.87500000e+002 515. 480. 4.95500000e+002 5.58491699e+002
5.88809082e+002 5.44518311e+002 5.66903748e+002 5.31299805e+002
5.45354065e+002 5.19564819e+002 5.24556335e+002 5.09763062e+002
5.04446228e+002 4.99442291e+002 4.86084625e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
8.81713440e+002 3.86197113e+002 9.17583252e+002 4.03987152e+002
9.53123840e+002 4.25079559e+002 9.87299316e+002 4.48395782e+002
1.01957056e+003 4.71871674e+002 1.05150195e+003 4.96505127e+002
8.70195496e+002 4.18432007e+002 9.06274963e+002 4.37890503e+002
9.40723938e+002 4.60578949e+002 9.75081177e+002 4.86557098e+002
1.00749420e+003 5.12476074e+002 1.03804028e+003 5.39053772e+002
8.52960571e+002 4.51070099e+002 8.88932251e+002 4.74545105e+002
9.23249329e+002 5.00817688e+002 9.57479492e+002 5.26468933e+002
9.88569580e+002 5.54295715e+002 1.01776630e+003 5.80369690e+002
833. 4.85500000e+002 8.68537170e+002 5.11270020e+002
9.01563538e+002 5.37908203e+002 9.33960876e+002 5.67073425e+002
9.63848145e+002 5.94500244e+002 9.92547302e+002 6.23060425e+002
8.09514282e+002 5.19066772e+002 8.41934021e+002 5.47015015e+002
8.74326538e+002 5.76352844e+002 9.05180908e+002 6.05454163e+002
9.33955200e+002 6.33015564e+002 9.61550537e+002 6.60031067e+002
7.83425110e+002 5.48695862e+002 8.13460266e+002 5.79241699e+002
8.43861572e+002 6.08925354e+002 8.73789917e+002 6.38604370e+002
9.00273804e+002 6.66994873e+002 926. 691. 7.55429077e+002
5.78604431e+002 7.84420837e+002 6.06109802e+002 8.11835876e+002
6.36899536e+002 8.39316772e+002 6.66466309e+002 8.65523132e+002
6.94579712e+002 887. 721. 7.31811340e+002 6.02392456e+002
7.56072571e+002 6.29946777e+002 7.80895203e+002 6.59628906e+002
8.05592163e+002 6.88606934e+002 8.30125122e+002 7.16589966e+002
8.53550293e+002 7.42749756e+002 7.06514648e+002 6.19389526e+002
7.29003296e+002 6.47576904e+002 7.52428772e+002 6.77560120e+002
7.73979187e+002 7.05406006e+002 7.96596558e+002 7.32817749e+002
8.19155334e+002 7.58741821e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
9.62623657e+002 1.43474075e+002 9.87476990e+002 1.86780289e+002
1.00622748e+003 2.27544540e+002 1.01850989e+003 2.68001343e+002
1.02580457e+003 3.05497681e+002 1.02905554e+003 3.40061096e+002
9.39946655e+002 1.60036179e+002 9.65124207e+002 2.02795746e+002
9.82815247e+002 2.44572601e+002 9.95420349e+002 2.84801941e+002
1.00243457e+003 3.22694733e+002 1.00672827e+003 3.55448639e+002
9.13736206e+002 1.78822800e+002 9.39209473e+002 2.21480820e+002
9.58125244e+002 2.62399445e+002 9.70636292e+002 3.02435455e+002
9.78465759e+002 3.38327209e+002 9.82429932e+002 3.70877167e+002
8.85564148e+002 1.99267883e+002 9.12097656e+002 2.40570816e+002
9.31139771e+002 2.81464874e+002 9.44167786e+002 3.20086060e+002
9.52656250e+002 3.55026093e+002 9.57049866e+002 3.86803772e+002
8.54976013e+002 2.21390503e+002 8.81532410e+002 2.62056274e+002
9.01685364e+002 3.01690674e+002 9.15212036e+002 3.39471344e+002
9.24049683e+002 3.71807831e+002 9.30585632e+002 4.01065582e+002
8.22988953e+002 2.45276154e+002 8.49244141e+002 2.84704559e+002
8.69523010e+002 3.22591766e+002 8.84555115e+002 3.57831940e+002
8.93988586e+002 3.89629944e+002 9.01408630e+002 4.16973846e+002
7.90107666e+002 2.72643127e+002 8.14884399e+002 3.09990326e+002
8.36442383e+002 3.43821808e+002 8.52355164e+002 3.76016418e+002
8.63413513e+002 4.05272797e+002 8.71420044e+002 4.30495575e+002
7.55500000e+002 2.99500000e+002 7.83207214e+002 3.32013153e+002
8.02516418e+002 3.64541840e+002 8.20689148e+002 3.95600006e+002
8.30940125e+002 4.21514069e+002 8.41085144e+002 4.42547974e+002
7.23500000e+002 3.25500000e+002 7.49073181e+002 3.55019714e+002
7.68561096e+002 3.82762939e+002 7.88711731e+002 4.10029236e+002
8.00077393e+002 4.34538788e+002 8.13500000e+002 455.</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
1.02610925e+003 5.69419373e+002 1018. 6.08500000e+002
1.00757269e+003 6.50474792e+002 9.90500000e+002 690.
9.69713196e+002 7.28559875e+002 945. 760. 9.96910217e+002
5.55883240e+002 9.88487000e+002 5.95331909e+002 9.74262878e+002
6.34519043e+002 9.59772949e+002 6.74763550e+002 9.40404785e+002
7.11471130e+002 9.15623962e+002 7.47316528e+002 9.66300659e+002
5.43581970e+002 9.58032898e+002 5.81726501e+002 9.45526917e+002
6.19927490e+002 9.29846252e+002 6.57364746e+002 9.07986694e+002
6.93463928e+002 8.85528625e+002 7.26559448e+002 9.36298889e+002
5.31255432e+002 9.27100647e+002 5.67005432e+002 9.14340454e+002
6.04617249e+002 8.97536072e+002 6.41583191e+002 8.77466370e+002
6.75493286e+002 8.55136047e+002 7.06785339e+002 9.05193909e+002
5.19209595e+002 8.96645874e+002 5.53356995e+002 8.81072083e+002
5.87715820e+002 8.66478516e+002 6.23560242e+002 8.47192688e+002
6.56474304e+002 8.25451843e+002 6.86781494e+002 8.74048035e+002
5.06574799e+002 8.63423889e+002 5.38618835e+002 8.52353210e+002
5.72285339e+002 8.35347961e+002 6.05874939e+002 8.17006592e+002
6.37074524e+002 7.96157104e+002 6.66649353e+002 8.43320862e+002
4.94560669e+002 8.31992737e+002 5.26001587e+002 8.20451355e+002
5.58649658e+002 8.04538635e+002 5.88254333e+002 7.86978882e+002
6.16805054e+002 7.68332642e+002 6.44677917e+002 8.13489441e+002
4.84499451e+002 8.03744141e+002 5.13451721e+002 7.89310547e+002
5.41404175e+002 7.76207275e+002 5.71436951e+002 7.59780945e+002
5.98410828e+002 7.42307495e+002 6.24391235e+002 7.86433960e+002
4.74941956e+002 776. 5.00500000e+002 7.62905396e+002
5.25627258e+002 7.48652344e+002 5.54555420e+002 7.34200806e+002
5.79552063e+002 7.18498901e+002 6.04499268e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
9.81431458e+002 1.50723282e+002 1.01354156e+003 1.89045822e+002
1.03995068e+003 2.30531693e+002 1057. 272. 1073. 322.
1.08372375e+003 3.59986786e+002 9.53933044e+002 1.70431076e+002
9.85864075e+002 2.09328415e+002 1.01058606e+003 2.48266327e+002
1.03053076e+003 2.91816650e+002 1.04453125e+003 3.33481750e+002
1.05310962e+003 3.73423157e+002 9.26057983e+002 1.91534622e+002
9.55485291e+002 2.28094772e+002 9.79567627e+002 2.67866821e+002
9.99413330e+002 3.09235443e+002 1.01355310e+003 3.50008392e+002
1.02151367e+003 3.88853394e+002 8.96944275e+002 2.13524841e+002
9.25470215e+002 2.48956131e+002 9.49139709e+002 2.87351990e+002
9.67360901e+002 3.26701294e+002 9.81027039e+002 3.65454712e+002
9.89696350e+002 4.02052551e+002 8.67878784e+002 2.35145157e+002
8.93921936e+002 2.69948578e+002 9.17444458e+002 3.06666321e+002
9.35262207e+002 3.44310059e+002 9.49273499e+002 3.80840088e+002
9.57196228e+002 4.15376526e+002 8.37211060e+002 2.57732269e+002
8.63078918e+002 2.90968628e+002 8.84456726e+002 3.25454163e+002
9.02282166e+002 3.60872833e+002 9.15394653e+002 3.95404449e+002
9.25000916e+002 4.27231750e+002 8.07257935e+002 2.80493073e+002
8.31424500e+002 3.11445557e+002 8.52416260e+002 3.43626923e+002
8.69502930e+002 3.76587524e+002 8.83034119e+002 4.08043854e+002
8.92384033e+002 4.37808990e+002 7.79647278e+002 3.02607025e+002
8.01500000e+002 331. 8.21078003e+002 3.61130402e+002
8.36605713e+002 3.90487549e+002 8.50583069e+002 4.20562988e+002
8.61375000e+002 4.47132935e+002 7.53991333e+002 3.22964294e+002
7.74386963e+002 3.48028870e+002 7.92334412e+002 3.76588531e+002
8.08500000e+002 4.03500000e+002 8.21683960e+002 4.30331360e+002
8.32711182e+002 4.55293457e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
943. 665. 9.16278015e+002 6.53599182e+002 8.89926086e+002
6.39973694e+002 8.63574951e+002 6.26499451e+002 8.37769043e+002
6.12583801e+002 8.12686646e+002 5.98407715e+002 9.62436462e+002
6.41479614e+002 9.34012207e+002 6.28588379e+002 9.06015320e+002
6.16000183e+002 8.78138000e+002 6.02532837e+002 8.50593689e+002
5.89413879e+002 8.23956055e+002 5.75843201e+002 9.79901611e+002
6.12453613e+002 9.50447876e+002 5.99915649e+002 9.21525208e+002
5.87731018e+002 892. 5.75562622e+002 8.62920715e+002
5.62961060e+002 8.34826538e+002 5.50825378e+002 9.96176331e+002
5.78932007e+002 9.65559021e+002 5.67786194e+002 9.34909790e+002
5.56707581e+002 9.04852844e+002 5.45350830e+002 8.74290710e+002
5.34053772e+002 8.44917908e+002 5.23278564e+002 1.00932385e+003
5.42889587e+002 9.77957153e+002 5.32451477e+002 9.46471741e+002
5.22616333e+002 9.15226868e+002 5.12911560e+002 8.83610840e+002
5.02954590e+002 8.53250366e+002 4.93492188e+002 1.01908594e+003
5.04993866e+002 9.87409180e+002 4.95473785e+002 9.55026733e+002
4.86801392e+002 9.22781494e+002 4.78766449e+002 8.91075867e+002
4.70492035e+002 8.59416992e+002 4.62671021e+002 1.02507336e+003
4.65049469e+002 9.92578613e+002 4.57474152e+002 9.60626831e+002
4.50082123e+002 9.28285034e+002 4.43053711e+002 8.95946228e+002
4.36700684e+002 8.64128967e+002 4.31439453e+002 1.02649512e+003
4.25967773e+002 9.94566406e+002 4.19460480e+002 9.62663879e+002
4.14105835e+002 9.30171631e+002 4.08365509e+002 8.97982483e+002
4.04065765e+002 8.66648926e+002 4.00205078e+002 1.02453589e+003
3.87660034e+002 9.92254456e+002 3.82540924e+002 9.61000061e+002
3.78366821e+002 9.29085388e+002 3.74990723e+002 8.96591003e+002
3.72973572e+002 8.67031006e+002 3.71491272e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
9.92850464e+002 4.18888062e+002 9.59441101e+002 4.31965637e+002
9.27529907e+002 4.42658875e+002 8.95500000e+002 4.54500000e+002
8.64757568e+002 4.62105591e+002 8.36500000e+002 470.
9.92081848e+002 3.90383728e+002 9.56924988e+002 4.05250916e+002
9.22091003e+002 4.20337341e+002 8.87402649e+002 4.33017029e+002
8.56380310e+002 4.44641022e+002 829. 455. 9.86754822e+002
3.57046844e+002 9.51323853e+002 3.75313019e+002 9.13420715e+002
3.93538635e+002 8.77389587e+002 4.08586243e+002 8.42382935e+002
4.23987030e+002 8.14038635e+002 4.34158386e+002 9.78456604e+002
3.15776184e+002 9.40002991e+002 3.39462708e+002 9.02653076e+002
3.60630981e+002 8.62497986e+002 3.81124268e+002 8.26435364e+002
3.97412628e+002 7.95500000e+002 413. 9.62976929e+002
2.68506958e+002 9.23128662e+002 2.96603394e+002 8.83157654e+002
3.23671356e+002 8.46422974e+002 3.46435120e+002 8.07500000e+002
3.69500000e+002 7.75500000e+002 3.87500000e+002 9.37054321e+002
2.19495621e+002 8.98032654e+002 2.50468826e+002 8.59119385e+002
2.81512115e+002 8.18123779e+002 3.12852264e+002 7.82500000e+002
3.38500000e+002 7.49654114e+002 3.60178528e+002 8.99865540e+002
1.68641479e+002 8.62528259e+002 2.03040527e+002 8.23181213e+002
2.38275269e+002 7.83826294e+002 2.74359985e+002 7.51240540e+002
3.08780212e+002 721. 335. 8.50886414e+002 1.21732185e+002
8.15732605e+002 1.59313904e+002 7.80988892e+002 1.99837677e+002
7.45621826e+002 2.38860184e+002 7.17436951e+002 2.75985657e+002
690. 309. 7.96992249e+002 8.39213028e+001 7.64863586e+002
1.24419228e+002 7.32131287e+002 1.67438324e+002 7.03050720e+002
2.09443497e+002 6.77796021e+002 2.50547577e+002 6.56559998e+002
2.84677460e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
6.21648621e+002 2.64615540e+002 6.24922363e+002 2.37001770e+002
6.27736938e+002 2.07531189e+002 6.31982788e+002 1.76568405e+002
6.36301697e+002 1.45738327e+002 6.41479370e+002 1.12997490e+002
6.49474060e+002 2.68830536e+002 6.54831299e+002 2.42088898e+002
6.59611450e+002 2.12451355e+002 6.66164429e+002 1.82008011e+002
6.72218506e+002 1.50188156e+002 6.78809082e+002 1.18253792e+002
6.76446716e+002 2.75682434e+002 6.84066223e+002 2.48810486e+002
6.91582581e+002 2.19964661e+002 6.99929382e+002 1.89697372e+002
7.08432861e+002 1.58282516e+002 7.16680298e+002 1.26765770e+002
7.02703430e+002 2.81968536e+002 7.13080933e+002 2.57524872e+002
7.22746216e+002 2.29195480e+002 7.33006653e+002 2.00202789e+002
7.43558472e+002 1.69573883e+002 7.53214417e+002 1.38527176e+002
7.29548523e+002 2.92423767e+002 7.39874817e+002 2.66248413e+002
7.51979431e+002 2.41330765e+002 7.64206543e+002 2.12827515e+002
7.76047668e+002 1.83567627e+002 7.87649597e+002 1.54007019e+002
7.53089783e+002 3.01017059e+002 7.67395508e+002 2.78472321e+002
7.79268372e+002 2.53931122e+002 7.92513916e+002 2.27305573e+002
8.05449707e+002 1.99512634e+002 8.18565918e+002 1.71618118e+002
7.76721497e+002 3.11713715e+002 7.89275085e+002 2.91075226e+002
8.03490906e+002 2.67230316e+002 8.17492493e+002 2.42576752e+002
8.31731934e+002 2.16472717e+002 8.45407410e+002 1.89744308e+002
7.95295349e+002 3.22685059e+002 8.09476746e+002 3.02655273e+002
8.24271973e+002 2.81040771e+002 8.39294617e+002 2.57719421e+002
8.54225525e+002 2.33317703e+002 8.68694580e+002 2.09246872e+002
8.12529663e+002 3.32871613e+002 8.27758423e+002 3.14300171e+002
8.42943970e+002 2.94153076e+002 8.57932678e+002 2.72886414e+002
8.73576050e+002 2.50439499e+002 8.88212158e+002 2.27181015e+002</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
4.87553070e+002 3.33081940e+002 4.62614197e+002 3.02489258e+002
4.37576416e+002 2.69530884e+002 4.12060089e+002 2.35439728e+002
3.88464539e+002 2.01847916e+002 3.67124573e+002 1.69329208e+002
5.19967590e+002 3.11576843e+002 4.97410217e+002 2.78322418e+002
4.73922424e+002 2.43532043e+002 4.50377716e+002 2.06583496e+002
4.28351135e+002 1.72629303e+002 4.08012329e+002 1.37952560e+002
5.54011902e+002 2.91292267e+002 5.34618408e+002 2.56294556e+002
5.14143921e+002 2.19427399e+002 4.93516510e+002 1.81965973e+002
4.74155090e+002 1.46653778e+002 4.54185089e+002 1.11583130e+002
5.90221252e+002 2.72753845e+002 5.74075134e+002 2.38453003e+002
5.56422119e+002 2.00955048e+002 5.38824219e+002 1.63484421e+002
5.19426758e+002 1.27573326e+002 5.01227142e+002 9.22989960e+001
6.25049805e+002 2.60661194e+002 6.10513733e+002 2.25872940e+002
5.96240234e+002 1.87419449e+002 5.81616028e+002 1.50480957e+002
5.65533997e+002 1.14384705e+002 5.49490784e+002 8.06278229e+001
6.54708191e+002 2.51049423e+002 6.46017090e+002 2.16017548e+002
6.34464661e+002 1.80174149e+002 6.21993286e+002 1.43330460e+002
6.08453613e+002 1.07988892e+002 5.94316040e+002 7.44691238e+001
6.83734497e+002 2.42870544e+002 6.76964294e+002 2.10122986e+002
6.68720886e+002 1.76243042e+002 6.58802124e+002 1.40617599e+002
6.47013855e+002 1.06712463e+002 6.34501831e+002 7.43235016e+001
7.08225525e+002 2.38328049e+002 7.03408813e+002 2.06709641e+002
6.98146729e+002 1.74235916e+002 6.89880737e+002 1.41212967e+002
6.80672668e+002 1.08417931e+002 6.70395264e+002 7.71330414e+001
7.29351624e+002 2.34441971e+002 7.26809326e+002 2.05535583e+002
7.22509155e+002 1.75092453e+002 7.16651672e+002 1.43296677e+002
7.09192444e+002 1.12335365e+002 7.01085388e+002 8.23730545e+001</data></_>
<_ type_id="opencv-matrix">
<rows>54</rows>
<cols>1</cols>
<dt>"2f"</dt>
<data>
7.44175171e+002 3.41905121e+002 7.81475098e+002 3.30542725e+002
8.21084900e+002 3.18639160e+002 8.59480896e+002 3.07950623e+002
8.97504517e+002 2.99007721e+002 9.32098755e+002 2.91761475e+002
7.56500000e+002 379. 7.94500000e+002 370. 8.33592896e+002
3.60368561e+002 8.72396912e+002 3.52087860e+002 9.09731689e+002
3.43209076e+002 9.44365051e+002 3.36201935e+002 7.66500000e+002
416. 8.02858948e+002 4.08045868e+002 8.43303467e+002
4.00438141e+002 8.80331055e+002 3.93918793e+002 9.17367004e+002
3.86928528e+002 9.51384460e+002 3.80909027e+002 7.73453308e+002
4.50313354e+002 8.09500000e+002 445. 8.47631348e+002
4.40441315e+002 8.84517883e+002 4.33624207e+002 9.19723938e+002
4.28626343e+002 9.52826843e+002 4.22249237e+002 779.
4.80500000e+002 8.13571777e+002 4.78707336e+002 8.48882446e+002
4.74345764e+002 8.84045044e+002 4.70790955e+002 9.18399536e+002
4.65920532e+002 9.50262146e+002 4.60167633e+002 7.81162781e+002
5.08493103e+002 8.14266479e+002 5.06445465e+002 8.47477173e+002
5.05494507e+002 8.81002136e+002 5.02996338e+002 9.14179688e+002
4.99080872e+002 9.45393311e+002 4.93634796e+002 7.82686035e+002
5.32574951e+002 8.13157410e+002 5.31836975e+002 8.44857605e+002
5.31897461e+002 8.76928589e+002 5.30486755e+002 9.08286499e+002
5.27373474e+002 935. 527. 7.84048706e+002 5.52915894e+002
8.12160828e+002 5.54131714e+002 8.41816040e+002 5.54021057e+002
8.71936523e+002 5.53551270e+002 9.01274780e+002 5.51488403e+002
9.28989075e+002 5.49090820e+002 7.83927795e+002 5.70247925e+002
8.10133240e+002 5.71974304e+002 8.37997986e+002 5.73809448e+002
8.66329834e+002 5.73433228e+002 8.93925415e+002 5.72344299e+002
9.20939758e+002 5.70050781e+002</data></_></imagePoints>
<imageSize>
1280 960</imageSize>
</opencv_storage>
......@@ -5,6 +5,8 @@ This module includes calibration, rectification and stereo reconstruction of omn
*C. Mei and P. Rives, Single view point omnidirectional camera calibration from planar grids, in ICRA 2007.*
The model is capable of describing catadioptric cameras, which may have 360 degrees of field of view. Also, it can be used for fisheye cameras.
The implementation of the calibration part is based on Li's calibration toolbox:
*B. Li, L. Heng, K. Kevin and M. Pollefeys, "A Multiple-Camera System Calibration Toolbox Using A Feature Descriptor-Based Calibration Pattern", in IROS 2013.*
......@@ -15,6 +17,7 @@ This tutorial will introduce the following parts of omnidirectional camera calib
- calibrate a system with multiple cameras.
- rectify images so that large distoration is removed.
- reconstruct 3D from two stereo images, with large filed of view.
- comparison with fisheye model in opencv/calib3d/
Single Camera Calibration
---------------------
......@@ -23,10 +26,21 @@ The first step to calibrate camera is to get a calibration object and take some
Next extract checkerboard corners and get their positions in all images by Opencv function *findChessboardCorners* or by hand (if you do want to make sure that corners are perfectly extracted). Save the positions in images in imagePoints, with vector of Mat type of CV_64FC2. That is, you get a 1XN or NX1 CV_64FC2 mat for each image, N is the number of corners. Then set the world coordinate to one of the four extreme corners and set xy plane as the checkerboard plane so that the position of checkerboard corners in world frame can be determined. Save the points in world coordiante in objectPoints, with vector of Mat type of CV_64FC3. Each element in vector objectPoints and imagePoints must come from the same image.
Now run the calibration function like:
In the folder *data*, the file *omni_calib_data.xml* stores an example of objectPoints, imagePoints and imageSize. Use the following code to load them:
@code{.cpp}
cv::FileStorage fs("omni_calib_data.xml", cv::FileStorage::READ);
std::vector<cv::Mat> objectPoints, imagePoints;
cv::Size imgSize;
fs["objectPoints"] >> objectPoints;
fs["imagePoints"] >> imagePoints;
fs["imageSize"] >> imgSize;
@endcode
Then run the calibration function like:
@code{.cpp}
omnidir::calibrate(objectPoints, imagePoints, size, K, xi, D, om, t, flags, critia)
double rms = omnidir::calibrate(objectPoints, imagePoints, size, K, xi, D, om, t, flags, critia)
@endcode
The variable *size* of tyep Size is the size of images. *flags* is a enumeration for some features, including:
......@@ -34,9 +48,9 @@ The variable *size* of tyep Size is the size of images. *flags* is a enumeration
- CALIB_USE_GUESS: initialize camera parameters by input K, xi, D, om, t.
- CALIB_FIX_SKEW, CALIB_FIX_K1, CALIB_FIX_K2, CALIB_FIX_P1, CALIB_FIX_P2, CALIB_FIX_XI, CALIB_FIX_GAMMA, CALIB_FIX_CENTER: fix the corresponding parameters during calibration, you can use 'plus' operator to set multiple features. For example, CALIB_FIX_SKEW+CALIB_FIX_K1 means fix skew and K1.
K, xi, D, om, t are output internal and external parameters.
*K*, *xi*, *D*, *om*, *t* are output internal and external parameters. The returned value *rms* is the root mean square of reprojection errors.
critia is the stopping critia during optimization, set it to be, for example, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, 0.0001);
critia is the stopping critia during optimization, set it to be, for example, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 200, 0.0001), which means using 200 iterations and stopping when relative change is smaller than 0.0001.
Image Rectificaiton
---------------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment