Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
c1b2e237
Commit
c1b2e237
authored
May 11, 2015
by
cbalint13
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix linux warns & more cosmetics.
parent
5785a6a5
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
33 additions
and
33 deletions
+33
-33
daisy.cpp
modules/xfeatures2d/src/daisy.cpp
+33
-33
No files found.
modules/xfeatures2d/src/daisy.cpp
View file @
c1b2e237
...
@@ -286,7 +286,7 @@ protected:
...
@@ -286,7 +286,7 @@ protected:
void
set_normalization
(
int
nrm_type
)
{
m_nrm_type
=
nrm_type
;
}
void
set_normalization
(
int
nrm_type
)
{
m_nrm_type
=
nrm_type
;
}
// applies one of the normalizations (partial,full,sift) to the desciptors.
// applies one of the normalizations (partial,full,sift) to the desciptors.
void
normalize_descriptors
(
int
nrm_type
=
DAISY
::
NRM_NONE
);
void
normalize_descriptors
(
int
nrm_type
=
DAISY
::
NRM_NONE
);
// normalizes histograms individually
// normalizes histograms individually
void
normalize_histograms
();
void
normalize_histograms
();
...
@@ -320,7 +320,7 @@ protected:
...
@@ -320,7 +320,7 @@ protected:
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// scales for every pixel so that the resulting descriptors are scale
// scales for every pixel so that the resulting descriptors are scale
// invariant.
// invariant.
void
scale_invariant
(
bool
state
=
true
)
void
scale_invariant
(
bool
state
=
true
)
{
{
g_scale_en
=
(
int
)(
(
log
(
g_sigma_2
/
g_sigma_0
))
/
log
(
g_sigma_step
)
)
-
g_scale_st
;
g_scale_en
=
(
int
)(
(
log
(
g_sigma_2
/
g_sigma_0
))
/
log
(
g_sigma_step
)
)
-
g_scale_st
;
m_scale_invariant
=
state
;
m_scale_invariant
=
state
;
...
@@ -329,7 +329,7 @@ protected:
...
@@ -329,7 +329,7 @@ protected:
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// EXPERIMENTAL: DO NOT USE IF YOU ARE NOT ENGIN TOLA: tells to compute the
// orientations for every pixel so that the resulting descriptors are
// orientations for every pixel so that the resulting descriptors are
// rotation invariant. orientation steps are 360/ori_resolution
// rotation invariant. orientation steps are 360/ori_resolution
void
rotation_invariant
(
int
ori_resolution
=
36
,
bool
state
=
true
)
void
rotation_invariant
(
int
ori_resolution
=
36
,
bool
state
=
true
)
{
{
m_rotation_invariant
=
state
;
m_rotation_invariant
=
state
;
m_orientation_resolution
=
ori_resolution
;
m_orientation_resolution
=
ori_resolution
;
...
@@ -365,7 +365,7 @@ protected:
...
@@ -365,7 +365,7 @@ protected:
return
(
g_cube_number
+
1
)
*
m_cube_size
;
return
(
g_cube_number
+
1
)
*
m_cube_size
;
}
}
void
normalize_descriptor
(
float
*
desc
,
int
nrm_type
=
DAISY
::
NRM_NONE
)
void
normalize_descriptor
(
float
*
desc
,
int
nrm_type
=
DAISY
::
NRM_NONE
)
{
{
if
(
nrm_type
==
DAISY
::
NRM_NONE
)
nrm_type
=
m_nrm_type
;
if
(
nrm_type
==
DAISY
::
NRM_NONE
)
nrm_type
=
m_nrm_type
;
else
if
(
nrm_type
==
DAISY
::
NRM_PARTIAL
)
normalize_partial
(
desc
);
else
if
(
nrm_type
==
DAISY
::
NRM_PARTIAL
)
normalize_partial
(
desc
);
...
@@ -391,17 +391,17 @@ private:
...
@@ -391,17 +391,17 @@ private:
// precomputed operations meaning that you must call compute_descriptors()
// precomputed operations meaning that you must call compute_descriptors()
// before calling this function. if you want normalized descriptors, call
// before calling this function. if you want normalized descriptors, call
// normalize_descriptors() before calling compute_descriptors()
// normalize_descriptors() before calling compute_descriptors()
inline
void
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
);
inline
void
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
);
// computes the descriptor and returns the result in 'descriptor' ( allocate
// computes the descriptor and returns the result in 'descriptor' ( allocate
// 'descriptor' memory first ie: float descriptor = new
// 'descriptor' memory first ie: float descriptor = new
// float[m_descriptor_size]; -> the descriptor is normalized.
// float[m_descriptor_size]; -> the descriptor is normalized.
inline
void
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
);
inline
void
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
);
// computes the descriptor and returns the result in 'descriptor' ( allocate
// computes the descriptor and returns the result in 'descriptor' ( allocate
// 'descriptor' memory first ie: float descriptor = new
// 'descriptor' memory first ie: float descriptor = new
// float[m_descriptor_size]; -> the descriptor is NOT normalized.
// float[m_descriptor_size]; -> the descriptor is NOT normalized.
inline
void
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
);
inline
void
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
);
// computes the descriptor at homography-warped grid. (y,x) is not the
// computes the descriptor at homography-warped grid. (y,x) is not the
// coordinates of this image but the coordinates of the original grid where
// coordinates of this image but the coordinates of the original grid where
...
@@ -409,7 +409,7 @@ private:
...
@@ -409,7 +409,7 @@ private:
// and we warp this grid with H and compute the descriptor on this warped
// and we warp this grid with H and compute the descriptor on this warped
// grid; returns null/false if centers falls outside the image; allocate
// grid; returns null/false if centers falls outside the image; allocate
// 'descriptor' memory first. descriptor is normalized.
// 'descriptor' memory first. descriptor is normalized.
inline
bool
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
inline
bool
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
// computes the descriptor at homography-warped grid. (y,x) is not the
// computes the descriptor at homography-warped grid. (y,x) is not the
// coordinates of this image but the coordinates of the original grid where
// coordinates of this image but the coordinates of the original grid where
...
@@ -417,7 +417,7 @@ private:
...
@@ -417,7 +417,7 @@ private:
// and we warp this grid with H and compute the descriptor on this warped
// and we warp this grid with H and compute the descriptor on this warped
// grid; returns null/false if centers falls outside the image; allocate
// grid; returns null/false if centers falls outside the image; allocate
// 'descriptor' memory first. descriptor is NOT normalized.
// 'descriptor' memory first. descriptor is NOT normalized.
inline
bool
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
inline
bool
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
// compute the smoothed gradient layers.
// compute the smoothed gradient layers.
inline
void
compute_smoothed_gradient_layers
();
inline
void
compute_smoothed_gradient_layers
();
...
@@ -452,7 +452,7 @@ private:
...
@@ -452,7 +452,7 @@ private:
inline
bool
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
inline
bool
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
);
// creates a 1D gaussian filter with N(mean,sigma).
// creates a 1D gaussian filter with N(mean,sigma).
inline
void
gaussian_1d
(
float
*
fltr
,
int
fsz
,
float
sigma
,
float
mean
)
inline
void
gaussian_1d
(
float
*
fltr
,
int
fsz
,
float
sigma
,
float
mean
)
{
{
CV_Assert
(
fltr
!=
NULL
);
CV_Assert
(
fltr
!=
NULL
);
int
sz
=
(
fsz
-
1
)
/
2
;
int
sz
=
(
fsz
-
1
)
/
2
;
...
@@ -476,27 +476,27 @@ private:
...
@@ -476,27 +476,27 @@ private:
inline
void
conv_horizontal
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
inline
void
conv_horizontal
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
{
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_32FC1
,
(
float
*
)
kernel
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_32FC1
,
(
float
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
}
inline
void
conv_horizontal
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
inline
void
conv_horizontal
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
{
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_64FC1
,
(
double
*
)
kernel
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
1
,
ksize
,
CV_64FC1
,
(
double
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
}
inline
void
conv_vertical
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
inline
void
conv_vertical
(
float
*
image
,
int
h
,
int
w
,
float
*
kernel
,
int
ksize
)
{
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_32FC1
,
(
float
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_32FC1
,
(
float
*
)
kernel
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_32FC1
,
(
float
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
}
inline
void
conv_vertical
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
inline
void
conv_vertical
(
double
*
image
,
int
h
,
int
w
,
double
*
kernel
,
int
ksize
)
{
{
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvI
;
cvInitMatHeader
(
&
cvI
,
h
,
w
,
CV_64FC1
,
(
double
*
)
image
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_64FC1
,
(
double
*
)
kernel
);
CvMat
cvK
;
cvInitMatHeader
(
&
cvK
,
ksize
,
1
,
CV_64FC1
,
(
double
*
)
kernel
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
cvFilter2D
(
&
cvI
,
&
cvI
,
&
cvK
);
}
}
...
@@ -792,7 +792,7 @@ private:
...
@@ -792,7 +792,7 @@ private:
T
*
layers
=
zeros
<
T
>
(
layer_no
*
data_size
);
T
*
layers
=
zeros
<
T
>
(
layer_no
*
data_size
);
// smooth the data matrix
// smooth the data matrix
T
*
bdata
=
blur_gaussian_2d
<
T
,
T
>
(
data
,
h
,
w
,
0.5
,
5
,
false
);
T
*
bdata
=
blur_gaussian_2d
<
T
,
T
>
(
data
,
h
,
w
,
0.5
,
5
,
false
);
T
*
dx
=
new
T
[
data_size
];
T
*
dx
=
new
T
[
data_size
];
T
*
dy
=
new
T
[
data_size
];
T
*
dy
=
new
T
[
data_size
];
...
@@ -853,23 +853,23 @@ private:
...
@@ -853,23 +853,23 @@ private:
// be careful, 'data' is destroyed afterwards
// be careful, 'data' is destroyed afterwards
template
<
class
T
>
inline
template
<
class
T
>
inline
// original T* workspace=0 was removed
// original T* workspace=0 was removed
void
layered_gradient
(
T
*
data
,
int
h
,
int
w
,
int
layer_no
,
T
*
layers
,
int
lwork
=
0
)
void
layered_gradient
(
T
*
data
,
int
h
,
int
w
,
int
layer_no
,
T
*
layers
,
int
lwork
=
0
)
{
{
int
data_size
=
h
*
w
;
int
data_size
=
h
*
w
;
CV_Assert
(
layers
!=
NULL
);
CV_Assert
(
layers
!=
NULL
);
memset
(
layers
,
0
,
sizeof
(
T
)
*
data_size
*
layer_no
);
memset
(
layers
,
0
,
sizeof
(
T
)
*
data_size
*
layer_no
);
bool
empty
=
false
;
bool
was_empty
=
false
;
T
*
work
=
NULL
;
T
*
work
=
NULL
;
if
(
lwork
<
3
*
data_size
)
{
if
(
lwork
<
3
*
data_size
)
{
work
=
new
T
[
3
*
data_size
];
work
=
new
T
[
3
*
data_size
];
empty
=
true
;
was_empty
=
true
;
}
}
// // smooth the data matrix
// // smooth the data matrix
// T* bdata = blur_gaussian_2d<T,T>( data, h, w, 0.5, 5, false);
// T* bdata = blur_gaussian_2d<T,T>( data, h, w, 0.5, 5, false);
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
,
0
);
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
,
0
);
memcpy
(
work
,
data
,
sizeof
(
T
)
*
data_size
);
memcpy
(
work
,
data
,
sizeof
(
T
)
*
data_size
);
convolve_sym
(
work
,
h
,
w
,
kernel
,
5
);
convolve_sym
(
work
,
h
,
w
,
kernel
,
5
);
T
*
dx
=
work
+
data_size
;
T
*
dx
=
work
+
data_size
;
...
@@ -894,7 +894,7 @@ private:
...
@@ -894,7 +894,7 @@ private:
else
layer_l
[
index
]
=
0
;
else
layer_l
[
index
]
=
0
;
}
}
}
}
if
(
empty
)
delete
[]
work
;
if
(
was_
empty
)
delete
[]
work
;
}
}
// casts a type T2 array into a type T1 array.
// casts a type T2 array into a type T1 array.
...
@@ -915,7 +915,7 @@ private:
...
@@ -915,7 +915,7 @@ private:
// to be an odd number. if in_place=true, then T1 must be equal
// to be an odd number. if in_place=true, then T1 must be equal
// to T2 naturally.
// to T2 naturally.
template
<
class
T1
,
class
T2
>
inline
template
<
class
T1
,
class
T2
>
inline
T1
*
blur_gaussian_2d
(
T2
*
array
,
int
rn
,
int
cn
,
float
sigma
,
int
kernel_size
=
0
,
bool
in_place
=
false
)
T1
*
blur_gaussian_2d
(
T2
*
array
,
int
rn
,
int
cn
,
float
sigma
,
int
kernel_size
=
0
,
bool
in_place
=
false
)
{
{
T1
*
out
=
NULL
;
T1
*
out
=
NULL
;
...
@@ -1167,7 +1167,7 @@ void DAISY_Impl::set_cube_gaussians( double* sigma_array, int sz )
...
@@ -1167,7 +1167,7 @@ void DAISY_Impl::set_cube_gaussians( double* sigma_array, int sz )
g_cube_number
=
sz
;
g_cube_number
=
sz
;
if
(
m_cube_sigmas
)
deallocate
(
m_cube_sigmas
);
if
(
m_cube_sigmas
)
deallocate
(
m_cube_sigmas
);
m_cube_sigmas
=
allocate
<
double
>
(
g_cube_number
);
m_cube_sigmas
=
allocate
<
double
>
(
g_cube_number
);
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
{
...
@@ -1243,7 +1243,7 @@ void DAISY_Impl::normalize_histograms()
...
@@ -1243,7 +1243,7 @@ void DAISY_Impl::normalize_histograms()
{
{
float
*
hist
=
dst
+
(
y
*
m_w
+
x
)
*
m_hist_th_q_no
;
float
*
hist
=
dst
+
(
y
*
m_w
+
x
)
*
m_hist_th_q_no
;
float
norm
=
l2norm
(
hist
,
m_hist_th_q_no
);
float
norm
=
l2norm
(
hist
,
m_hist_th_q_no
);
if
(
norm
!=
0.0
)
divide
(
hist
,
m_hist_th_q_no
,
norm
);
if
(
norm
!=
0.0
)
divide
(
hist
,
m_hist_th_q_no
,
norm
);
}
}
}
}
}
}
...
@@ -1284,7 +1284,7 @@ void DAISY_Impl::compute_smoothed_gradient_layers()
...
@@ -1284,7 +1284,7 @@ void DAISY_Impl::compute_smoothed_gradient_layers()
void
DAISY_Impl
::
compute_oriented_grid_points
()
void
DAISY_Impl
::
compute_oriented_grid_points
()
{
{
m_oriented_grid_points
=
allocate
<
double
>
(
g_grid_orientation_resolution
,
m_grid_point_number
*
2
);
m_oriented_grid_points
=
allocate
<
double
>
(
g_grid_orientation_resolution
,
m_grid_point_number
*
2
);
for
(
int
i
=
0
;
i
<
g_grid_orientation_resolution
;
i
++
)
for
(
int
i
=
0
;
i
<
g_grid_orientation_resolution
;
i
++
)
{
{
...
@@ -1631,26 +1631,26 @@ inline void DAISY_Impl::ni_get_histogram( float* histogram, int y, int x, int sh
...
@@ -1631,26 +1631,26 @@ inline void DAISY_Impl::ni_get_histogram( float* histogram, int y, int x, int sh
}
}
}
}
inline
void
DAISY_Impl
::
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
)
inline
void
DAISY_Impl
::
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
)
{
{
CV_Assert
(
m_dense_descriptors
!=
NULL
);
CV_Assert
(
m_dense_descriptors
!=
NULL
);
CV_Assert
(
y
<
m_h
&&
x
<
m_w
&&
y
>=
0
&&
x
>=
0
);
CV_Assert
(
y
<
m_h
&&
x
<
m_w
&&
y
>=
0
&&
x
>=
0
);
descriptor
=
&
(
m_dense_descriptors
[(
y
*
m_w
+
x
)
*
m_descriptor_size
]);
descriptor
=
&
(
m_dense_descriptors
[(
y
*
m_w
+
x
)
*
m_descriptor_size
]);
}
}
inline
void
DAISY_Impl
::
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
inline
void
DAISY_Impl
::
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
{
{
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
descriptor
);
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
descriptor
);
normalize_descriptor
(
descriptor
,
m_nrm_type
);
normalize_descriptor
(
descriptor
,
m_nrm_type
);
}
}
inline
void
DAISY_Impl
::
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
inline
void
DAISY_Impl
::
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
{
{
if
(
m_disable_interpolation
)
ni_get_descriptor
(
y
,
x
,
orientation
,
descriptor
);
if
(
m_disable_interpolation
)
ni_get_descriptor
(
y
,
x
,
orientation
,
descriptor
);
else
i_get_descriptor
(
y
,
x
,
orientation
,
descriptor
);
else
i_get_descriptor
(
y
,
x
,
orientation
,
descriptor
);
}
}
inline
void
DAISY_Impl
::
i_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
inline
void
DAISY_Impl
::
i_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
{
{
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
//
//
...
@@ -1689,7 +1689,7 @@ inline void DAISY_Impl::i_get_descriptor(double y, double x, int orientation, fl
...
@@ -1689,7 +1689,7 @@ inline void DAISY_Impl::i_get_descriptor(double y, double x, int orientation, fl
}
}
}
}
inline
void
DAISY_Impl
::
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
inline
void
DAISY_Impl
::
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
{
{
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
//
//
...
@@ -1738,20 +1738,20 @@ inline void DAISY_Impl::ni_get_descriptor(double y, double x, int orientation, f
...
@@ -1738,20 +1738,20 @@ inline void DAISY_Impl::ni_get_descriptor(double y, double x, int orientation, f
}
}
// Warped get_descriptor's
// Warped get_descriptor's
inline
bool
DAISY_Impl
::
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
inline
bool
DAISY_Impl
::
get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
{
{
bool
rval
=
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
bool
rval
=
get_unnormalized_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
if
(
rval
)
normalize_descriptor
(
descriptor
,
m_nrm_type
);
if
(
rval
)
normalize_descriptor
(
descriptor
,
m_nrm_type
);
return
rval
;
return
rval
;
}
}
inline
bool
DAISY_Impl
::
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
inline
bool
DAISY_Impl
::
get_unnormalized_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
{
{
if
(
m_disable_interpolation
)
return
ni_get_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
if
(
m_disable_interpolation
)
return
ni_get_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
else
return
i_get_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
else
return
i_get_descriptor
(
y
,
x
,
orientation
,
H
,
descriptor
);
}
}
inline
bool
DAISY_Impl
::
i_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
inline
bool
DAISY_Impl
::
i_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
{
{
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
//
//
...
@@ -1806,7 +1806,7 @@ inline bool DAISY_Impl::i_get_descriptor(double y, double x, int orientation, do
...
@@ -1806,7 +1806,7 @@ inline bool DAISY_Impl::i_get_descriptor(double y, double x, int orientation, do
return
true
;
return
true
;
}
}
inline
bool
DAISY_Impl
::
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
inline
bool
DAISY_Impl
::
ni_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
double
*
H
,
float
*
descriptor
)
{
{
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
// memset( descriptor, 0, sizeof(float)*m_descriptor_size );
//
//
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment