Commit c1bfb00d authored by Zhou Chao's avatar Zhou Chao

Add parallel processing for some steps of l0 smooth

parent 0c691ff0
...@@ -44,265 +44,322 @@ using namespace std; ...@@ -44,265 +44,322 @@ using namespace std;
namespace namespace
{ {
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) {
Mat S = src.getMat();
Mat D = dst.getMat();
if(S.data == D.data){ class ParallelDft : public ParallelLoopBody {
S = S.clone(); private:
vector<Mat> src_;
public:
ParallelDft(vector<Mat> &s)
{
src_ = s;
}
void operator() (const Range& range) const
{
for (int i = range.start; i != range.end; i++)
{
dft(src_[i], src_[i]);
}
}
};
class ParallelIdft : public ParallelLoopBody {
private:
vector<Mat> src_;
public:
ParallelIdft(vector<Mat> &s)
{
src_ = s;
}
void operator() (const Range& range) const
{
for (int i = range.start; i != range.end; i++){
idft(src_[i], src_[i],DFT_SCALE);
}
}
};
class ParallelDivComplexByReal : public ParallelLoopBody {
private:
vector<Mat> numer_;
vector<Mat> denom_;
vector<Mat> dst_;
public:
ParallelDivComplexByReal(vector<Mat> &numer, vector<Mat> &denom, vector<Mat> &dst)
{
numer_ = numer;
denom_ = denom;
dst_ = dst;
}
void operator() (const Range& range) const
{
for (int i = range.start; i != range.end; i++)
{
Mat aPanels[2];
Mat bPanels[2];
split(numer_[i], aPanels);
split(denom_[i], bPanels);
Mat realPart;
Mat imaginaryPart;
divide(aPanels[0], denom_[i], realPart);
divide(aPanels[1], denom_[i], imaginaryPart);
aPanels[0] = realPart;
aPanels[1] = imaginaryPart;
merge(aPanels, 2, dst_[i]);
}
}
};
void shift(InputArray src, OutputArray dst, int shift_x, int shift_y) {
Mat S = src.getMat();
Mat D = dst.getMat();
if(S.data == D.data){
S = S.clone();
}
D.create(S.size(), S.type());
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y));
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y));
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y));
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y));
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y));
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y));
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y));
Mat d3(D, Rect(0,0,shift_x, shift_y));
s0.copyTo(d0);
s1.copyTo(d1);
s2.copyTo(d2);
s3.copyTo(d3);
} }
D.create(S.size(), S.type()); // dft after padding imaginary
void fft(InputArray src, OutputArray dst) {
Mat S = src.getMat();
Mat planes[] = {S.clone(), Mat::zeros(S.size(), S.type())};
Mat x;
merge(planes, 2, dst);
Mat s0(S, Rect(0, 0, S.cols - shift_x, S.rows - shift_y)); // compute the result
Mat s1(S, Rect(S.cols - shift_x, 0, shift_x, S.rows - shift_y)); dft(dst, dst);
Mat s2(S, Rect(0, S.rows - shift_y, S.cols-shift_x, shift_y)); }
Mat s3(S, Rect(S.cols - shift_x, S.rows- shift_y, shift_x, shift_y));
Mat d0(D, Rect(shift_x, shift_y, S.cols - shift_x, S.rows - shift_y));
Mat d1(D, Rect(0, shift_y, shift_x, S.rows - shift_y));
Mat d2(D, Rect(shift_x, 0, S.cols-shift_x, shift_y));
Mat d3(D, Rect(0,0,shift_x, shift_y));
s0.copyTo(d0);
s1.copyTo(d1);
s2.copyTo(d2);
s3.copyTo(d3);
}
// dft after padding imaginary
void fft(InputArray src, OutputArray dst) {
Mat S = src.getMat();
Mat planes[] = {S, Mat::zeros(S.size(), S.type())};
merge(planes, 2, dst);
// compute the result void psf2otf(InputArray src, OutputArray dst, int height, int width) {
dft(dst, dst); Mat S = src.getMat();
} Mat D = dst.getMat();
void psf2otf(InputArray src, OutputArray dst, int height, int width){ Mat padded;
Mat S = src.getMat();
Mat D = dst.getMat();
Mat padded; if(S.data == D.data){
S = S.clone();
}
if(S.data == D.data){ // add padding
S = S.clone(); copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols,
} BORDER_CONSTANT, Scalar::all(0));
// add padding shift(padded, padded, width - S.cols / 2, height - S.rows / 2);
copyMakeBorder(S, padded, 0, height - S.rows, 0, width - S.cols,
BORDER_CONSTANT, Scalar::all(0));
shift(padded, padded, width - S.cols / 2, height - S.rows / 2); // convert to frequency domain
fft(padded, dst);
}
// convert to frequency domain void dftMultiChannel(InputArray src, vector<Mat> &dst) {
fft(padded, dst); Mat S = src.getMat();
}
void dftMultiChannel(InputArray src, vector<Mat> &dst){ split(S, dst);
Mat S = src.getMat();
split(S, dst); for(int i = 0; i < S.channels(); i++){
Mat planes[] = {dst[i].clone(), Mat::zeros(dst[i].size(), dst[i].type())};
merge(planes, 2, dst[i]);
}
for(int i = 0; i < S.channels(); i++){ parallel_for_(cv::Range(0,S.channels()), ParallelDft(dst));
fft(dst[i], dst[i]);
}
}
void idftMultiChannel(const vector<Mat> &src, OutputArray dst){ }
Mat *channels = new Mat[src.size()];
for(int i = 0 ; unsigned(i) < src.size(); i++){ void idftMultiChannel(const vector<Mat> &src, OutputArray dst){
idft(src[i], channels[i]); vector<Mat> channels(src);
Mat realImg[2];
split(channels[i], realImg);
channels[i] = realImg[0] / src[i].cols / src[i].rows;
}
Mat D; parallel_for_(Range(0, src.size()), ParallelIdft(channels));
merge(channels, src.size(), D);
D.copyTo(dst);
delete[] channels;
}
void addComplex(InputArray aSrc, int bSrc, OutputArray dst){
Mat panels[2];
split(aSrc.getMat(), panels);
panels[0] = panels[0] + bSrc;
merge(panels, 2, dst);
}
void divComplexByReal(InputArray aSrc, InputArray bSrc, OutputArray dst){
Mat aPanels[2];
Mat bPanels[2];
split(aSrc.getMat(), aPanels);
split(bSrc.getMat(), bPanels);
Mat realPart;
Mat imaginaryPart;
divide(aPanels[0], bSrc.getMat(), realPart);
divide(aPanels[1], bSrc.getMat(), imaginaryPart);
aPanels[0] = realPart;
aPanels[1] = imaginaryPart;
Mat rst;
merge(aPanels, 2, dst);
}
void divComplexByRealMultiChannel(const vector<Mat> &numer,
const vector<Mat> &denom, vector<Mat> &dst)
{
for(int i = 0; unsigned(i) < numer.size(); i++)
{
divComplexByReal(numer[i], denom[i], dst[i]);
}
}
// power of 2 of the absolute value of the complex
Mat pow2absComplex(InputArray src){
Mat S = src.getMat();
Mat sPanels[2];
split(S, sPanels);
return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]);
}
}
namespace cv for(int i = 0; unsigned(i) < src.size(); i++){
{ Mat panels[2];
namespace ximgproc split(channels[i], panels);
{ channels[i] = panels[0];
}
void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa) Mat D;
{ merge(channels, D);
Mat S = src.getMat(); D.copyTo(dst);
}
CV_Assert(!S.empty());
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U
|| S.depth() == CV_32F || S.depth() == CV_64F);
dst.create(src.size(), src.type());
if(S.data == dst.getMat().data){
S = S.clone();
}
if(S.depth() == CV_8U)
{
S.convertTo(S, CV_32F, 1/255.0f);
}
else if(S.depth() == CV_16U)
{
S.convertTo(S, CV_32F, 1/65535.0f);
}else if(S.depth() == CV_64F){
S.convertTo(S, CV_32F);
}
const double betaMax = 100000;
// gradient operators in frequency domain
Mat otfFx, otfFy;
float kernel[2] = {-1, 1};
float kernel_inv[2] = {1,-1};
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols);
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols);
vector<Mat> denomConst;
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy);
for(int i = 0; i < S.channels(); i++){
denomConst.push_back(tmp);
}
// input image in frequency domain
vector<Mat> numerConst;
dftMultiChannel(S, numerConst);
/*********************************
* solver
*********************************/
double beta = 2 * lambda;
while(beta < betaMax){
// h, v subproblem
Mat h, v;
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
Mat hvMag = h.mul(h) + v.mul(v);
Mat mask;
if(S.channels() == 1)
{
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY);
}
else if(S.channels() > 1)
{
Mat *channels = new Mat[S.channels()];
split(hvMag, channels);
hvMag = channels[0];
for(int i = 1; i < S.channels(); i++){ void addComplex(InputArray aSrc, int bSrc, OutputArray dst){
hvMag = hvMag + channels[i]; Mat panels[2];
} split(aSrc.getMat(), panels);
panels[0] = panels[0] + bSrc;
merge(panels, 2, dst);
}
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY); void divComplexByRealMultiChannel(vector<Mat> &numer,
vector<Mat> &denom, vector<Mat> &dst){
Mat in[] = {mask, mask, mask}; for(int i = 0; unsigned(i) < numer.size(); i++)
merge(in, 3, mask); {
dst[i].create(numer[i].size(), numer[i].type());
}
parallel_for_(Range(0, numer.size()), ParallelDivComplexByReal(numer, denom, dst));
delete[] channels; }
}
h = h.mul(mask); // power of 2 of the absolute value of the complex
v = v.mul(mask); Mat pow2absComplex(InputArray src){
Mat S = src.getMat();
// S subproblem Mat sPanels[2];
vector<Mat> denom(S.channels()); split(S, sPanels);
for(int i = 0; i < S.channels(); i++){
denom[i] = beta * denomConst[i] + 1;
}
Mat hGrad, vGrad; return sPanels[0].mul(sPanels[0]) + sPanels[1].mul(sPanels[1]);
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv)); }
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv)); }
vector<Mat> hvGradFreq; namespace cv
dftMultiChannel(hGrad+vGrad, hvGradFreq); {
namespace ximgproc
{
vector<Mat> numer(S.channels()); void l0Smooth(InputArray src, OutputArray dst, double lambda, double kappa)
for(int i = 0; i < S.channels(); i++){ {
numer[i] = numerConst[i] + hvGradFreq[i] * beta; Mat S = src.getMat();
CV_Assert(!S.empty());
CV_Assert(S.depth() == CV_8U || S.depth() == CV_16U
|| S.depth() == CV_32F || S.depth() == CV_64F);
dst.create(src.size(), src.type());
if(S.data == dst.getMat().data){
S = S.clone();
}
if(S.depth() == CV_8U)
{
S.convertTo(S, CV_32F, 1/255.0f);
}
else if(S.depth() == CV_16U)
{
S.convertTo(S, CV_32F, 1/65535.0f);
}else if(S.depth() == CV_64F){
S.convertTo(S, CV_32F);
}
const double betaMax = 100000;
// gradient operators in frequency domain
Mat otfFx, otfFy;
float kernel[2] = {-1, 1};
float kernel_inv[2] = {1,-1};
psf2otf(Mat(1,2,CV_32FC1, kernel_inv), otfFx, S.rows, S.cols);
psf2otf(Mat(2,1,CV_32FC1, kernel_inv), otfFy, S.rows, S.cols);
vector<Mat> denomConst;
Mat tmp = pow2absComplex(otfFx) + pow2absComplex(otfFy);
for(int i = 0; i < S.channels(); i++){
denomConst.push_back(tmp);
}
// input image in frequency domain
vector<Mat> numerConst;
dftMultiChannel(S, numerConst);
/*********************************
* solver
*********************************/
double beta = 2 * lambda;
while(beta < betaMax){
// h, v subproblem
Mat h, v;
filter2D(S, h, -1, Mat(1, 2, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
filter2D(S, v, -1, Mat(2, 1, CV_32FC1, kernel), Point(0, 0),
0, BORDER_REPLICATE);
Mat hvMag = h.mul(h) + v.mul(v);
Mat mask;
if(S.channels() == 1)
{
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY);
}
else if(S.channels() > 1)
{
Mat *channels = new Mat[S.channels()];
split(hvMag, channels);
hvMag = channels[0];
for(int i = 1; i < S.channels(); i++){
hvMag = hvMag + channels[i];
}
threshold(hvMag, mask, lambda/beta, 1, THRESH_BINARY);
Mat in[] = {mask, mask, mask};
merge(in, 3, mask);
delete[] channels;
}
h = h.mul(mask);
v = v.mul(mask);
// S subproblem
vector<Mat> denom(S.channels());
for(int i = 0; i < S.channels(); i++){
denom[i] = beta * denomConst[i] + 1;
}
Mat hGrad, vGrad;
filter2D(h, hGrad, -1, Mat(1, 2, CV_32FC1, kernel_inv));
filter2D(v, vGrad, -1, Mat(2, 1, CV_32FC1, kernel_inv));
vector<Mat> hvGradFreq;
dftMultiChannel(hGrad+vGrad, hvGradFreq);
vector<Mat> numer(S.channels());
for(int i = 0; i < S.channels(); i++){
numer[i] = numerConst[i] + hvGradFreq[i] * beta;
}
vector<Mat> sFreq(S.channels());
divComplexByRealMultiChannel(numer, denom, sFreq);
idftMultiChannel(sFreq, S);
beta = beta * kappa;
}
Mat D = dst.getMat();
if(D.depth() == CV_8U)
{
S.convertTo(D, CV_8U, 255);
}
else if(D.depth() == CV_16U)
{
S.convertTo(D, CV_16U, 65535);
}else if(D.depth() == CV_64F){
S.convertTo(D, CV_64F);
}else{
S.copyTo(D);
}
}
} }
vector<Mat> sFreq(S.channels());
divComplexByRealMultiChannel(numer, denom, sFreq);
idftMultiChannel(sFreq, S);
beta = beta * kappa;
}
Mat D = dst.getMat();
if(D.depth() == CV_8U)
{
S.convertTo(D, CV_8U, 255);
}
else if(D.depth() == CV_16U)
{
S.convertTo(D, CV_16U, 65535);
}else if(D.depth() == CV_64F){
S.convertTo(D, CV_64F);
}else{
S.copyTo(D);
}
}
}
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment