Commit c05a7e01 authored by Maksim Shabunin's avatar Maksim Shabunin

Merge pull request #258 from sbokov/AddingConfidence

Added confidence support to disparity filtering
parents 8a05bdbc 7c421ba2
...@@ -55,3 +55,25 @@ ...@@ -55,3 +55,25 @@
year={2013}, year={2013},
organization={IEEE} organization={IEEE}
} }
@article{Min2014,
title={Fast global image smoothing based on weighted least squares},
author={Min, Dongbo and Choi, Sunghwan and Lu, Jiangbo and Ham, Bumsub and Sohn, Kwanghoon and Do, Minh N},
journal={Image Processing, IEEE Transactions on},
volume={23},
number={12},
pages={5638--5653},
year={2014},
publisher={IEEE}
}
@inproceedings{Farbman2008,
title={Edge-preserving decompositions for multi-scale tone and detail manipulation},
author={Farbman, Zeev and Fattal, Raanan and Lischinski, Dani and Szeliski, Richard},
booktitle={ACM Transactions on Graphics (TOG)},
volume={27},
number={3},
pages={67},
year={2008},
organization={ACM}
}
...@@ -38,6 +38,7 @@ ...@@ -38,6 +38,7 @@
#define __OPENCV_XIMGPROC_HPP__ #define __OPENCV_XIMGPROC_HPP__
#include "ximgproc/edge_filter.hpp" #include "ximgproc/edge_filter.hpp"
#include "ximgproc/disparity_filter.hpp"
#include "ximgproc/structured_edge_detection.hpp" #include "ximgproc/structured_edge_detection.hpp"
#include "ximgproc/seeds.hpp" #include "ximgproc/seeds.hpp"
......
...@@ -43,49 +43,147 @@ ...@@ -43,49 +43,147 @@
namespace cv { namespace cv {
namespace ximgproc { namespace ximgproc {
//! @addtogroup ximgproc_filters
//! @{
/** @brief Main interface for all disparity map filters.
*/
class CV_EXPORTS_W DisparityFilter : public Algorithm class CV_EXPORTS_W DisparityFilter : public Algorithm
{ {
public: public:
CV_WRAP virtual void filter(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map,Rect ROI) = 0;
};
///////////////////////////////////////////////////////////////////////////////////////////////// /** @brief Apply filtering to the disparity map.
class CV_EXPORTS_W DisparityDTFilter : public DisparityFilter @param disparity_map_left disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity
{ values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map
public: can have any resolution, it will be automatically resized to fit left_view resolution.
CV_WRAP virtual double getSigmaSpatial() = 0;
CV_WRAP virtual void setSigmaSpatial(double _sigmaSpatial) = 0;
CV_WRAP virtual double getSigmaColor() = 0;
CV_WRAP virtual void setSigmaColor(double _sigmaColor) = 0;
};
CV_EXPORTS_W @param left_view left view of the original stereo-pair to guide the filtering process, 8-bit single-channel
Ptr<DisparityDTFilter> createDisparityDTFilter(); or three-channel image.
class CV_EXPORTS_W DisparityGuidedFilter : public DisparityFilter @param filtered_disparity_map output disparity map.
{
public:
CV_WRAP virtual double getEps() = 0;
CV_WRAP virtual void setEps(double _eps) = 0;
CV_WRAP virtual int getRadius() = 0;
CV_WRAP virtual void setRadius(int _radius) = 0;
};
CV_EXPORTS_W @param ROI region of the disparity map to filter.
Ptr<DisparityGuidedFilter> createDisparityGuidedFilter();
@param disparity_map_right optional argument, some implementations might also use the disparity map
of the right view to compute confidence maps, for instance.
@param right_view optional argument, some implementations might also use the right view of the original
stereo-pair.
*/
CV_WRAP virtual void filter(InputArray disparity_map_left, InputArray left_view, OutputArray filtered_disparity_map, Rect ROI, InputArray disparity_map_right = Mat(), InputArray right_view = Mat()) = 0;
};
/** @brief Disparity map filter based on Weighted Least Squares filter (in form of Fast Global Smoother that
is a lot faster than traditional Weighted Least Squares filter implementations) and optional use of
left-right-consistency-based confidence to refine the results in half-occlusions and uniform areas.
*/
class CV_EXPORTS_W DisparityWLSFilter : public DisparityFilter class CV_EXPORTS_W DisparityWLSFilter : public DisparityFilter
{ {
public:
/** filter parameters */
/** @brief Lambda is a parameter defining the amount of regularization during filtering. Larger values force
filtered disparity map edges to adhere more to source image edges. Typical value is 8000.
*/
CV_WRAP virtual double getLambda() = 0; CV_WRAP virtual double getLambda() = 0;
/** @see getLambda */
CV_WRAP virtual void setLambda(double _lambda) = 0; CV_WRAP virtual void setLambda(double _lambda) = 0;
/** @brief SigmaColor is a parameter defining how sensitive the filtering process is to source image edges.
Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too
sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0.
*/
CV_WRAP virtual double getSigmaColor() = 0; CV_WRAP virtual double getSigmaColor() = 0;
/** @see getSigmaColor */
CV_WRAP virtual void setSigmaColor(double _sigma_color) = 0; CV_WRAP virtual void setSigmaColor(double _sigma_color) = 0;
/** confidence-related parameters */
/** @brief LRCthresh is a threshold of disparity difference used in left-right-consistency check during
confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough.
*/
CV_WRAP virtual int getLRCthresh() = 0;
/** @see getLRCthresh */
CV_WRAP virtual void setLRCthresh(int _LRC_thresh) = 0;
/** @brief DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of
low-confidence regions around depth discontinuities. For typical window sizes used in stereo matching the
optimal value is around 5.
*/
CV_WRAP virtual int getDepthDiscontinuityRadius() = 0;
/** @see getDepthDiscontinuityRadius */
CV_WRAP virtual void setDepthDiscontinuityRadius(int _disc_radius) = 0;
/** @brief Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image
with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing
correct disparity values with a high degree of confidence).
*/
CV_WRAP virtual Mat getConfidenceMap() = 0;
}; };
/** @brief Factory method, create instance of DisparityWLSFilter and execute the initialization routines.
@param use_confidence filtering with confidence requires two disparity maps (for the left and right views) and is
approximately two times slower. However, quality is typically significantly better.
*/
CV_EXPORTS_W CV_EXPORTS_W
Ptr<DisparityWLSFilter> createDisparityWLSFilter(); Ptr<DisparityWLSFilter> createDisparityWLSFilter(bool use_confidence);
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/** @brief Function for reading ground truth disparity maps. Supports basic Middlebury
and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.
@param src_path path to the image, containing ground-truth disparity map
@param dst output disparity map, CV_16S depth
@result returns zero if successfully read the ground truth
*/
CV_EXPORTS
int readGT(String src_path,OutputArray dst);
/** @brief Function for computing mean square error for disparity maps
@param GT ground truth disparity map
@param src disparity map to evaluate
@param ROI region of interest
@result returns mean square error between GT and src
*/
CV_EXPORTS
double computeMSE(InputArray GT, InputArray src, Rect ROI);
/** @brief Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)
@param GT ground truth disparity map
@param src disparity map to evaluate
@param ROI region of interest
@param thresh threshold used to determine "bad" pixels
@result returns mean square error between GT and src
*/
CV_EXPORTS
double computeBadPixelPercent(InputArray GT, InputArray src, Rect ROI, int thresh=24/*1.5 pixels*/);
/** @brief Function for creating a disparity map visualization (clamped CV_8U image)
@param src input disparity map (CV_16S depth)
@param dst output visualization
@param scale disparity map will be multiplied by this value for visualization
*/
CV_EXPORTS
void getDisparityVis(InputArray src,OutputArray dst,double scale=1.0);
//! @}
} }
} }
#endif #endif
......
...@@ -316,19 +316,69 @@ proportional to sigmaSpace . ...@@ -316,19 +316,69 @@ proportional to sigmaSpace .
CV_EXPORTS_W CV_EXPORTS_W
void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT); void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT);
//! @} //////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
class CV_EXPORTS_W WeightedLeastSquaresFilter : public Algorithm /** @brief Interface for implementations of Fast Global Smoother filter.
For more details about this filter see @cite Min2014 and @cite Farbman2008 .
*/
class CV_EXPORTS_W FastGlobalSmootherFilter : public Algorithm
{ {
public: public:
/** @brief Apply smoothing operation to the source image.
@param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
@param dst destination image.
*/
CV_WRAP virtual void filter(InputArray src, OutputArray dst) = 0; CV_WRAP virtual void filter(InputArray src, OutputArray dst) = 0;
virtual ~WeightedLeastSquaresFilter();
}; };
CV_EXPORTS_W Ptr<WeightedLeastSquaresFilter> createWeightedLeastSquaresFilter(InputArray guide, double lambda, double sigma_color, int num_iter=3); /** @brief Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
@param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
@param lambda parameter defining the amount of regularization
@param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
@param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
CV_EXPORTS_W void weightedLeastSquaresFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, int num_iter=3); @param num_iter number of iterations used for filtering, 3 is usually enough.
For more details about Fast Global Smoother parameters, see the original paper @cite Min2014. However, please note that
there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
propose to dynamically update the guide image after each iteration. To maximize the performance this feature
was not implemented here.
*/
CV_EXPORTS_W Ptr<FastGlobalSmootherFilter> createFastGlobalSmootherFilter(InputArray guide, double lambda, double sigma_color, double lambda_attenuation=0.25, int num_iter=3);
/** @brief Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
guide then use FastGlobalSmootherFilter interface to avoid extra computations.
@param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
@param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
@param dst destination image.
@param lambda parameter defining the amount of regularization
@param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
@param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
@param num_iter number of iterations used for filtering, 3 is usually enough.
*/
CV_EXPORTS_W void fastGlobalSmootherFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, double lambda_attenuation=0.25, int num_iter=3);
//! @}
} }
} }
#endif #endif
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
#include "opencv2/ximgproc/disparity_filter.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
void MakeArtificialExample(RNG rng, Mat& dst_left_view, Mat& dst_left_disparity_map, Mat& dst_right_disparity_map, Rect& dst_ROI);
CV_ENUM(GuideTypes, CV_8UC3);
CV_ENUM(SrcTypes, CV_16S);
typedef tuple<GuideTypes, SrcTypes, Size, bool, bool> DisparityWLSParams;
typedef TestBaseWithParam<DisparityWLSParams> DisparityWLSFilterPerfTest;
PERF_TEST_P( DisparityWLSFilterPerfTest, perf, Combine(GuideTypes::all(), SrcTypes::all(), Values(sz720p), Values(true,false), Values(true,false)) )
{
RNG rng(0);
DisparityWLSParams params = GetParam();
int guideType = get<0>(params);
int srcType = get<1>(params);
Size sz = get<2>(params);
bool use_conf = get<3>(params);
bool use_downscale = get<4>(params);
Mat guide(sz, guideType);
Mat disp_left(sz, srcType);
Mat disp_right(sz, srcType);
Mat dst(sz, srcType);
Rect ROI;
MakeArtificialExample(rng,guide,disp_left,disp_right,ROI);
if(use_downscale)
{
resize(disp_left,disp_left,Size(),0.5,0.5);
disp_left/=2;
resize(disp_right,disp_right,Size(),0.5,0.5);
disp_right/=2;
ROI = Rect(ROI.x/2,ROI.y/2,ROI.width/2,ROI.height/2);
}
cv::setNumThreads(cv::getNumberOfCPUs());
TEST_CYCLE_N(10)
{
Ptr<DisparityWLSFilter> wls_filter = createDisparityWLSFilter(use_conf);
wls_filter->filter(disp_left,guide,dst,ROI,disp_right);
}
SANITY_CHECK(dst);
}
void MakeArtificialExample(RNG rng, Mat& dst_left_view, Mat& dst_left_disparity_map, Mat& dst_right_disparity_map, Rect& dst_ROI)
{
int w = dst_left_view.cols;
int h = dst_left_view.rows;
//params:
unsigned char bg_level = (unsigned char)rng.uniform(0.0,255.0);
unsigned char fg_level = (unsigned char)rng.uniform(0.0,255.0);
int rect_width = (int)rng.uniform(w/16,w/2);
int rect_height = (int)rng.uniform(h/16,h/2);
int rect_disparity = (int)(0.15*w); //typical maximum disparity value
double sigma = 6.0;
int rect_x_offset = (w-rect_width) /2;
int rect_y_offset = (h-rect_height)/2;
if(dst_left_view.channels()==3)
dst_left_view = Scalar(Vec3b(bg_level,bg_level,bg_level));
else
dst_left_view = Scalar(bg_level);
dst_left_disparity_map = Scalar(0);
dst_right_disparity_map = Scalar(0);
Mat dst_left_view_rect = Mat(dst_left_view, Rect(rect_x_offset,rect_y_offset,rect_width,rect_height));
Mat dst_left_disparity_map_rect = Mat(dst_left_disparity_map,Rect(rect_x_offset,rect_y_offset,rect_width,rect_height));
if(dst_left_view.channels()==3)
dst_left_view_rect = Scalar(Vec3b(fg_level,fg_level,fg_level));
else
dst_left_view_rect = Scalar(fg_level);
dst_left_disparity_map_rect = Scalar(16*rect_disparity);
rect_x_offset-=rect_disparity;
Mat dst_right_disparity_map_rect = Mat(dst_right_disparity_map,Rect(rect_x_offset,rect_y_offset,rect_width,rect_height));
dst_right_disparity_map_rect = Scalar(-16*rect_disparity);
//add some gaussian noise:
unsigned char *l;
short *ldisp, *rdisp;
for(int i=0;i<h;i++)
{
l = dst_left_view.ptr(i);
ldisp = (short*)dst_left_disparity_map.ptr(i);
rdisp = (short*)dst_right_disparity_map.ptr(i);
if(dst_left_view.channels()==3)
{
for(int j=0;j<w;j++)
{
l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma));
l[1] = saturate_cast<unsigned char>(l[1] + rng.gaussian(sigma));
l[2] = saturate_cast<unsigned char>(l[2] + rng.gaussian(sigma));
l+=3;
ldisp[0] = saturate_cast<short>(ldisp[0] + rng.gaussian(sigma));
ldisp++;
rdisp[0] = saturate_cast<short>(rdisp[0] + rng.gaussian(sigma));
rdisp++;
}
}
else
{
for(int j=0;j<w;j++)
{
l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma));
l++;
ldisp[0] = saturate_cast<short>(ldisp[0] + rng.gaussian(sigma));
ldisp++;
rdisp[0] = saturate_cast<short>(rdisp[0] + rng.gaussian(sigma));
rdisp++;
}
}
}
dst_ROI = Rect(rect_disparity,0,w-rect_disparity,h);
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "perf_precomp.hpp"
namespace cvtest
{
using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;
using namespace cv::ximgproc;
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3);
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC3, CV_16SC1, CV_16SC3, CV_32FC1, CV_32FC3);
typedef tuple<GuideTypes, SrcTypes, Size> FGSParams;
typedef TestBaseWithParam<FGSParams> FGSFilterPerfTest;
PERF_TEST_P( FGSFilterPerfTest, perf, Combine(GuideTypes::all(), SrcTypes::all(), Values(sz720p)) )
{
RNG rng(0);
FGSParams params = GetParam();
int guideType = get<0>(params);
int srcType = get<1>(params);
Size sz = get<2>(params);
Mat guide(sz, guideType);
Mat src(sz, srcType);
Mat dst(sz, srcType);
declare.in(guide, src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
cv::setNumThreads(cv::getNumberOfCPUs());
TEST_CYCLE_N(10)
{
double lambda = rng.uniform(500.0, 10000.0);
double sigma = rng.uniform(1.0, 100.0);
fastGlobalSmootherFilter(guide,src,dst,lambda,sigma);
}
SANITY_CHECK(dst);
}
}
\ No newline at end of file
...@@ -4,215 +4,306 @@ ...@@ -4,215 +4,306 @@
#include "opencv2/highgui.hpp" #include "opencv2/highgui.hpp"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/ximgproc/disparity_filter.hpp" #include "opencv2/ximgproc/disparity_filter.hpp"
#include <stdio.h> #include <iostream>
#include <string> #include <string>
#include <vector>
#include <map>
#if defined(_WIN32)
#include <direct.h>
#else
#include <sys/stat.h>
#endif
using namespace cv; using namespace cv;
using namespace cv::ximgproc; using namespace cv::ximgproc;
using namespace std; using namespace std;
#define UNKNOWN_DISPARITY 16320 Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance);
static void print_help() const String keys =
{ "{help h usage ? | | print this message }"
printf("\nDemo for disparity filtering, evaluating speed and performance of different filters\n"); "{@left |../data/aloeL.jpg | left view of the stereopair }"
printf("\nUsage: disparity_filtering.exe <path_to_dataset_folder> <path_to_results_folder>\n"); "{@right |../data/aloeR.jpg | right view of the stereopair }"
} "{GT |../data/aloeGT.png| optional ground-truth disparity (MPI-Sintel or Middlebury format) }"
"{dst_path |None | optional path to save the resulting filtered disparity map }"
"{dst_raw_path |None | optional path to save raw disparity map before filtering }"
"{algorithm |bm | stereo matching method (bm or sgbm) }"
"{filter |wls_conf | used post-filtering (wls_conf or wls_no_conf) }"
"{no-display | | don't display results }"
"{no-downscale | | prevent stereo matching on downscaled views }"
"{dst_conf_path |None | optional path to save the confidence map used in filtering }"
"{vis_mult |1.0 | coefficient used to scale disparity map visualizations }"
"{max_disparity |160 | parameter of stereo matching }"
"{window_size |19 | parameter of stereo matching }"
"{wls_lambda |8000.0 | parameter of post-filtering }"
"{wls_sigma |1.0 | parameter of post-filtering }"
;
struct dataset_entry int main(int argc, char** argv)
{ {
string name; CommandLineParser parser(argc,argv,keys);
string dataset_folder; parser.about("Disparity Filtering Demo");
string left_file,right_file,GT_file; if (parser.has("help"))
dataset_entry(string _dataset_folder): dataset_folder(_dataset_folder){}
void readEntry(Mat& dst_left,Mat& dst_right,Mat& dst_GT)
{ {
dst_left = imread(dataset_folder+"/"+left_file, IMREAD_COLOR); parser.printMessage();
dst_right = imread(dataset_folder+"/"+right_file, IMREAD_COLOR); return 0;
Mat raw_disp = imread(dataset_folder+"/"+GT_file, IMREAD_COLOR);
dst_GT = Mat(raw_disp.rows,raw_disp.cols,CV_16S);
for(int i=0;i<raw_disp.rows;i++)
for(int j=0;j<raw_disp.cols;j++)
{
Vec3b bgrPixel = raw_disp.at<Vec3b>(i, j);
dst_GT.at<short>(i,j) = 64*bgrPixel.val[2]+bgrPixel.val[1]/4; //16-multiplied disparity
}
} }
};
struct config String left_im = parser.get<String>(0);
{ String right_im = parser.get<String>(1);
Ptr<StereoMatcher> matcher_instance; String GT_path = parser.get<String>("GT");
Ptr<DisparityFilter> filter_instance;
config(Ptr<StereoMatcher> _matcher_instance,Ptr<DisparityFilter> _filter_instance) String dst_path = parser.get<String>("dst_path");
String dst_raw_path = parser.get<String>("dst_raw_path");
String dst_conf_path = parser.get<String>("dst_conf_path");
String algo = parser.get<String>("algorithm");
String filter = parser.get<String>("filter");
bool no_display = parser.has("no-display");
bool no_downscale = parser.has("no-downscale");
int max_disp = parser.get<int>("max_disparity");
int wsize = parser.get<int>("window_size");
double lambda = parser.get<double>("wls_lambda");
double sigma = parser.get<double>("wls_sigma");
double vis_mult = parser.get<double>("vis_mult");
if (!parser.check())
{ {
matcher_instance = _matcher_instance; parser.printErrors();
filter_instance = _filter_instance; return -1;
} }
config() {}
};
void operator>>(const FileNode& node,dataset_entry& entry); Mat left = imread(left_im ,IMREAD_COLOR);
double computeMSE(Mat& GT, Mat& src, Rect ROI); if ( left.empty() )
double computeBadPixelPercent(Mat& GT, Mat& src, Rect ROI, int thresh=24/*1.5 pixels*/);
void getDisparityVis(Mat& disparity_map,Mat& dst);
Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance);
void setConfigsForTesting(map<string,config>& cfgs);
void CreateDir(string path);
int main(int argc, char** argv)
{
if(argc < 3)
{ {
print_help(); cout<<"Cannot read image file: "<<left_im;
return 0; return -1;
} }
string dataset_folder(argv[1]);
string res_folder(argv[2]);
map<string,config> configs_for_testing; Mat right = imread(right_im,IMREAD_COLOR);
setConfigsForTesting(configs_for_testing); if ( right.empty() )
CreateDir(res_folder); {
cout<<"Cannot read image file: "<<right_im;
return -1;
}
for (map<string,config>::iterator cfg = configs_for_testing.begin(); cfg != configs_for_testing.end(); cfg++) bool noGT;
Mat GT_disp;
if (GT_path=="../data/aloeGT.png" && left_im!="../data/aloeL.jpg")
noGT=true;
else
{ {
string vis_folder = res_folder+"/vis_"+cfg->first; noGT=false;
CreateDir(vis_folder); if(readGT(GT_path,GT_disp)!=0)
string cfg_file_name = res_folder+"/"+cfg->first+"_res.csv";
FILE* cur_cfg_res_file = fopen(cfg_file_name.c_str(),"w");
fprintf(cur_cfg_res_file,"Name,MSE,MSE after postfiltering,Percent bad,Percent bad after postfiltering,Matcher Execution Time(s),Filter Execution Time(s)\n");
printf("Processing configuration: %s\n",cfg->first.c_str());
FileStorage fs(dataset_folder + "/_dataset.xml", FileStorage::READ);
FileNode n = fs["data_set"];
double MSE_pre,percent_pre,MSE_post,percent_post,matching_time,filtering_time;
double average_MSE_pre=0,average_percent_pre=0,average_MSE_post=0,
average_percent_post=0,average_matching_time=0,average_filtering_time=0;
int cnt = 0;
for (FileNodeIterator it = n.begin(); it != n.end(); it++)
{ {
dataset_entry entry(dataset_folder); cout<<"Cannot read ground truth image file: "<<GT_path<<endl;
(*it)>>entry; return -1;
printf("%s ",entry.name.c_str()); }
Mat left,right,GT; }
entry.readEntry(left,right,GT);
Mat raw_disp;
Mat left_gray; cvtColor(left, left_gray, COLOR_BGR2GRAY );
Mat right_gray; cvtColor(right, right_gray, COLOR_BGR2GRAY );
matching_time = (double)getTickCount();
cfg->second.matcher_instance->compute(left_gray,right_gray,raw_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
Rect ROI = computeROI(left.size(),cfg->second.matcher_instance);
Mat filtered_disp;
filtering_time = (double)getTickCount();
cfg->second.filter_instance->filter(raw_disp,left,filtered_disp,ROI);
filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
Mat left_for_matcher, right_for_matcher;
Mat left_disp,right_disp;
Mat filtered_disp;
Mat conf_map = Mat(left.rows,left.cols,CV_8U);
conf_map = Scalar(255);
Rect ROI;
double matching_time, filtering_time;
if(max_disp<=0 || max_disp%16!=0)
{
cout<<"Incorrect max_disparity value: it should be positive and divisible by 16";
return -1;
}
if(wsize<=0 || wsize%2!=1)
{
cout<<"Incorrect window_size value: it should be positive and odd";
return -1;
}
if(filter=="wls_conf")
{
if(!no_downscale)
{
wsize = wsize/2;
if(wsize%2==0) wsize++;
max_disp/=2;
if(max_disp%16!=0)
max_disp += 16-(max_disp%16);
resize(left ,left_for_matcher ,Size(),0.5,0.5);
resize(right,right_for_matcher,Size(),0.5,0.5);
}
else
{
left_for_matcher = left.clone();
right_for_matcher = right.clone();
}
MSE_pre = computeMSE(GT,raw_disp,ROI);
percent_pre = computeBadPixelPercent(GT,raw_disp,ROI);
MSE_post = computeMSE(GT,filtered_disp,ROI);
percent_post = computeBadPixelPercent(GT,filtered_disp,ROI);
fprintf(cur_cfg_res_file,"%s,%.1f,%.1f,%.1f,%.1f,%.3f,%.3f\n",entry.name.c_str(),MSE_pre,MSE_post, if(algo=="bm")
percent_pre,percent_post,matching_time,filtering_time); {
Ptr<StereoBM> left_matcher = StereoBM::create(max_disp,wsize);
left_matcher->setMinDisparity(0);
Ptr<StereoBM> right_matcher = StereoBM::create(max_disp,wsize);
right_matcher->setMinDisparity(-max_disp+1);
left_matcher->setTextureThreshold(0);
left_matcher->setUniquenessRatio(0);
right_matcher->setTextureThreshold(0);
right_matcher->setUniquenessRatio(0);
cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
ROI = computeROI(left_for_matcher.size(),left_matcher);
average_matching_time+=matching_time; average_filtering_time+=filtering_time; matching_time = (double)getTickCount();
average_MSE_pre+=MSE_pre; average_percent_pre+=percent_pre; left_matcher-> compute(left_for_matcher, right_for_matcher,left_disp);
average_MSE_post+=MSE_post; average_percent_post+=percent_post; right_matcher->compute(right_for_matcher,left_for_matcher, right_disp);
cnt++; matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
else if(algo=="sgbm")
{
Ptr<StereoSGBM> left_matcher = StereoSGBM::create(0,max_disp,wsize);
left_matcher->setMinDisparity(0);
Ptr<StereoSGBM> right_matcher = StereoSGBM::create(-max_disp+1,max_disp,wsize);
left_matcher->setUniquenessRatio(0);
left_matcher->setDisp12MaxDiff(1000000);
left_matcher->setSpeckleWindowSize(0);
right_matcher->setUniquenessRatio(0);
right_matcher->setDisp12MaxDiff(1000000);
right_matcher->setSpeckleWindowSize(0);
ROI = computeROI(left_for_matcher.size(),left_matcher);
// dump visualizations: matching_time = (double)getTickCount();
imwrite(vis_folder + "/" + entry.name + "_left.png",left); left_matcher-> compute(left_for_matcher, right_for_matcher,left_disp);
Mat GT_vis,raw_disp_vis,filtered_disp_vis; right_matcher->compute(right_for_matcher,left_for_matcher, right_disp);
getDisparityVis(GT,GT_vis); matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
getDisparityVis(raw_disp,raw_disp_vis); }
getDisparityVis(filtered_disp,filtered_disp_vis); else
imwrite(vis_folder + "/" + entry.name + "_disparity_GT.png",GT_vis); {
imwrite(vis_folder + "/" + entry.name + "_disparity_raw.png",raw_disp_vis); cout<<"Unsupported algorithm";
imwrite(vis_folder + "/" + entry.name + "_disparity_filtered.png",filtered_disp_vis); return -1;
}
printf("- Done\n"); Ptr<DisparityWLSFilter> wls_filter = createDisparityWLSFilter(true);
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
filtering_time = (double)getTickCount();
wls_filter->filter(left_disp,left,filtered_disp,ROI,right_disp);
filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
conf_map = wls_filter->getConfidenceMap();
if(!no_downscale)
{
// upscale raw disparity and ROI back for a proper comparison:
resize(left_disp,left_disp,Size(),2.0,2.0);
left_disp = left_disp*2.0;
ROI = Rect(ROI.x*2,ROI.y*2,ROI.width*2,ROI.height*2);
} }
fprintf(cur_cfg_res_file,"%s,%.1f,%.1f,%.1f,%.1f,%.3f,%.3f\n","average",average_MSE_pre/cnt,
average_MSE_post/cnt,average_percent_pre/cnt,average_percent_post/cnt,
average_matching_time/cnt,average_filtering_time/cnt);
fclose(cur_cfg_res_file);
} }
return 0; else if(filter=="wls_no_conf")
} {
left_for_matcher = left.clone();
void operator>>(const FileNode& node,dataset_entry& entry) right_for_matcher = right.clone();
{
node["name"] >> entry.name;
node["left_file"] >> entry.left_file;
node["right_file"] >> entry.right_file;
node["GT_file"] >> entry.GT_file;
}
double computeMSE(Mat& GT, Mat& src, Rect ROI) if(algo=="bm")
{
double res = 0;
Mat GT_ROI(GT,ROI);
Mat src_ROI(src,ROI);
int cnt=0;
for(int i=0;i<src_ROI.rows;i++)
for(int j=0;j<src_ROI.cols;j++)
{ {
if(GT_ROI.at<short>(i,j)!=UNKNOWN_DISPARITY) Ptr<StereoBM> matcher = StereoBM::create(max_disp,wsize);
{ matcher->setTextureThreshold(0);
res += (GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j))*(GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j)); matcher->setUniquenessRatio(0);
cnt++; cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
} cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
ROI = computeROI(left_for_matcher.size(),matcher);
matching_time = (double)getTickCount();
matcher->compute(left_for_matcher,right_for_matcher,left_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
} }
res /= cnt*256; else if(algo=="sgbm")
return res; {
} Ptr<StereoSGBM> matcher = StereoSGBM::create(0,max_disp,wsize);
matcher->setUniquenessRatio(0);
matcher->setDisp12MaxDiff(1000000);
matcher->setSpeckleWindowSize(0);
ROI = computeROI(left_for_matcher.size(),matcher);
double computeBadPixelPercent(Mat& GT, Mat& src, Rect ROI, int thresh) matching_time = (double)getTickCount();
{ matcher->compute(left_for_matcher,right_for_matcher,left_disp);
int bad_pixel_num = 0; matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
Mat GT_ROI(GT,ROI); }
Mat src_ROI(src,ROI); else
int cnt=0;
for(int i=0;i<src_ROI.rows;i++)
for(int j=0;j<src_ROI.cols;j++)
{ {
if(GT_ROI.at<short>(i,j)!=UNKNOWN_DISPARITY) cout<<"Unsupported algorithm";
{ return -1;
if( abs(GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j))>=thresh )
bad_pixel_num++;
cnt++;
}
} }
return (100.0*bad_pixel_num)/cnt;
}
void getDisparityVis(Mat& disparity_map,Mat& dst) Ptr<DisparityWLSFilter> wls_filter = createDisparityWLSFilter(false);
{ wls_filter->setLambda(lambda);
dst = Mat(disparity_map.rows,disparity_map.cols,CV_8UC3); wls_filter->setSigmaColor(sigma);
for(int i=0;i<dst.rows;i++) filtering_time = (double)getTickCount();
for(int j=0;j<dst.cols;j++) wls_filter->filter(left_disp,left,filtered_disp,ROI);
filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
}
else
{
cout<<"Unsupported filter";
return -1;
}
//collect and print all the stats:
cout.precision(2);
cout<<"Matching time: "<<matching_time<<"s"<<endl;
cout<<"Filtering time: "<<filtering_time<<"s"<<endl;
cout<<endl;
double MSE_before,percent_bad_before,MSE_after,percent_bad_after;
if(!noGT)
{
MSE_before = computeMSE(GT_disp,left_disp,ROI);
percent_bad_before = computeBadPixelPercent(GT_disp,left_disp,ROI);
MSE_after = computeMSE(GT_disp,filtered_disp,ROI);
percent_bad_after = computeBadPixelPercent(GT_disp,filtered_disp,ROI);
cout.precision(5);
cout<<"MSE before filtering: "<<MSE_before<<endl;
cout<<"MSE after filtering: "<<MSE_after<<endl;
cout<<endl;
cout.precision(3);
cout<<"Percent of bad pixels before filtering: "<<percent_bad_before<<endl;
cout<<"Percent of bad pixels after filtering: "<<percent_bad_after<<endl;
}
if(dst_path!="None")
{
Mat filtered_disp_vis;
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
imwrite(dst_path,filtered_disp_vis);
}
if(dst_raw_path!="None")
{
Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
imwrite(dst_raw_path,raw_disp_vis);
}
if(dst_conf_path!="None")
{
imwrite(dst_conf_path,conf_map);
}
if(!no_display)
{
namedWindow("left", WINDOW_AUTOSIZE);
imshow("left", left);
namedWindow("right", WINDOW_AUTOSIZE);
imshow("right", right);
if(!noGT)
{ {
if(disparity_map.at<short>(i,j)==UNKNOWN_DISPARITY) Mat GT_disp_vis;
dst.at<Vec3b>(i,j) = Vec3b(0,0,0); getDisparityVis(GT_disp,GT_disp_vis,vis_mult);
else namedWindow("ground-truth disparity", WINDOW_AUTOSIZE);
dst.at<Vec3b>(i,j) = Vec3b(saturate_cast<unsigned char>(disparity_map.at<short>(i,j)/8), imshow("ground-truth disparity", GT_disp_vis);
saturate_cast<unsigned char>(disparity_map.at<short>(i,j)/8),
saturate_cast<unsigned char>(disparity_map.at<short>(i,j)/8));
} }
Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
namedWindow("raw disparity", WINDOW_AUTOSIZE);
imshow("raw disparity", raw_disp_vis);
Mat filtered_disp_vis;
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
namedWindow("filtered disparity", WINDOW_AUTOSIZE);
imshow("filtered disparity", filtered_disp_vis);
waitKey();
}
return 0;
} }
Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance) Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance)
...@@ -225,34 +316,10 @@ Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance) ...@@ -225,34 +316,10 @@ Rect computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance)
int minD = min_disparity, maxD = min_disparity + num_disparities - 1; int minD = min_disparity, maxD = min_disparity + num_disparities - 1;
int xmin = maxD + bs2; int xmin = maxD + bs2;
int xmax = src_sz.width - minD - bs2; int xmax = src_sz.width + minD - bs2;
int ymin = bs2; int ymin = bs2;
int ymax = src_sz.height - bs2; int ymax = src_sz.height - bs2;
Rect r(xmin, ymin, xmax - xmin, ymax - ymin); Rect r(xmin, ymin, xmax - xmin, ymax - ymin);
return r; return r;
} }
void setConfigsForTesting(map<string,config>& cfgs)
{
Ptr<StereoBM> stereobm_matcher = StereoBM::create(128,21);
stereobm_matcher->setTextureThreshold(0);
stereobm_matcher->setUniquenessRatio(0);
Ptr<DisparityFilter> wls_filter = createDisparityWLSFilter();
Ptr<DisparityFilter> dt_filter = createDisparityDTFilter();
Ptr<DisparityFilter> guided_filter = createDisparityGuidedFilter();
cfgs["stereobm_wls"] = config(stereobm_matcher,wls_filter);
cfgs["stereobm_dtf"] = config(stereobm_matcher,dt_filter);
cfgs["stereobm_gf"] = config(stereobm_matcher,guided_filter);
}
void CreateDir(string path)
{
#if defined(_WIN32)
_mkdir(path.c_str());
#else
mkdir(path.c_str(), 0777);
#endif
}
...@@ -36,149 +36,429 @@ ...@@ -36,149 +36,429 @@
#include "precomp.hpp" #include "precomp.hpp"
#include "opencv2/ximgproc/disparity_filter.hpp" #include "opencv2/ximgproc/disparity_filter.hpp"
#include "opencv2/highgui.hpp"
#include <math.h> #include <math.h>
#include <vector>
namespace cv { namespace cv {
namespace ximgproc { namespace ximgproc {
void setROI(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map, using std::vector;
Mat& disp,Mat& src,Mat& dst,Rect ROI); #define EPS 1e-43f
class DisparityDTFilterImpl : public DisparityDTFilter class DisparityWLSFilterImpl : public DisparityWLSFilter
{ {
protected: protected:
double sigmaSpatial,sigmaColor; double lambda,sigma_color;
void init(double _sigmaSpatial, double _sigmaColor) bool use_confidence;
Mat confidence_map;
int LRC_thresh,depth_discontinuity_radius;
float depth_discontinuity_roll_off_factor;
float resize_factor;
int num_stripes;
void init(double _lambda, double _sigma_color, bool _use_confidence);
void computeDepthDiscontinuityMaps(Mat& left_disp, Mat& right_disp, Mat& left_dst, Mat& right_dst, Rect ROI);
void computeConfidenceMap(InputArray left_disp, InputArray right_disp, Rect ROI);
protected:
struct ComputeDiscontinuityAwareLRC_ParBody : public ParallelLoopBody
{ {
sigmaColor = _sigmaColor; DisparityWLSFilterImpl* wls;
sigmaSpatial = _sigmaSpatial; Mat *left_disp, *right_disp;
} Mat *left_disc, *right_disc, *dst;
public: Rect left_ROI, right_ROI;
double getSigmaSpatial() {return sigmaSpatial;} int nstripes, stripe_sz;
void setSigmaSpatial(double _sigmaSpatial) {sigmaSpatial = _sigmaSpatial;}
double getSigmaColor() {return sigmaColor;} ComputeDiscontinuityAwareLRC_ParBody(DisparityWLSFilterImpl& _wls, Mat& _left_disp, Mat& _right_disp, Mat& _left_disc, Mat& _right_disc, Mat& _dst, Rect _left_ROI, Rect _right_ROI, int _nstripes);
void setSigmaColor(double _sigmaColor) {sigmaColor = _sigmaColor;} void operator () (const Range& range) const;
};
static Ptr<DisparityDTFilterImpl> create() struct ComputeDepthDisc_ParBody : public ParallelLoopBody
{ {
DisparityDTFilterImpl *dtf = new DisparityDTFilterImpl(); DisparityWLSFilterImpl* wls;
dtf->init(25.0,60.0); Mat *disp,*disp_squares,*dst;
return Ptr<DisparityDTFilterImpl>(dtf); int nstripes, stripe_sz;
ComputeDepthDisc_ParBody(DisparityWLSFilterImpl& _wls, Mat& _disp, Mat& _disp_squares, Mat& _dst, int _nstripes);
void operator () (const Range& range) const;
};
typedef void (DisparityWLSFilterImpl::*MatOp)(Mat& src, Mat& dst);
struct ParallelMatOp_ParBody : public ParallelLoopBody
{
DisparityWLSFilterImpl* wls;
vector<MatOp> ops;
vector<Mat*> src;
vector<Mat*> dst;
ParallelMatOp_ParBody(DisparityWLSFilterImpl& _wls, vector<MatOp> _ops, vector<Mat*>& _src, vector<Mat*>& _dst);
void operator () (const Range& range) const;
};
void boxFilterOp(Mat& src,Mat& dst)
{
int rad = (int)ceil(resize_factor*depth_discontinuity_radius);
boxFilter(src,dst,CV_32F,Size(2*rad+1,2*rad+1),Point(-1,-1));
} }
void filter(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map,Rect ROI) void sqrBoxFilterOp(Mat& src,Mat& dst)
{ {
Mat disp,src,dst; int rad = (int)ceil(resize_factor*depth_discontinuity_radius);
setROI(disparity_map,left_view,filtered_disparity_map,disp,src,dst,ROI); sqrBoxFilter(src,dst,CV_32F,Size(2*rad+1,2*rad+1),Point(-1,-1));
}
Mat disp_32F,dst_32F; void copyToOp(Mat& src,Mat& dst)
disp.convertTo(disp_32F,CV_32F); {
dtFilter(src,disp_32F,dst_32F,sigmaSpatial,sigmaColor); src.copyTo(dst);
dst_32F.convertTo(dst,CV_16S);
} }
public:
static Ptr<DisparityWLSFilterImpl> create(bool _use_confidence);
void filter(InputArray disparity_map_left, InputArray left_view, OutputArray filtered_disparity_map, Rect ROI, InputArray disparity_map_right, InputArray);
double getLambda() {return lambda;}
void setLambda(double _lambda) {lambda = _lambda;}
double getSigmaColor() {return sigma_color;}
void setSigmaColor(double _sigma_color) {sigma_color = _sigma_color;}
Mat getConfidenceMap() {return confidence_map;}
int getLRCthresh() {return LRC_thresh;}
void setLRCthresh(int _LRC_thresh) {LRC_thresh = _LRC_thresh;}
int getDepthDiscontinuityRadius() {return depth_discontinuity_radius;}
void setDepthDiscontinuityRadius(int _disc_radius) {depth_discontinuity_radius = _disc_radius;}
}; };
CV_EXPORTS_W void DisparityWLSFilterImpl::init(double _lambda, double _sigma_color, bool _use_confidence)
Ptr<DisparityDTFilter> createDisparityDTFilter()
{ {
return Ptr<DisparityDTFilter>(DisparityDTFilterImpl::create()); lambda = _lambda;
sigma_color = _sigma_color;
use_confidence = _use_confidence;
confidence_map = Mat();
LRC_thresh = 24;
depth_discontinuity_radius = 5;
depth_discontinuity_roll_off_factor = 0.001f;
resize_factor = 1.0;
num_stripes = getNumThreads();
} }
////////////////////////////////////////////////////////////////////////////////////////////////////// void DisparityWLSFilterImpl::computeDepthDiscontinuityMaps(Mat& left_disp, Mat& right_disp, Mat& left_dst, Mat& right_dst, Rect ROI)
class DisparityGuidedFilterImpl : public DisparityGuidedFilter
{ {
protected: Rect right_ROI(left_disp.cols-(ROI.x+ROI.width),ROI.y,ROI.width,ROI.height);
int radius; Mat left_disp_ROI (left_disp, ROI);
double eps; Mat right_disp_ROI(right_disp,right_ROI);
void init(int _radius, double _eps) Mat ldisp,rdisp,ldisp_squared,rdisp_squared;
{ {
radius = _radius; vector<Mat*> _src; _src.push_back(&left_disp_ROI);_src.push_back(&right_disp_ROI);
eps = _eps; _src.push_back(&left_disp_ROI);_src.push_back(&right_disp_ROI);
vector<Mat*> _dst; _dst.push_back(&ldisp); _dst.push_back(&rdisp);
_dst.push_back(&ldisp_squared);_dst.push_back(&rdisp_squared);
vector<MatOp> _ops; _ops.push_back(&DisparityWLSFilterImpl::copyToOp); _ops.push_back(&DisparityWLSFilterImpl::copyToOp);
_ops.push_back(&DisparityWLSFilterImpl::copyToOp); _ops.push_back(&DisparityWLSFilterImpl::copyToOp);
parallel_for_(Range(0,4),ParallelMatOp_ParBody(*this,_ops,_src,_dst));
} }
public:
double getEps() {return eps;}
void setEps(double _eps) {eps = _eps;}
int getRadius() {return radius;}
void setRadius(int _radius) {radius = _radius;}
static Ptr<DisparityGuidedFilterImpl> create()
{ {
DisparityGuidedFilterImpl *gf = new DisparityGuidedFilterImpl(); vector<Mat*> _src; _src.push_back(&ldisp); _src.push_back(&rdisp);
gf->init(20,100.0); _src.push_back(&ldisp_squared);_src.push_back(&rdisp_squared);
return Ptr<DisparityGuidedFilterImpl>(gf); vector<Mat*> _dst; _dst.push_back(&ldisp); _dst.push_back(&rdisp);
_dst.push_back(&ldisp_squared);_dst.push_back(&rdisp_squared);
vector<MatOp> _ops; _ops.push_back(&DisparityWLSFilterImpl::boxFilterOp); _ops.push_back(&DisparityWLSFilterImpl::boxFilterOp);
_ops.push_back(&DisparityWLSFilterImpl::sqrBoxFilterOp);_ops.push_back(&DisparityWLSFilterImpl::sqrBoxFilterOp);
parallel_for_(Range(0,4),ParallelMatOp_ParBody(*this,_ops,_src,_dst));
} }
void filter(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map,Rect ROI) left_dst = Mat::zeros(left_disp.rows,left_disp.cols,CV_32F);
right_dst = Mat::zeros(right_disp.rows,right_disp.cols,CV_32F);
Mat left_dst_ROI (left_dst,ROI);
Mat right_dst_ROI(right_dst,right_ROI);
parallel_for_(Range(0,num_stripes),ComputeDepthDisc_ParBody(*this,ldisp,ldisp_squared,left_dst_ROI ,num_stripes));
parallel_for_(Range(0,num_stripes),ComputeDepthDisc_ParBody(*this,rdisp,rdisp_squared,right_dst_ROI,num_stripes));
}
void DisparityWLSFilterImpl::computeConfidenceMap(InputArray left_disp, InputArray right_disp, Rect ROI)
{
Mat ldisp = left_disp.getMat();
Mat rdisp = right_disp.getMat();
Mat depth_discontinuity_map_left,depth_discontinuity_map_right;
computeDepthDiscontinuityMaps(ldisp,rdisp,depth_discontinuity_map_left,depth_discontinuity_map_right,ROI);
Rect right_ROI(ldisp.cols-(ROI.x+ROI.width),ROI.y,ROI.width,ROI.height);
confidence_map = depth_discontinuity_map_left;
parallel_for_(Range(0,num_stripes),ComputeDiscontinuityAwareLRC_ParBody(*this,ldisp,rdisp, depth_discontinuity_map_left,depth_discontinuity_map_right,confidence_map,ROI,right_ROI,num_stripes));
confidence_map = 255.0f*confidence_map;
}
Ptr<DisparityWLSFilterImpl> DisparityWLSFilterImpl::create(bool _use_confidence)
{
DisparityWLSFilterImpl *wls = new DisparityWLSFilterImpl();
wls->init(8000.0,1.0,_use_confidence);
return Ptr<DisparityWLSFilterImpl>(wls);
}
void DisparityWLSFilterImpl::filter(InputArray disparity_map_left, InputArray left_view, OutputArray filtered_disparity_map, Rect ROI, InputArray disparity_map_right, InputArray)
{
CV_Assert( !disparity_map_left.empty() && (disparity_map_left.depth() == CV_16S) && (disparity_map_left.channels() == 1) );
CV_Assert( !left_view.empty() && (left_view.depth() == CV_8U) && (left_view.channels() == 3 || left_view.channels() == 1) );
Mat disp,src,dst;
if(disparity_map_left.size()!=left_view.size())
resize_factor = disparity_map_left.cols()/(float)left_view.cols();
else
resize_factor = 1.0;
if(!use_confidence)
{ {
Mat disp,src,dst; Mat disp_full_size = disparity_map_left.getMat();
setROI(disparity_map,left_view,filtered_disparity_map,disp,src,dst,ROI); Mat src_full_size = left_view.getMat();
if(disp_full_size.size!=src_full_size.size)
{
float x_ratio = src_full_size.cols/(float)disp_full_size.cols;
float y_ratio = src_full_size.rows/(float)disp_full_size.rows;
resize(disp_full_size,disp_full_size,src_full_size.size());
disp_full_size = disp_full_size*x_ratio;
ROI = Rect((int)(ROI.x*x_ratio),(int)(ROI.y*y_ratio),(int)(ROI.width*x_ratio),(int)(ROI.height*y_ratio));
}
disp = Mat(disp_full_size,ROI);
src = Mat(src_full_size ,ROI);
filtered_disparity_map.create(disp_full_size.size(), disp_full_size.type());
Mat& dst_full_size = filtered_disparity_map.getMatRef();
dst_full_size = Scalar(-16);
dst = Mat(dst_full_size,ROI);
Mat filtered_disp;
fastGlobalSmootherFilter(src,disp,filtered_disp,lambda,sigma_color);
filtered_disp.copyTo(dst);
}
else
{
CV_Assert( !disparity_map_right.empty() && (disparity_map_right.depth() == CV_16S) && (disparity_map_right.channels() == 1) );
CV_Assert( (disparity_map_left.cols() == disparity_map_right.cols()) );
CV_Assert( (disparity_map_left.rows() == disparity_map_right.rows()) );
computeConfidenceMap(disparity_map_left,disparity_map_right,ROI);
Mat disp_full_size = disparity_map_left.getMat();
Mat src_full_size = left_view.getMat();
if(disp_full_size.size!=src_full_size.size)
{
float x_ratio = src_full_size.cols/(float)disp_full_size.cols;
float y_ratio = src_full_size.rows/(float)disp_full_size.rows;
resize(disp_full_size,disp_full_size,src_full_size.size());
disp_full_size = disp_full_size*x_ratio;
resize(confidence_map,confidence_map,src_full_size.size());
ROI = Rect((int)(ROI.x*x_ratio),(int)(ROI.y*y_ratio),(int)(ROI.width*x_ratio),(int)(ROI.height*y_ratio));
}
disp = Mat(disp_full_size,ROI);
src = Mat(src_full_size ,ROI);
filtered_disparity_map.create(disp_full_size.size(), disp_full_size.type());
Mat& dst_full_size = filtered_disparity_map.getMatRef();
dst_full_size = Scalar(-16);
dst = Mat(dst_full_size,ROI);
Mat conf(confidence_map,ROI);
Mat disp_32F,dst_32F; Mat disp_mul_conf;
disp.convertTo(disp_32F,CV_32F); disp.convertTo(disp_mul_conf,CV_32F);
guidedFilter(src,disp_32F,dst_32F,radius,eps); disp_mul_conf = conf.mul(disp_mul_conf);
dst_32F.convertTo(dst,CV_16S); Mat conf_filtered;
Ptr<FastGlobalSmootherFilter> wls = createFastGlobalSmootherFilter(src,lambda,sigma_color);
wls->filter(disp_mul_conf,disp_mul_conf);
wls->filter(conf,conf_filtered);
disp_mul_conf = disp_mul_conf.mul(1/(conf_filtered+EPS));
disp_mul_conf.convertTo(dst,CV_16S);
} }
}; }
CV_EXPORTS_W DisparityWLSFilterImpl::ComputeDiscontinuityAwareLRC_ParBody::ComputeDiscontinuityAwareLRC_ParBody(DisparityWLSFilterImpl& _wls, Mat& _left_disp, Mat& _right_disp, Mat& _left_disc, Mat& _right_disc, Mat& _dst, Rect _left_ROI, Rect _right_ROI, int _nstripes):
Ptr<DisparityGuidedFilter> createDisparityGuidedFilter() wls(&_wls),left_disp(&_left_disp),right_disp(&_right_disp),left_disc(&_left_disc),right_disc(&_right_disc),dst(&_dst),left_ROI(_left_ROI),right_ROI(_right_ROI),nstripes(_nstripes)
{ {
return Ptr<DisparityGuidedFilter>(DisparityGuidedFilterImpl::create()); stripe_sz = (int)ceil(left_disp->rows/(double)nstripes);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////////
class DisparityWLSFilterImpl : public DisparityWLSFilter void DisparityWLSFilterImpl::ComputeDiscontinuityAwareLRC_ParBody::operator() (const Range& range) const
{ {
protected: short* row_left;
double lambda,sigma_color; float* row_left_conf;
void init(double _lambda, double _sigma_color) short* row_right;
float* row_right_conf;
float* row_dst;
int right_idx;
int h = left_disp->rows;
int start = std::min(range.start * stripe_sz, h);
int end = std::min(range.end * stripe_sz, h);
int thresh = (int)(wls->resize_factor*wls->LRC_thresh);
for(int i=start;i<end;i++)
{ {
lambda = _lambda; row_left = (short*)left_disp->ptr(i);
sigma_color = _sigma_color; row_left_conf = (float*)left_disc->ptr(i);
row_right = (short*)right_disp->ptr(i);
row_right_conf = (float*)right_disc->ptr(i);
row_dst = (float*)dst->ptr(i);
int j_start = left_ROI.x;
int j_end = left_ROI.x+left_ROI.width;
int right_end = right_ROI.x+right_ROI.width;
for(int j=j_start;j<j_end;j++)
{
right_idx = j-(row_left[j]>>4);
if( right_idx>=right_ROI.x && right_idx<right_end)
{
if(abs(row_left[j] + row_right[right_idx])< thresh)
row_dst[j] = min(row_left_conf[j],row_right_conf[right_idx]);
else
row_dst[j] = 0.0f;
}
}
} }
public: }
double getLambda() {return lambda;}
void setLambda(double _lambda) {lambda = _lambda;} DisparityWLSFilterImpl::ComputeDepthDisc_ParBody::ComputeDepthDisc_ParBody(DisparityWLSFilterImpl& _wls, Mat& _disp, Mat& _disp_squares, Mat& _dst, int _nstripes):
double getSigmaColor() {return sigma_color;} wls(&_wls),disp(&_disp),disp_squares(&_disp_squares),dst(&_dst),nstripes(_nstripes)
void setSigmaColor(double _sigma_color) {sigma_color = _sigma_color;} {
stripe_sz = (int)ceil(disp->rows/(double)nstripes);
}
static Ptr<DisparityWLSFilterImpl> create() void DisparityWLSFilterImpl::ComputeDepthDisc_ParBody::operator() (const Range& range) const
{
float* row_disp;
float* row_disp_squares;
float* row_dst;
float variance;
int h = disp->rows;
int w = disp->cols;
int start = std::min(range.start * stripe_sz, h);
int end = std::min(range.end * stripe_sz, h);
float roll_off = wls->depth_discontinuity_roll_off_factor/(wls->resize_factor*wls->resize_factor);
for(int i=start;i<end;i++)
{ {
DisparityWLSFilterImpl *wls = new DisparityWLSFilterImpl(); row_disp = (float*)disp->ptr(i);
wls->init(500.0,2.0); row_disp_squares = (float*)disp_squares->ptr(i);
return Ptr<DisparityWLSFilterImpl>(wls); row_dst = (float*)dst->ptr(i);
for(int j=0;j<w;j++)
{
variance = row_disp_squares[j] - (row_disp[j])*(row_disp[j]);
row_dst[j] = max(1.0f - roll_off*variance,0.0f);
}
} }
}
DisparityWLSFilterImpl::ParallelMatOp_ParBody::ParallelMatOp_ParBody(DisparityWLSFilterImpl& _wls, vector<MatOp> _ops, vector<Mat*>& _src, vector<Mat*>& _dst):
wls(&_wls),ops(_ops),src(_src),dst(_dst)
{}
void DisparityWLSFilterImpl::ParallelMatOp_ParBody::operator() (const Range& range) const
{
for(int i=range.start;i<range.end;i++)
(wls->*ops[i])(*src[i],*dst[i]);
}
CV_EXPORTS_W
Ptr<DisparityWLSFilter> createDisparityWLSFilter(bool use_confidence)
{
return Ptr<DisparityWLSFilter>(DisparityWLSFilterImpl::create(use_confidence));
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
#define UNKNOWN_DISPARITY 16320
void filter(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map,Rect ROI) int readGT(String src_path,OutputArray dst)
{
Mat src = imread(src_path,IMREAD_UNCHANGED);
dst.create(src.rows,src.cols,CV_16S);
Mat& dstMat = dst.getMatRef();
if(!src.empty() && src.channels()==3 && src.depth()==CV_8U)
{ {
Mat disp,src,dst; //MPI-Sintel format:
setROI(disparity_map,left_view,filtered_disparity_map,disp,src,dst,ROI); for(int i=0;i<src.rows;i++)
weightedLeastSquaresFilter(src,disp,dst,lambda,sigma_color); for(int j=0;j<src.cols;j++)
{
Vec3b bgrPixel = src.at<Vec3b>(i, j);
dstMat.at<short>(i,j) = 64*bgrPixel.val[2]+bgrPixel.val[1]/4; //16-multiplied disparity
}
return 0;
} }
}; else if(!src.empty() && src.channels()==1 && src.depth()==CV_8U)
{
//Middlebury format:
for(int i=0;i<src.rows;i++)
for(int j=0;j<src.cols;j++)
{
short src_val = src.at<unsigned char>(i, j);
if(src_val==0)
dstMat.at<short>(i,j) = UNKNOWN_DISPARITY;
else
dstMat.at<short>(i,j) = 16*src_val; //16-multiplied disparity
}
return 0;
}
else
return 1;
}
CV_EXPORTS_W double computeMSE(InputArray GT, InputArray src, Rect ROI)
Ptr<DisparityWLSFilter> createDisparityWLSFilter()
{ {
return Ptr<DisparityWLSFilter>(DisparityWLSFilterImpl::create()); CV_Assert( !GT.empty() && (GT.depth() == CV_16S) && (GT.channels() == 1) );
CV_Assert( !src.empty() && (src.depth() == CV_16S) && (src.channels() == 1) );
CV_Assert( src.rows() == GT.rows() && src.cols() == GT.cols() );
double res = 0;
Mat GT_ROI (GT.getMat(), ROI);
Mat src_ROI(src.getMat(),ROI);
int cnt=0;
for(int i=0;i<src_ROI.rows;i++)
for(int j=0;j<src_ROI.cols;j++)
{
if(GT_ROI.at<short>(i,j)!=UNKNOWN_DISPARITY)
{
res += (GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j))*(GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j));
cnt++;
}
}
res /= cnt*256;
return res;
} }
////////////////////////////////////////////////////////////////////////////////////////////////////// double computeBadPixelPercent(InputArray GT, InputArray src, Rect ROI, int thresh)
{
CV_Assert( !GT.empty() && (GT.depth() == CV_16S) && (GT.channels() == 1) );
CV_Assert( !src.empty() && (src.depth() == CV_16S) && (src.channels() == 1) );
CV_Assert( src.rows() == GT.rows() && src.cols() == GT.cols() );
int bad_pixel_num = 0;
Mat GT_ROI (GT.getMat(), ROI);
Mat src_ROI(src.getMat(),ROI);
int cnt=0;
for(int i=0;i<src_ROI.rows;i++)
for(int j=0;j<src_ROI.cols;j++)
{
if(GT_ROI.at<short>(i,j)!=UNKNOWN_DISPARITY)
{
if( abs(GT_ROI.at<short>(i,j) - src_ROI.at<short>(i,j))>=thresh )
bad_pixel_num++;
cnt++;
}
}
return (100.0*bad_pixel_num)/cnt;
}
void setROI(InputArray disparity_map, InputArray left_view, OutputArray filtered_disparity_map, void getDisparityVis(InputArray src,OutputArray dst,double scale)
Mat& disp,Mat& src,Mat& dst,Rect ROI)
{ {
Mat disp_full_size = disparity_map.getMat(); CV_Assert( !src.empty() && (src.depth() == CV_16S) && (src.channels() == 1) );
Mat src_full_size = left_view.getMat(); Mat srcMat = src.getMat();
CV_Assert( (disp_full_size.depth() == CV_16S) && (disp_full_size.channels() == 1) ); dst.create(srcMat.rows,srcMat.cols,CV_8UC1);
CV_Assert( (src_full_size.depth() == CV_8U) && (src_full_size.channels() <= 4) ); Mat& dstMat = dst.getMatRef();
disp = Mat(disp_full_size,ROI);
src = Mat(src_full_size ,ROI); for(int i=0;i<dstMat.rows;i++)
filtered_disparity_map.create(disp_full_size.size(), disp_full_size.type()); for(int j=0;j<dstMat.cols;j++)
Mat& dst_full_size = filtered_disparity_map.getMatRef(); {
dst = Mat(dst_full_size,ROI); if(srcMat.at<short>(i,j)==UNKNOWN_DISPARITY)
dstMat.at<unsigned char>(i,j) = 0;
else
dstMat.at<unsigned char>(i,j) = saturate_cast<unsigned char>(scale*srcMat.at<short>(i,j)/16.0);
}
} }
} }
......
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include "opencv2/hal/intrin.hpp"
#include <vector>
namespace cv {
namespace ximgproc {
using std::vector;
typedef float WorkType;
typedef Vec<WorkType, 1> WorkVec;
typedef WorkType (*get_weight_op)(WorkType*, unsigned char*,unsigned char*);
inline WorkType get_weight_1channel(WorkType* LUT, unsigned char* p1,unsigned char* p2)
{
return LUT[ (p1[0]-p2[0])*(p1[0]-p2[0]) ];
}
inline WorkType get_weight_3channel(WorkType* LUT, unsigned char* p1,unsigned char* p2)
{
return LUT[ (p1[0]-p2[0])*(p1[0]-p2[0])+
(p1[1]-p2[1])*(p1[1]-p2[1])+
(p1[2]-p2[2])*(p1[2]-p2[2]) ];
}
class FastGlobalSmootherFilterImpl : public FastGlobalSmootherFilter
{
public:
static Ptr<FastGlobalSmootherFilterImpl> create(InputArray guide, double lambda, double sigma_color, int num_iter,double lambda_attenuation);
void filter(InputArray src, OutputArray dst);
protected:
int w,h;
int num_stripes;
float sigmaColor,lambda;
float lambda_attenuation;
int num_iter;
Mat weights_LUT;
Mat Chor, Cvert;
Mat interD;
void init(InputArray guide,double _lambda,double _sigmaColor,int _num_iter,double _lambda_attenuation);
void horizontalPass(Mat& cur);
void verticalPass(Mat& cur);
protected:
struct HorizontalPass_ParBody : public ParallelLoopBody
{
FastGlobalSmootherFilterImpl* fgs;
Mat* cur;
int nstripes, stripe_sz;
int h;
HorizontalPass_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _cur, int _nstripes, int _h);
void operator () (const Range& range) const;
};
inline void process_4row_block(Mat* cur,int i);
inline void process_row(Mat* cur,int i);
struct VerticalPass_ParBody : public ParallelLoopBody
{
FastGlobalSmootherFilterImpl* fgs;
Mat* cur;
int nstripes, stripe_sz;
int w;
VerticalPass_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _cur, int _nstripes, int _w);
void operator () (const Range& range) const;
};
template<get_weight_op get_weight, const int num_ch>
struct ComputeHorizontalWeights_ParBody : public ParallelLoopBody
{
FastGlobalSmootherFilterImpl* fgs;
Mat* guide;
int nstripes, stripe_sz;
int h;
ComputeHorizontalWeights_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _guide, int _nstripes, int _h);
void operator () (const Range& range) const;
};
template<get_weight_op get_weight, const int num_ch>
struct ComputeVerticalWeights_ParBody : public ParallelLoopBody
{
FastGlobalSmootherFilterImpl* fgs;
Mat* guide;
int nstripes, stripe_sz;
int w;
ComputeVerticalWeights_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _guide, int _nstripes, int _w);
void operator () (const Range& range) const;
};
struct ComputeLUT_ParBody : public ParallelLoopBody
{
FastGlobalSmootherFilterImpl* fgs;
WorkType* LUT;
int nstripes, stripe_sz;
int sz;
ComputeLUT_ParBody(FastGlobalSmootherFilterImpl &_fgs, WorkType* _LUT, int _nstripes, int _sz);
void operator () (const Range& range) const;
};
};
void FastGlobalSmootherFilterImpl::init(InputArray guide,double _lambda,double _sigmaColor,int _num_iter,double _lambda_attenuation)
{
CV_Assert( !guide.empty() && _lambda >= 0 && _sigmaColor >= 0 && _num_iter >=1 );
CV_Assert( guide.depth() == CV_8U && (guide.channels() == 1 || guide.channels() == 3) );
sigmaColor = (float)_sigmaColor;
lambda = (float)_lambda;
lambda_attenuation = (float)_lambda_attenuation;
num_iter = _num_iter;
num_stripes = getNumThreads();
int num_levels = 3*256*256;
weights_LUT.create(1,num_levels,WorkVec::type);
WorkType* LUT = (WorkType*)weights_LUT.ptr(0);
parallel_for_(Range(0,num_stripes),ComputeLUT_ParBody(*this,LUT,num_stripes,num_levels));
w = guide.cols();
h = guide.rows();
Chor. create(h,w,WorkVec::type);
Cvert. create(h,w,WorkVec::type);
interD.create(h,w,WorkVec::type);
Mat guideMat = guide.getMat();
if(guide.channels() == 1)
{
parallel_for_(Range(0,num_stripes),ComputeHorizontalWeights_ParBody<get_weight_1channel,1>(*this,guideMat,num_stripes,h));
parallel_for_(Range(0,num_stripes),ComputeVerticalWeights_ParBody <get_weight_1channel,1>(*this,guideMat,num_stripes,w));
}
if(guide.channels() == 3)
{
parallel_for_(Range(0,num_stripes),ComputeHorizontalWeights_ParBody<get_weight_3channel,3>(*this,guideMat,num_stripes,h));
parallel_for_(Range(0,num_stripes),ComputeVerticalWeights_ParBody <get_weight_3channel,3>(*this,guideMat,num_stripes,w));
}
}
Ptr<FastGlobalSmootherFilterImpl> FastGlobalSmootherFilterImpl::create(InputArray guide, double lambda, double sigma_color, int num_iter, double lambda_attenuation)
{
FastGlobalSmootherFilterImpl *fgs = new FastGlobalSmootherFilterImpl();
fgs->init(guide,lambda,sigma_color,num_iter,lambda_attenuation);
return Ptr<FastGlobalSmootherFilterImpl>(fgs);
}
void FastGlobalSmootherFilterImpl::filter(InputArray src, OutputArray dst)
{
CV_Assert(!src.empty() && (src.depth() == CV_8U || src.depth() == CV_16S || src.depth() == CV_32F) && src.channels()<=4);
if (src.rows() != h || src.cols() != w)
{
CV_Error(Error::StsBadSize, "Size of the filtered image must be equal to the size of the guide image");
return;
}
vector<Mat> src_channels;
vector<Mat> dst_channels;
if(src.channels()==1)
src_channels.push_back(src.getMat());
else
split(src,src_channels);
float lambda_ref = lambda;
for(int i=0;i<src.channels();i++)
{
lambda = lambda_ref;
Mat cur_res = src_channels[i].clone();
if(src.depth()!=WorkVec::type)
cur_res.convertTo(cur_res,WorkVec::type);
for(int n=0;n<num_iter;n++)
{
horizontalPass(cur_res);
verticalPass(cur_res);
lambda*=lambda_attenuation;
}
Mat dstMat;
if(src.depth()!=WorkVec::type)
cur_res.convertTo(dstMat,src.depth());
else
dstMat = cur_res;
dst_channels.push_back(dstMat);
}
lambda = lambda_ref;
dst.create(src.size(),src.type());
if(src.channels()==1)
{
Mat& dstMat = dst.getMatRef();
dstMat = dst_channels[0];
}
else
merge(dst_channels,dst);
}
void FastGlobalSmootherFilterImpl::horizontalPass(Mat& cur)
{
parallel_for_(Range(0,num_stripes),HorizontalPass_ParBody(*this,cur,num_stripes,h));
}
void FastGlobalSmootherFilterImpl::verticalPass(Mat& cur)
{
parallel_for_(Range(0,num_stripes),VerticalPass_ParBody(*this,cur,num_stripes,w));
}
FastGlobalSmootherFilterImpl::HorizontalPass_ParBody::HorizontalPass_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _cur, int _nstripes, int _h):
fgs(&_fgs),cur(&_cur), nstripes(_nstripes), h(_h)
{
stripe_sz = (int)ceil(h/(double)nstripes);
}
void FastGlobalSmootherFilterImpl::process_4row_block(Mat* cur,int i)
{
WorkType denom,denom_next,denom_next2,denom_next3;
WorkType *Chor_row = (WorkType*)Chor.ptr (i);
WorkType *interD_row = (WorkType*)interD.ptr(i);
WorkType *cur_row = (WorkType*)cur->ptr (i);
WorkType *Chor_row_next = (WorkType*)Chor.ptr (i+1);
WorkType *interD_row_next = (WorkType*)interD.ptr(i+1);
WorkType *cur_row_next = (WorkType*)cur->ptr (i+1);
WorkType *Chor_row_next2 = (WorkType*)Chor.ptr (i+2);
WorkType *interD_row_next2 = (WorkType*)interD.ptr(i+2);
WorkType *cur_row_next2 = (WorkType*)cur->ptr (i+2);
WorkType *Chor_row_next3 = (WorkType*)Chor.ptr (i+3);
WorkType *interD_row_next3 = (WorkType*)interD.ptr(i+3);
WorkType *cur_row_next3 = (WorkType*)cur->ptr (i+3);
float coef_cur, coef_prev;
float coef_cur_row_next, coef_prev_row_next;
float coef_cur_row_next2,coef_prev_row_next2;
float coef_cur_row_next3,coef_prev_row_next3;
//forward pass:
coef_prev = lambda*Chor_row[0];
coef_prev_row_next = lambda*Chor_row_next[0];
coef_prev_row_next2 = lambda*Chor_row_next2[0];
coef_prev_row_next3 = lambda*Chor_row_next3[0];
interD_row[0] = coef_prev /(1-coef_prev);
interD_row_next[0] = coef_prev_row_next /(1-coef_prev_row_next);
interD_row_next2[0] = coef_prev_row_next2/(1-coef_prev_row_next2);
interD_row_next3[0] = coef_prev_row_next3/(1-coef_prev_row_next3);
cur_row[0] = cur_row[0] /(1-coef_prev);
cur_row_next[0] = cur_row_next[0] /(1-coef_prev_row_next);
cur_row_next2[0] = cur_row_next2[0]/(1-coef_prev_row_next2);
cur_row_next3[0] = cur_row_next3[0]/(1-coef_prev_row_next3);
int j=1;
#if CV_SIMD128
{
v_float32x4 coef_prev_reg(coef_prev,coef_prev_row_next,coef_prev_row_next2,coef_prev_row_next3);
v_float32x4 interD_prev_reg(interD_row[0],interD_row_next[0],interD_row_next2[0],interD_row_next3[0]);
v_float32x4 cur_prev_reg(cur_row[0],cur_row_next[0],cur_row_next2[0],cur_row_next3[0]);
v_float32x4 lambda_reg(lambda,lambda,lambda,lambda);
v_float32x4 one_reg(1.0f,1.0f,1.0f,1.0f);
v_float32x4 a0,a1,a2,a3;
v_float32x4 b0,b1,b2,b3;
v_float32x4 aux0,aux1,aux2,aux3;
#define PROC4(Chor_in,cur_in,coef_prev_in,interD_prev_in,cur_prev_in,interD_out,cur_out,coef_cur_out)\
coef_cur_out = lambda_reg*Chor_in;\
aux0 = interD_prev_in*coef_prev_in;\
aux1 = coef_cur_out+coef_prev_in;\
aux1 = one_reg-aux1;\
aux0 = aux1-aux0;\
interD_out = coef_cur_out/aux0;\
aux1 = cur_prev_in*coef_prev_in;\
aux1 = cur_in - aux1;\
cur_out = aux1/aux0;
for(;j<w-3;j+=4)
{
// processing a 4x4 block:
aux0 = v_load(Chor_row+j);
aux1 = v_load(Chor_row_next+j);
aux2 = v_load(Chor_row_next2+j);
aux3 = v_load(Chor_row_next3+j);
v_transpose4x4(aux0,aux1,aux2,aux3,a0,a1,a2,a3);
aux0 = v_load(cur_row+j);
aux1 = v_load(cur_row_next+j);
aux2 = v_load(cur_row_next2+j);
aux3 = v_load(cur_row_next3+j);
v_transpose4x4(aux0,aux1,aux2,aux3,b0,b1,b2,b3);
PROC4(a0,b0,coef_prev_reg,interD_prev_reg,cur_prev_reg,a0,b0,aux2);
PROC4(a1,b1,aux2,a0,b0,a1,b1,aux3);
PROC4(a2,b2,aux3,a1,b1,a2,b2,aux2);
PROC4(a3,b3,aux2,a2,b2,a3,b3,aux3);
interD_prev_reg = a3;
cur_prev_reg = b3;
coef_prev_reg = aux3;
v_transpose4x4(a0,a1,a2,a3,aux0,aux1,aux2,aux3);
v_store(interD_row+j,aux0);
v_store(interD_row_next+j,aux1);
v_store(interD_row_next2+j,aux2);
v_store(interD_row_next3+j,aux3);
v_transpose4x4(b0,b1,b2,b3,aux0,aux1,aux2,aux3);
v_store(cur_row+j,aux0);
v_store(cur_row_next+j,aux1);
v_store(cur_row_next2+j,aux2);
v_store(cur_row_next3+j,aux3);
}
#undef PROC4
}
#endif
for(;j<w;j++)
{
coef_prev = lambda*Chor_row[j-1];
coef_prev_row_next = lambda*Chor_row_next[j-1];
coef_prev_row_next2 = lambda*Chor_row_next2[j-1];
coef_prev_row_next3 = lambda*Chor_row_next3[j-1];
coef_cur = lambda*Chor_row[j];
coef_cur_row_next = lambda*Chor_row_next[j];
coef_cur_row_next2 = lambda*Chor_row_next2[j];
coef_cur_row_next3 = lambda*Chor_row_next3[j];
denom = (1-coef_prev -coef_cur) -interD_row[j-1] *coef_prev;
denom_next = (1-coef_prev_row_next -coef_cur_row_next) -interD_row_next[j-1] *coef_prev_row_next;
denom_next2 = (1-coef_prev_row_next2-coef_cur_row_next2)-interD_row_next2[j-1]*coef_prev_row_next2;
denom_next3 = (1-coef_prev_row_next3-coef_cur_row_next3)-interD_row_next3[j-1]*coef_prev_row_next3;
interD_row[j] = coef_cur /denom;
interD_row_next[j] = coef_cur_row_next /denom_next;
interD_row_next2[j] = coef_cur_row_next2/denom_next2;
interD_row_next3[j] = coef_cur_row_next3/denom_next3;
cur_row[j] = (cur_row[j] -cur_row[j-1] *coef_prev) /denom;
cur_row_next[j] = (cur_row_next[j] -cur_row_next[j-1] *coef_prev_row_next) /denom_next;
cur_row_next2[j] = (cur_row_next2[j]-cur_row_next2[j-1]*coef_prev_row_next2)/denom_next2;
cur_row_next3[j] = (cur_row_next3[j]-cur_row_next3[j-1]*coef_prev_row_next3)/denom_next3;
}
//backward pass:
j = w-2;
#if CV_SIMD128
{
v_float32x4 cur_next_reg(cur_row[w-1],cur_row_next[w-1],cur_row_next2[w-1],cur_row_next3[w-1]);
v_float32x4 a0,a1,a2,a3;
v_float32x4 b0,b1,b2,b3;
v_float32x4 aux0,aux1,aux2,aux3;
for(j-=3;j>=0;j-=4)
{
//process 4x4 block:
aux0 = v_load(interD_row+j);
aux1 = v_load(interD_row_next+j);
aux2 = v_load(interD_row_next2+j);
aux3 = v_load(interD_row_next3+j);
v_transpose4x4(aux0,aux1,aux2,aux3,a0,a1,a2,a3);
aux0 = v_load(cur_row+j);
aux1 = v_load(cur_row_next+j);
aux2 = v_load(cur_row_next2+j);
aux3 = v_load(cur_row_next3+j);
v_transpose4x4(aux0,aux1,aux2,aux3,b0,b1,b2,b3);
aux0 = a3*cur_next_reg;
b3 = b3-aux0;
aux0 = a2*b3;
b2 = b2-aux0;
aux0 = a1*b2;
b1 = b1-aux0;
aux0 = a0*b1;
b0 = b0-aux0;
cur_next_reg = b0;
v_transpose4x4(b0,b1,b2,b3,aux0,aux1,aux2,aux3);
v_store(cur_row+j,aux0);
v_store(cur_row_next+j,aux1);
v_store(cur_row_next2+j,aux2);
v_store(cur_row_next3+j,aux3);
}
j+=3;
}
#endif
for(;j>=0;j--)
{
cur_row[j] = cur_row[j] -interD_row[j] *cur_row[j+1];
cur_row_next[j] = cur_row_next[j] -interD_row_next[j] *cur_row_next[j+1];
cur_row_next2[j] = cur_row_next2[j]-interD_row_next2[j]*cur_row_next2[j+1];
cur_row_next3[j] = cur_row_next3[j]-interD_row_next3[j]*cur_row_next3[j+1];
}
}
void FastGlobalSmootherFilterImpl::process_row(Mat* cur,int i)
{
WorkType denom;
WorkType *Chor_row = (WorkType*)Chor.ptr(i);
WorkType *interD_row = (WorkType*)interD.ptr(i);
WorkType *cur_row = (WorkType*)cur->ptr(i);
float coef_cur,coef_prev;
//forward pass:
coef_prev = lambda*Chor_row[0];
interD_row[0] = coef_prev/(1-coef_prev);
cur_row[0] = cur_row[0]/(1-coef_prev);
for(int j=1;j<w;j++)
{
coef_cur = lambda*Chor_row[j];
denom = (1-coef_prev-coef_cur)-interD_row[j-1]*coef_prev;
interD_row[j] = coef_cur/denom;
cur_row[j] = (cur_row[j]-cur_row[j-1]*coef_prev)/denom;
coef_prev = coef_cur;
}
//backward pass:
for(int j=w-2;j>=0;j--)
cur_row[j] = cur_row[j]-interD_row[j]*cur_row[j+1];
}
void FastGlobalSmootherFilterImpl::HorizontalPass_ParBody::operator()(const Range& range) const
{
int start = std::min(range.start * stripe_sz, h);
int end = std::min(range.end * stripe_sz, h);
int i=start;
for(;i<end-3;i+=4)
fgs->process_4row_block(cur,i);
for(;i<end;i++)
fgs->process_row(cur,i);
}
FastGlobalSmootherFilterImpl::VerticalPass_ParBody::VerticalPass_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _cur, int _nstripes, int _w):
fgs(&_fgs),cur(&_cur), nstripes(_nstripes), w(_w)
{
stripe_sz = (int)ceil(w/(double)nstripes);
}
void FastGlobalSmootherFilterImpl::VerticalPass_ParBody::operator()(const Range& range) const
{
int start = std::min(range.start * stripe_sz, w);
int end = std::min(range.end * stripe_sz, w);
//float lambda = fgs->lambda;
WorkType denom;
WorkType *Cvert_row, *Cvert_row_prev;
WorkType *interD_row, *interD_row_prev, *cur_row, *cur_row_prev, *cur_row_next;
float coef_cur,coef_prev;
Cvert_row = (WorkType*)fgs->Cvert.ptr(0);
interD_row = (WorkType*)fgs->interD.ptr(0);
cur_row = (WorkType*)cur->ptr(0);
//forward pass:
for(int j=start;j<end;j++)
{
coef_cur = fgs->lambda*Cvert_row[j];
interD_row[j] = coef_cur/(1-coef_cur);
cur_row[j] = cur_row[j]/(1-coef_cur);
}
for(int i=1;i<fgs->h;i++)
{
Cvert_row = (WorkType*)fgs->Cvert.ptr(i);
Cvert_row_prev = (WorkType*)fgs->Cvert.ptr(i-1);
interD_row = (WorkType*)fgs->interD.ptr(i);
interD_row_prev = (WorkType*)fgs->interD.ptr(i-1);
cur_row = (WorkType*)cur->ptr(i);
cur_row_prev = (WorkType*)cur->ptr(i-1);
int j = start;
#if CV_SIMD128
v_float32x4 a,b,c,d,coef_cur_reg,coef_prev_reg;
v_float32x4 one_reg(1.0f,1.0f,1.0f,1.0f);
v_float32x4 lambda_reg(fgs->lambda,fgs->lambda,fgs->lambda,fgs->lambda);
int sz4 = 4*((end-start)/4);
int end4 = start+sz4;
for(;j<end4;j+=4)
{
a = v_load(Cvert_row_prev+j);
b = v_load(Cvert_row+j);
coef_prev_reg = lambda_reg*a;
coef_cur_reg = lambda_reg*b;
a = v_load(interD_row_prev+j);
a = a*coef_prev_reg;
b = coef_prev_reg+coef_cur_reg;
b = b+a;
a = one_reg-b; //computed denom
b = coef_cur_reg/a; //computed interD_row
c = v_load(cur_row_prev+j);
c = c*coef_prev_reg;
d = v_load(cur_row+j);
d = d-c;
d = d/a; //computed cur_row
v_store(interD_row+j,b);
v_store(cur_row+j,d);
}
#endif
for(;j<end;j++)
{
coef_prev = fgs->lambda*Cvert_row_prev[j];
coef_cur = fgs->lambda*Cvert_row[j];
denom = (1-coef_prev-coef_cur)-interD_row_prev[j]*coef_prev;
interD_row[j] = coef_cur/denom;
cur_row[j] = (cur_row[j]-cur_row_prev[j]*coef_prev)/denom;
}
}
//backward pass:
for(int i=fgs->h-2;i>=0;i--)
{
interD_row = (WorkType*)fgs->interD.ptr(i);
cur_row = (WorkType*)cur->ptr(i);
cur_row_next = (WorkType*)cur->ptr(i+1);
int j = start;
#if CV_SIMD128
v_float32x4 a,b;
int sz4 = 4*((end-start)/4);
int end4 = start+sz4;
for(;j<end4;j+=4)
{
a = v_load(interD_row+j);
b = v_load(cur_row_next+j);
b = a*b;
a = v_load(cur_row+j);
b = a-b;
v_store(cur_row+j,b);
}
#endif
for(;j<end;j++)
cur_row[j] = cur_row[j]-interD_row[j]*cur_row_next[j];
}
}
template<get_weight_op get_weight, const int num_ch>
FastGlobalSmootherFilterImpl::ComputeHorizontalWeights_ParBody<get_weight,num_ch>::ComputeHorizontalWeights_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _guide, int _nstripes, int _h):
fgs(&_fgs),guide(&_guide), nstripes(_nstripes), h(_h)
{
stripe_sz = (int)ceil(h/(double)nstripes);
}
template<get_weight_op get_weight, const int num_ch>
void FastGlobalSmootherFilterImpl::ComputeHorizontalWeights_ParBody<get_weight,num_ch>::operator()(const Range& range) const
{
int start = std::min(range.start * stripe_sz, h);
int end = std::min(range.end * stripe_sz, h);
WorkType* LUT = (WorkType*)fgs->weights_LUT.ptr(0);
unsigned char *row;
WorkType *Chor_row;
for(int i=start;i<end;i++)
{
row = guide->ptr(i);
Chor_row = (WorkType*)fgs->Chor.ptr(i);
Chor_row[0] = get_weight(LUT,row,row+num_ch);
row+=num_ch;
for(int j=1;j<fgs->w-1;j++)
{
Chor_row[j] = get_weight(LUT,row,row+num_ch);
row+=num_ch;
}
Chor_row[fgs->w-1]=0;
}
}
template<get_weight_op get_weight, const int num_ch>
FastGlobalSmootherFilterImpl::ComputeVerticalWeights_ParBody<get_weight,num_ch>::ComputeVerticalWeights_ParBody(FastGlobalSmootherFilterImpl &_fgs, Mat& _guide, int _nstripes, int _w):
fgs(&_fgs),guide(&_guide), nstripes(_nstripes), w(_w)
{
stripe_sz = (int)ceil(w/(double)nstripes);
}
template<get_weight_op get_weight, const int num_ch>
void FastGlobalSmootherFilterImpl::ComputeVerticalWeights_ParBody<get_weight,num_ch>::operator()(const Range& range) const
{
int start = std::min(range.start * stripe_sz, w);
int end = std::min(range.end * stripe_sz, w);
WorkType* LUT = (WorkType*)fgs->weights_LUT.ptr(0);
unsigned char *row,*row_next;
WorkType *Cvert_row;
Cvert_row = (WorkType*)fgs->Cvert.ptr(0);
row = guide->ptr(0)+start*num_ch;
row_next = guide->ptr(1)+start*num_ch;
for(int j=start;j<end;j++)
{
Cvert_row[j] = get_weight(LUT,row,row_next);
row+=num_ch;
row_next+=num_ch;
}
for(int i=1;i<fgs->h-1;i++)
{
row = guide->ptr(i)+start*num_ch;
row_next = guide->ptr(i+1)+start*num_ch;
Cvert_row = (WorkType*)fgs->Cvert.ptr(i);
for(int j=start;j<end;j++)
{
Cvert_row[j] = get_weight(LUT,row,row_next);
row+=num_ch;
row_next+=num_ch;
}
}
Cvert_row = (WorkType*)fgs->Cvert.ptr(fgs->h-1);
for(int j=start;j<end;j++)
Cvert_row[j] = 0;
}
FastGlobalSmootherFilterImpl::ComputeLUT_ParBody::ComputeLUT_ParBody(FastGlobalSmootherFilterImpl &_fgs, WorkType *_LUT, int _nstripes, int _sz):
fgs(&_fgs), LUT(_LUT), nstripes(_nstripes), sz(_sz)
{
stripe_sz = (int)ceil(sz/(double)nstripes);
}
void FastGlobalSmootherFilterImpl::ComputeLUT_ParBody::operator()(const Range& range) const
{
int start = std::min(range.start * stripe_sz, sz);
int end = std::min(range.end * stripe_sz, sz);
for(int i=start;i<end;i++)
LUT[i] = (WorkType)(-cv::exp(-sqrt((float)i)/fgs->sigmaColor));
}
////////////////////////////////////////////////////////////////////////////////////////////////
CV_EXPORTS_W
Ptr<FastGlobalSmootherFilter> createFastGlobalSmootherFilter(InputArray guide, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
{
return Ptr<FastGlobalSmootherFilter>(FastGlobalSmootherFilterImpl::create(guide, lambda, sigma_color, num_iter, lambda_attenuation));
}
CV_EXPORTS_W
void fastGlobalSmootherFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
{
Ptr<FastGlobalSmootherFilter> fgs = createFastGlobalSmootherFilter(guide, lambda, sigma_color, lambda_attenuation, num_iter);
fgs->filter(src, dst);
}
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
namespace cv {
namespace ximgproc {
class WeightedLeastSquaresFilterImpl : public WeightedLeastSquaresFilter
{
public:
static Ptr<WeightedLeastSquaresFilterImpl> create(InputArray guide, double lambda, double sigma_color, int num_iter);
void filter(InputArray src, OutputArray dst);
~WeightedLeastSquaresFilterImpl();
protected:
int w,h;
double sigmaColor,lambda;
int num_iter;
double *weights_LUT;
double *Ahor, *Bhor, *Chor,
*Avert, *Bvert, *Cvert;
double *interD,*interE,*cur_res;
void init(InputArray guide,double _lambda,double _sigmaColor,int _num_iter);
void buildCoefMatrices(Mat& guide);
void horizontalPass(double* cur);
void verticalPass(double* cur);
};
void WeightedLeastSquaresFilterImpl::init(InputArray guide,double _lambda,double _sigmaColor,int _num_iter)
{
//currently support only 3 channel 8bit images as guides
CV_Assert( !guide.empty() && _lambda >= 0 && _sigmaColor >= 0 && _num_iter >=1 );
CV_Assert( guide.depth() == CV_8U && guide.channels() == 3 );
sigmaColor = _sigmaColor;
lambda = _lambda;
num_iter = _num_iter;
int num_levels = 3*256*256;
weights_LUT = new double[num_levels];
for(int i=0;i<num_levels;i++)
weights_LUT[i] = exp(-sqrt((double)i)/sigmaColor);
w = guide.cols();
h = guide.rows();
int sz = w*h;
Ahor = new double[sz];Bhor = new double[sz];Chor = new double[sz];
Avert = new double[sz];Bvert = new double[sz];Cvert = new double[sz];
interD = new double[sz];interE = new double[sz];cur_res = new double[sz];
Mat guideMat = guide.getMat();
buildCoefMatrices(guideMat);
}
Ptr<WeightedLeastSquaresFilterImpl> WeightedLeastSquaresFilterImpl::create(InputArray guide, double lambda, double sigma_color, int num_iter)
{
WeightedLeastSquaresFilterImpl *wls = new WeightedLeastSquaresFilterImpl();
wls->init(guide,lambda,sigma_color,num_iter);
return Ptr<WeightedLeastSquaresFilterImpl>(wls);
}
WeightedLeastSquaresFilter::~WeightedLeastSquaresFilter(){}
WeightedLeastSquaresFilterImpl::~WeightedLeastSquaresFilterImpl()
{
delete[] weights_LUT;
delete[] Ahor; delete[] Bhor; delete[] Chor;
delete[] Avert; delete[] Bvert; delete[] Cvert;
delete[] interD;delete[] interE;delete[] cur_res;
}
void WeightedLeastSquaresFilterImpl::buildCoefMatrices(Mat& guide)
{
double hor_weight;
const unsigned char *row,*row_prev,*row_next;
for(int i=0;i<h;i++)
{
//compute horizontal coefs:
row = guide.ptr(i);
Ahor[i*w] = 0;
hor_weight = weights_LUT[ (row[0]-row[3])*(row[0]-row[3])+
(row[1]-row[4])*(row[1]-row[4])+
(row[2]-row[5])*(row[2]-row[5]) ];
Chor[i*w] = -lambda*hor_weight;
Bhor[i*w] = 1 - Ahor[i*w] - Chor[i*w];
row+=3;
for(int j=1;j<w-1;j++)
{
Ahor[i*w+j] = -lambda*hor_weight;
hor_weight = weights_LUT[ (row[0]-row[3])*(row[0]-row[3])+
(row[1]-row[4])*(row[1]-row[4])+
(row[2]-row[5])*(row[2]-row[5]) ];
Chor[i*w+j] = -lambda*hor_weight;
Bhor[i*w+j] = 1 - Ahor[i*w+j] - Chor[i*w+j];
row+=3;
}
Ahor[i*w+w-1] = -lambda*hor_weight;
Chor[i*w+w-1] = 0;
Bhor[i*w+w-1] = 1 - Ahor[i*w+w-1] - Chor[i*w+w-1];
//compute vertical coefs:
row = guide.ptr(i);
if(i==0)
{
row_next = guide.ptr(i+1);
for(int j=0;j<w;j++)
{
Avert[i*w+j] = 0;
Cvert[i*w+j] = -lambda*weights_LUT[ (row[0]-row_next[0])*(row[0]-row_next[0])+
(row[1]-row_next[1])*(row[1]-row_next[1])+
(row[2]-row_next[2])*(row[2]-row_next[2]) ];
Bvert[i*w+j] = 1 - Avert[i*w+j] - Cvert[i*w+j];
row+=3;
row_next+=3;
}
}
else if(i==h-1)
{
row_prev = guide.ptr(i-1);
for(int j=0;j<w;j++)
{
Avert[i*w+j] = -lambda*weights_LUT[ (row[0]-row_prev[0])*(row[0]-row_prev[0])+
(row[1]-row_prev[1])*(row[1]-row_prev[1])+
(row[2]-row_prev[2])*(row[2]-row_prev[2]) ];
Cvert[i*w+j] = 0;
Bvert[i*w+j] = 1 - Avert[i*w+j] - Cvert[i*w+j];
row+=3;
row_prev+=3;
}
}
else
{
row_prev = guide.ptr(i-1);
row_next = guide.ptr(i+1);
for(int j=0;j<w;j++)
{
Avert[i*w+j] = -lambda*weights_LUT[ (row[0]-row_prev[0])*(row[0]-row_prev[0])+
(row[1]-row_prev[1])*(row[1]-row_prev[1])+
(row[2]-row_prev[2])*(row[2]-row_prev[2]) ];
Cvert[i*w+j] = -lambda*weights_LUT[ (row[0]-row_next[0])*(row[0]-row_next[0])+
(row[1]-row_next[1])*(row[1]-row_next[1])+
(row[2]-row_next[2])*(row[2]-row_next[2]) ];
Bvert[i*w+j] = 1 - Avert[i*w+j] - Cvert[i*w+j];
row+=3;
row_prev+=3;
row_next+=3;
}
}
}
}
void WeightedLeastSquaresFilterImpl::filter(InputArray src, OutputArray dst)
{
//temporarily support only one-channel CV_16S src type (for disparity map filtering)
CV_Assert(!src.empty() && (src.depth() == CV_16S) && src.channels()==1);
if (src.rows() != h || src.cols() != w)
{
CV_Error(Error::StsBadSize, "Size of filtering image must be equal to size of guide image");
return;
}
Mat srcMat = src.getMat();
Mat& dstMat = dst.getMatRef();
short* row;
for(int i=0;i<h;i++)
{
row = (short*)srcMat.ptr(i);
for(int j=0;j<w;j++)
{
cur_res[i*w+j] = (double)(*row);
row++;
}
}
for(int n=0;n<num_iter;n++)
{
horizontalPass(cur_res);
verticalPass(cur_res);
}
for(int i=0;i<h;i++)
{
row = (short*)dstMat.ptr(i);
for(int j=0;j<w;j++)
{
*row = saturate_cast<short>(cur_res[i*w+j]);
row++;
}
}
}
void WeightedLeastSquaresFilterImpl::horizontalPass(double* cur)
{
double denom;
for(int i=0;i<h;i++)
{
//forward pass:
interD[i*w] = Chor[i*w]/Bhor[i*w];
interE[i*w] = cur[i*w] /Bhor[i*w];
for(int j=1;j<w;j++)
{
denom = Bhor[i*w+j]-interD[i*w+j-1]*Ahor[i*w+j];
interD[i*w+j] = Chor[i*w+j]/denom;
interE[i*w+j] = (cur[i*w+j]-interE[i*w+j-1]*Ahor[i*w+j])/denom;
}
//backward pass:
cur[i*w+w-1] = interE[i*w+w-1];
for(int j=w-2;j>=0;j--)
cur[i*w+j] = interE[i*w+j]-interD[i*w+j]*cur[i*w+j+1];
}
}
void WeightedLeastSquaresFilterImpl::verticalPass(double* cur)
{
double denom;
//forward pass:
for(int j=0;j<w;j++)
{
interD[j] = Cvert[j]/Bvert[j];
interE[j] = cur[j]/Bvert[j];
}
for(int i=1;i<h;i++)
{
for(int j=0;j<w;j++)
{
denom = Bvert[i*w+j]-interD[(i-1)*w+j]*Avert[i*w+j];
interD[i*w+j] = Cvert[i*w+j]/denom;
interE[i*w+j] = (cur[i*w+j]-interE[(i-1)*w+j]*Avert[i*w+j])/denom;
}
}
//backward pass:
for(int j=0;j<w;j++)
cur[(h-1)*w+j] = interE[(h-1)*w+j];
for(int i=h-2;i>=0;i--)
for(int j=w-1;j>=0;j--)
cur[i*w+j] = interE[i*w+j]-interD[i*w+j]*cur[(i+1)*w+j];
}
////////////////////////////////////////////////////////////////////////////////////////////////
CV_EXPORTS_W
Ptr<WeightedLeastSquaresFilter> createWeightedLeastSquaresFilter(InputArray guide, double lambda, double sigma_color, int num_iter)
{
return Ptr<WeightedLeastSquaresFilter>(WeightedLeastSquaresFilterImpl::create(guide, lambda, sigma_color, num_iter));
}
CV_EXPORTS_W
void weightedLeastSquaresFilter(InputArray guide, InputArray src, OutputArray dst, double lambda, double sigma_color, int num_iter)
{
Ptr<WeightedLeastSquaresFilter> wls = createWeightedLeastSquaresFilter(guide, lambda, sigma_color, num_iter);
wls->filter(src, dst);
}
}
}
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
#include "opencv2/ximgproc/disparity_filter.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
CV_ENUM(SrcTypes, CV_16S);
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, SrcTypes, GuideTypes, bool, bool> DisparityWLSParams;
typedef TestWithParam<DisparityWLSParams> DisparityWLSFilterTest;
TEST(DisparityWLSFilterTest, ReferenceAccuracy)
{
string dir = getDataDir() + "cv/disparityfilter";
Mat left = imread(dir + "/left_view.png",IMREAD_COLOR);
ASSERT_FALSE(left.empty());
Mat left_disp = imread(dir + "/disparity_left_raw.png",IMREAD_GRAYSCALE);
ASSERT_FALSE(left_disp.empty());
left_disp.convertTo(left_disp,CV_16S,16);
Mat right_disp = imread(dir + "/disparity_right_raw.png",IMREAD_GRAYSCALE);
ASSERT_FALSE(right_disp.empty());
right_disp.convertTo(right_disp,CV_16S,-16);
Mat GT;
ASSERT_FALSE(readGT(dir + "/GT.png",GT));
FileStorage ROI_storage( dir + "/ROI.xml", FileStorage::READ );
Rect ROI((int)ROI_storage["x"],(int)ROI_storage["y"],(int)ROI_storage["width"],(int)ROI_storage["height"]);
FileStorage reference_res( dir + "/reference_accuracy.xml", FileStorage::READ );
double ref_MSE = (double)reference_res["MSE_after"];
double ref_BadPercent = (double)reference_res["BadPercent_after"];
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res;
Ptr<DisparityWLSFilter> wls_filter = createDisparityWLSFilter(true);
wls_filter->setLambda(8000.0);
wls_filter->setSigmaColor(0.5);
wls_filter->filter(left_disp,left,res,ROI,right_disp);
double MSE = computeMSE(GT,res,ROI);
double BadPercent = computeBadPixelPercent(GT,res,ROI);
double eps = 0.01;
EXPECT_LE(MSE,ref_MSE+eps*ref_MSE);
EXPECT_LE(BadPercent,ref_BadPercent+eps*ref_BadPercent);
}
TEST_P(DisparityWLSFilterTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 256.0;
int loopsCount = 2;
RNG rng(0);
DisparityWLSParams params = GetParam();
Size size = get<0>(params);
int srcType = get<1>(params);
int guideType = get<2>(params);
bool use_conf = get<3>(params);
bool use_downscale = get<4>(params);
Mat left(size, guideType);
randu(left, 0, 255);
Mat left_disp(size,srcType);
int max_disp = (int)(size.width*0.1);
randu(left_disp, 0, max_disp-1);
Mat right_disp(size,srcType);
randu(left_disp, -max_disp+1, 0);
Rect ROI(max_disp,0,size.width-max_disp,size.height);
if(use_downscale)
{
resize(left_disp,left_disp,Size(),0.5,0.5);
resize(right_disp,right_disp,Size(),0.5,0.5);
ROI = Rect(ROI.x/2,ROI.y/2,ROI.width/2,ROI.height/2);
}
for (int iter = 0; iter <= loopsCount; iter++)
{
double lambda = rng.uniform(100.0, 10000.0);
double sigma = rng.uniform(1.0, 100.0);
Ptr<DisparityWLSFilter> wls_filter = createDisparityWLSFilter(use_conf);
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resMultiThread;
wls_filter->filter(left_disp,left,resMultiThread,ROI,right_disp);
cv::setNumThreads(1);
Mat resSingleThread;
wls_filter->filter(left_disp,left,resSingleThread,ROI,right_disp);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*left.total());
}
}
INSTANTIATE_TEST_CASE_P(FullSet,DisparityWLSFilterTest,Combine(Values(szODD, szQVGA), SrcTypes::all(), GuideTypes::all(),Values(true,false),Values(true,false)));
}
\ No newline at end of file
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* *Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include "test_precomp.hpp"
namespace cvtest
{
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::ximgproc;
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
CV_ENUM(SrcTypes, CV_8UC1, CV_8UC2, CV_8UC3, CV_8UC4, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4);
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, SrcTypes, GuideTypes> FGSParams;
typedef TestWithParam<FGSParams> FastGlobalSmootherTest;
TEST(FastGlobalSmootherTest, SplatSurfaceAccuracy)
{
RNG rnd(0);
for (int i = 0; i < 10; i++)
{
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
int guideCn = rnd.uniform(1, 2);
if(guideCn==2) guideCn++; //1 or 3 channels
Mat guide(sz, CV_MAKE_TYPE(CV_8U, guideCn));
randu(guide, 0, 255);
Scalar surfaceValue;
int srcCn = rnd.uniform(1, 4);
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(sz, CV_MAKE_TYPE(CV_16S, srcCn), surfaceValue);
double lambda = rnd.uniform(100, 10000);
double sigma = rnd.uniform(1.0, 100.0);
Mat res;
fastGlobalSmootherFilter(guide, src, res, lambda, sigma);
// When filtering a constant image we should get the same image:
double normL1 = cvtest::norm(src, res, NORM_L1)/src.total()/src.channels();
EXPECT_LE(normL1, 1.0/64);
}
}
TEST(FastGlobalSmootherTest, ReferenceAccuracy)
{
string dir = getDataDir() + "cv/edgefilter";
Mat src = imread(dir + "/kodim23.png");
Mat ref = imread(dir + "/fgs/kodim23_lambda=1000_sigma=10.png");
ASSERT_FALSE(src.empty());
ASSERT_FALSE(ref.empty());
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res;
fastGlobalSmootherFilter(src,src,res,1000.0,10.0);
double totalMaxError = 1.0/64.0*src.total()*src.channels();
EXPECT_LE(cvtest::norm(res, ref, NORM_L2), totalMaxError);
EXPECT_LE(cvtest::norm(res, ref, NORM_INF), 1);
}
TEST_P(FastGlobalSmootherTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 64.0;
int loopsCount = 2;
RNG rng(0);
FGSParams params = GetParam();
Size size = get<0>(params);
int srcType = get<1>(params);
int guideType = get<2>(params);
Mat guide(size, guideType);
randu(guide, 0, 255);
Mat src(size,srcType);
if(src.depth()==CV_8U)
randu(src, 0, 255);
else if(src.depth()==CV_16S)
randu(src, -32767, 32767);
else
randu(src, -100000.0f, 100000.0f);
for (int iter = 0; iter <= loopsCount; iter++)
{
double lambda = rng.uniform(100.0, 10000.0);
double sigma = rng.uniform(1.0, 100.0);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resMultiThread;
fastGlobalSmootherFilter(guide, src, resMultiThread, lambda, sigma);
cv::setNumThreads(1);
Mat resSingleThread;
fastGlobalSmootherFilter(guide, src, resSingleThread, lambda, sigma);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF*src.total()*src.channels());
}
}
INSTANTIATE_TEST_CASE_P(FullSet, FastGlobalSmootherTest,Combine(Values(szODD, szQVGA), SrcTypes::all(), GuideTypes::all()));
}
\ No newline at end of file
<?xml version="1.0"?>
<opencv_storage>
<x>166</x>
<y>7</y>
<width>851</width>
<height>422</height>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<MSE_before>5043.6495</MSE_before>
<MSE_after>128.3773</MSE_after>
<BadPercent_before>48.5417</BadPercent_before>
<BadPercent_after>45.8749</BadPercent_after>
</opencv_storage>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment