Commit bf0c8712 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #341 from Auron-X:TLD/VOT2015_Datasets_Support

parents d255138c 1db7b6e6
...@@ -477,6 +477,27 @@ To run benchmark execute: ...@@ -477,6 +477,27 @@ To run benchmark execute:
./opencv/build/bin/example_datasets_tr_svt_benchmark -p=/home/user/path_to_unpacked_folders/svt/svt1/ ./opencv/build/bin/example_datasets_tr_svt_benchmark -p=/home/user/path_to_unpacked_folders/svt/svt1/
~~~ ~~~
@defgroup datasets_track Tracking
### VOT 2015 Database
Implements loading dataset:
"VOT 2015 dataset comprises 60 short sequences showing various objects in challenging backgrounds.
The sequences were chosen from a large pool of sequences including the ALOV dataset, OTB2 dataset,
non-tracking datasets, Computer Vision Online, Professor Bob Fisher’s Image Database, Videezy,
Center for Research in Computer Vision, University of Central Florida, USA, NYU Center for Genomics
and Systems Biology, Data Wrangling, Open Access Directory and Learning and Recognition in Vision
Group, INRIA, France. The VOT sequence selection protocol was applied to obtain a representative
set of challenging sequences.": <http://box.vicos.si/vot/vot2015.zip>
Usage:
-# From link above download dataset file: `vot2015.zip`
-# Unpack `vot2015.zip` into folder: `VOT2015/`
-# To load data run:
~~~
./opencv/build/bin/example_datasets_track_vot -p=/home/user/path_to_unpacked_files/VOT2015/
~~~
@} @}
*/ */
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DATASETS_TRACK_VOT_HPP
#define OPENCV_DATASETS_TRACK_VOT_HPP
#include <string>
#include <vector>
#include "opencv2/datasets/dataset.hpp"
#include "opencv2/datasets/util.hpp"
using namespace std;
namespace cv
{
namespace datasets
{
//! @addtogroup datasets_track
//! @{
struct TRACK_votObj : public Object
{
int id;
std::string imagePath;
vector <Point2d> gtbb;
};
class CV_EXPORTS TRACK_vot : public Dataset
{
public:
static Ptr<TRACK_vot> create();
virtual void load(const std::string &path) = 0;
virtual int getDatasetsNum() = 0;
virtual int getDatasetLength(int id) = 0;
virtual bool initDataset(int id) = 0;
virtual bool getNextFrame(Mat &frame) = 0;
virtual vector <Point2d> getGT() = 0;
protected:
vector <vector <Ptr<TRACK_votObj> > > data;
int activeDatasetID;
int frameCounter;
};
//! @}
}
}
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/datasets/track_vot.hpp"
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <vector>
#include <set>
using namespace std;
using namespace cv;
using namespace cv::datasets;
int main(int argc, char *argv[])
{
const char *keys =
"{ help h usage ? | | show this message }"
"{ path p |true| path to folder with dataset }"
"{ datasetID id |1| Dataset ID}";
CommandLineParser parser(argc, argv, keys);
string path(parser.get<string>("path"));
int datasetID(parser.get<int>("datasetID"));
if (parser.has("help") || path == "true")
{
parser.printMessage();
getchar();
return -1;
}
Ptr<TRACK_vot> dataset = TRACK_vot::create();
dataset->load(path);
printf("Datasets number: %d\n", dataset->getDatasetsNum());
for (int i = 1; i <= dataset->getDatasetsNum(); i++)
printf("\tDataset #%d size: %d\n", i, dataset->getDatasetLength(i));
dataset->initDataset(datasetID);
for (int i = 0; i < dataset->getDatasetLength(datasetID); i++)
{
Mat frame;
if (!dataset->getNextFrame(frame))
break;
//Draw Ground Truth BB
vector <Point2d> gtPoints = dataset->getGT();
for (int j = 0; j < (int)(gtPoints.size()-1); j++)
line(frame, gtPoints[j], gtPoints[j + 1], Scalar(0, 255, 0), 2);
line(frame, gtPoints[0], gtPoints[(int)(gtPoints.size()-1)], Scalar(0, 255, 0), 2);
imshow("VOT 2015 DATASET TEST...", frame);
waitKey(100);
}
getchar();
return 0;
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/datasets/track_vot.hpp"
#include <sys/stat.h>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
using namespace std;
namespace cv
{
namespace datasets
{
class TRACK_votImpl : public TRACK_vot
{
public:
//Constructor
TRACK_votImpl()
{
activeDatasetID = 1;
frameCounter = 0;
}
//Destructor
virtual ~TRACK_votImpl() {}
//Load Dataset
virtual void load(const string &path);
protected:
virtual int getDatasetsNum();
virtual int getDatasetLength(int id);
virtual bool initDataset(int id);
virtual bool getNextFrame(Mat &frame);
virtual vector <Point2d> getGT();
void loadDataset(const string &path);
string numberToString(int number);
};
void TRACK_votImpl::load(const string &path)
{
loadDataset(path);
}
string TRACK_votImpl::numberToString(int number)
{
string out;
char numberStr[9];
sprintf(numberStr, "%u", number);
for (unsigned int i = 0; i < 8 - strlen(numberStr); ++i)
{
out += "0";
}
out += numberStr;
return out;
}
inline bool fileExists(const std::string& name)
{
struct stat buffer;
return (stat(name.c_str(), &buffer) == 0);
}
void TRACK_votImpl::loadDataset(const string &rootPath)
{
string nameListPath = rootPath + "/list.txt";
ifstream namesList(nameListPath.c_str());
vector <int> datasetsLengths;
string datasetName;
if (namesList.is_open())
{
int currDatasetID = 0;
//All datasets/folders loop
while (getline(namesList, datasetName))
{
currDatasetID++;
vector <Ptr<TRACK_votObj> > objects;
//All frames/images loop
Ptr<TRACK_votObj> currDataset(new TRACK_votObj);
//Open dataset's ground truth file
string gtListPath = rootPath + "/" + datasetName + "/groundtruth.txt";
ifstream gtList(gtListPath.c_str());
if (!gtList.is_open())
printf("Error to open groundtruth.txt!!!");
//Make a list of datasets lengths
int currFrameID = 1;
if (currDatasetID == 0)
printf("VOT 2015 Dataset Initialization...\n");
bool trFLG = true;
do
{
currFrameID++;
string fullPath = rootPath + "/" + datasetName + "/" + numberToString(currFrameID) + ".jpg";
if (!fileExists(fullPath))
break;
//Make VOT Object
Ptr<TRACK_votObj> currObj(new TRACK_votObj);
currObj->imagePath = fullPath;
currObj->id = currFrameID;
//Get Ground Truth data
double x1 = 0, y1 = 0,
x2 = 0, y2 = 0,
x3 = 0, y3 = 0,
x4 = 0, y4 = 0;
string tmp;
getline(gtList, tmp);
sscanf(tmp.c_str(), "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf", &x1, &y1, &x2, &y2, &x3, &y3, &x4, &y4);
currObj->gtbb.push_back(Point2d(x1, y1));
currObj->gtbb.push_back(Point2d(x2, y2));
currObj->gtbb.push_back(Point2d(x3, y3));
currObj->gtbb.push_back(Point2d(x4, y4));
//Add object to storage
objects.push_back(currObj);
} while (trFLG);
datasetsLengths.push_back(currFrameID - 1);
data.push_back(objects);
}
}
else
{
printf("Couldn't find a *list.txt* in VOT 2015 folder!!!");
}
namesList.close();
return;
}
int TRACK_votImpl::getDatasetsNum()
{
return (int)(data.size());
}
int TRACK_votImpl::getDatasetLength(int id)
{
if (id > 0 && id <= (int)data.size())
return (int)(data[id - 1].size());
else
{
printf("Dataset ID is out of range...\nAllowed IDs are: 1~%d\n", (int)data.size());
return -1;
}
}
bool TRACK_votImpl::initDataset(int id)
{
if (id > 0 && id <= (int)data.size())
{
activeDatasetID = id;
return true;
}
else
{
printf("Dataset ID is out of range...\nAllowed IDs are: 1~%d\n", (int)data.size());
return false;
}
}
bool TRACK_votImpl::getNextFrame(Mat &frame)
{
if (frameCounter >= (int)data[activeDatasetID - 1].size())
return false;
string imgPath = data[activeDatasetID - 1][frameCounter]->imagePath;
frame = imread(imgPath);
frameCounter++;
return !frame.empty();
}
Ptr<TRACK_vot> TRACK_vot::create()
{
return Ptr<TRACK_votImpl>(new TRACK_votImpl);
}
vector <Point2d> TRACK_votImpl::getGT()
{
Ptr <TRACK_votObj> currObj = data[activeDatasetID - 1][frameCounter - 1];
return currObj->gtbb;
}
}
}
set(the_description "Tracking API") set(the_description "Tracking API")
ocv_define_module(tracking opencv_imgproc opencv_core opencv_video opencv_highgui) ocv_define_module(tracking opencv_imgproc opencv_core opencv_video opencv_highgui opencv_datasets)
...@@ -48,7 +48,7 @@ namespace cv ...@@ -48,7 +48,7 @@ namespace cv
{ {
namespace tld namespace tld
{ {
CV_EXPORTS cv::Rect2d tld_InitDataset(int datasetInd, const char* rootPath = "TLD_dataset"); CV_EXPORTS cv::Rect2d tld_InitDataset(int videoInd, const char* rootPath = "TLD_dataset", int datasetInd = 0);
CV_EXPORTS cv::Mat tld_getNextDatasetFrame(); CV_EXPORTS cv::Mat tld_getNextDatasetFrame();
} }
} }
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/datasets/track_vot.hpp"
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::datasets;
#define NUM_TEST_FRAMES 1000
static Mat image;
static bool paused;
static bool selectObjects = false;
static bool startSelection = false;
vector<Rect2d> boundingBoxes;
int targetsCnt = 0;
int targetsNum = 0;
Rect2d boundingBox;
static const char* keys =
{ "{@tracker_algorithm | | Tracker algorithm }"
"{@target_num |1| Number of targets }"
"{@dataset_path |true| Dataset path }"
"{@dataset_id |1| Dataset ID }"
};
static void onMouse(int event, int x, int y, int, void*)
{
if (!selectObjects)
{
switch (event)
{
case EVENT_LBUTTONDOWN:
//set origin of the bounding box
startSelection = true;
boundingBox.x = x;
boundingBox.y = y;
boundingBox.width = boundingBox.height = 0;
break;
case EVENT_LBUTTONUP:
//sei with and height of the bounding box
boundingBox.width = std::abs(x - boundingBox.x);
boundingBox.height = std::abs(y - boundingBox.y);
boundingBoxes.push_back(boundingBox);
targetsCnt++;
if (targetsCnt == targetsNum)
{
paused = false;
selectObjects = true;
}
startSelection = false;
break;
case EVENT_MOUSEMOVE:
if (startSelection && !selectObjects)
{
//draw the bounding box
Mat currentFrame;
image.copyTo(currentFrame);
for (int i = 0; i < (int)boundingBoxes.size(); i++)
rectangle(currentFrame, boundingBoxes[i], Scalar(255, 0, 0), 2, 1);
rectangle(currentFrame, Point((int)boundingBox.x, (int)boundingBox.y), Point(x, y), Scalar(255, 0, 0), 2, 1);
imshow("Tracking API", currentFrame);
}
break;
}
}
}
static void help()
{
cout << "\nThis example shows the functionality of \"Long-term optical tracking API\""
"TLD dataset ID: 1~10, VOT2015 dataset ID: 1~60\n"
"-- pause video [p] and draw a bounding boxes around the targets to start the tracker\n"
"Example:\n"
"./example_tracking_multiTracker_dataset<tracker_algorithm> <number_of_targets> <dataset_path> <dataset_id>\n"
<< endl;
cout << "\n\nHot keys: \n"
"\tq - quit the program\n"
"\tp - pause video\n";
}
int main(int argc, char *argv[])
{
CommandLineParser parser(argc, argv, keys);
string tracker_algorithm = parser.get<string>(0);
targetsNum = parser.get<int>(1);
string datasetRootPath = parser.get<string>(2);
int datasetID = parser.get<int>(3);
if (tracker_algorithm.empty() || datasetRootPath.empty() || targetsNum < 1)
{
help();
return -1;
}
Mat frame;
paused = false;
namedWindow("Tracking API", 0);
setMouseCallback("Tracking API", onMouse, 0);
MultiTrackerTLD mt;
//Init Dataset
Ptr<TRACK_vot> dataset = TRACK_vot::create();
dataset->load(datasetRootPath);
dataset->initDataset(datasetID);
//Read first frame
dataset->getNextFrame(frame);
frame.copyTo(image);
for (int i = 0; i < (int)boundingBoxes.size(); i++)
rectangle(image, boundingBoxes[i], Scalar(255, 0, 0), 2, 1);
imshow("Tracking API", image);
bool initialized = false;
paused = true;
int frameCounter = 0;
//Time measurment
int64 e3 = getTickCount();
for (;;)
{
if (!paused)
{
//Time measurment
int64 e1 = getTickCount();
if (initialized){
if (!dataset->getNextFrame(frame))
break;
frame.copyTo(image);
}
if (!initialized && selectObjects)
{
//Initialize the tracker and add targets
for (int i = 0; i < (int)boundingBoxes.size(); i++)
{
if (!mt.addTarget(frame, boundingBoxes[i], tracker_algorithm))
{
cout << "Trackers Init Error!!!";
return 0;
}
rectangle(frame, boundingBoxes[i], mt.colors[0], 2, 1);
}
initialized = true;
}
else if (initialized)
{
//Update all targets
if (mt.update(frame))
{
for (int i = 0; i < mt.targetNum; i++)
{
rectangle(frame, mt.boundingBoxes[i], mt.colors[i], 2, 1);
}
}
}
imshow("Tracking API", frame);
frameCounter++;
//Time measurment
int64 e2 = getTickCount();
double t1 = (e2 - e1) / getTickFrequency();
cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl;
}
char c = (char)waitKey(2);
if (c == 'q')
break;
if (c == 'p')
paused = !paused;
//waitKey(0);
}
//Time measurment
int64 e4 = getTickCount();
double t2 = (e4 - e3) / getTickFrequency();
cout << "Average Time for Frame: " << t2 * 1000.0 / frameCounter << "ms" << endl;
cout << "Average FPS: " << 1.0 / t2*frameCounter << endl;
waitKey(0);
return 0;
}
\ No newline at end of file
...@@ -39,17 +39,21 @@ ...@@ -39,17 +39,21 @@
// //
//M*/ //M*/
#include "opencv2/datasets/track_vot.hpp"
#include <opencv2/core/utility.hpp> #include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp> #include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp> #include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp> #include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream> #include <iostream>
using namespace std; using namespace std;
using namespace cv; using namespace cv;
using namespace cv::datasets;
#define NUM_TEST_FRAMES 100 #define NUM_TEST_FRAMES 300
#define TEST_VIDEO_INDEX 7 //TLD Dataset Video Index from 1-10 #define TEST_VIDEO_INDEX 1 //TLD Dataset Video Index from 1-10
//#define RECORD_VIDEO_FLG //#define RECORD_VIDEO_FLG
static Mat image; static Mat image;
...@@ -58,6 +62,12 @@ static bool paused; ...@@ -58,6 +62,12 @@ static bool paused;
static bool selectObject = false; static bool selectObject = false;
static bool startSelection = false; static bool startSelection = false;
static const char* keys =
{ "{@tracker_algorithm | | Tracker algorithm }"
"{@dataset_path |true| Dataset path }"
"{@dataset_id |1| Dataset ID }"
};
static void onMouse(int event, int x, int y, int, void*) static void onMouse(int event, int x, int y, int, void*)
{ {
if (!selectObject) if (!selectObject)
...@@ -93,19 +103,39 @@ static void onMouse(int event, int x, int y, int, void*) ...@@ -93,19 +103,39 @@ static void onMouse(int event, int x, int y, int, void*)
} }
} }
int main() static void help()
{
cout << "\nThis example shows the functionality of \"Long-term optical tracking API\""
"TLD dataset ID: 1~10, VOT2015 dataset ID: 1~60\n"
"-- pause video [p] and draw a bounding box around the target to start the tracker\n"
"Example:\n"
"./example_tracking_tracker_dataset <tracker_algorithm> <dataset_path> <dataset_id>\n"
<< endl;
cout << "\n\nHot keys: \n"
"\tq - quit the program\n"
"\tp - pause video\n";
}
int main(int argc, char *argv[])
{ {
// CommandLineParser parser(argc, argv, keys);
// "MIL", "BOOSTING", "MEDIANFLOW", "TLD" string tracker_algorithm = parser.get<string>(0);
// string datasetRootPath = parser.get<string>(1);
string tracker_algorithm_name = "TLD"; int datasetID = parser.get<int>(2);
if (tracker_algorithm.empty() || datasetRootPath.empty())
{
help();
return -1;
}
Mat frame; Mat frame;
paused = false; paused = false;
namedWindow("Tracking API", 0); namedWindow("Tracking API", 0);
setMouseCallback("Tracking API", onMouse, 0); setMouseCallback("Tracking API", onMouse, 0);
Ptr<Tracker> tracker = Tracker::create(tracker_algorithm_name); //Create Tracker
Ptr<Tracker> tracker = Tracker::create(tracker_algorithm);
if (tracker == NULL) if (tracker == NULL)
{ {
cout << "***Error in the instantiation of the tracker...***\n"; cout << "***Error in the instantiation of the tracker...***\n";
...@@ -113,107 +143,72 @@ int main() ...@@ -113,107 +143,72 @@ int main()
return 0; return 0;
} }
//Get the first frame //Init Dataset
////Open the capture Ptr<TRACK_vot> dataset = TRACK_vot::create();
// VideoCapture cap(0); dataset->load(datasetRootPath);
// if( !cap.isOpened() ) dataset->initDataset(datasetID);
// {
// cout << "Video stream error";
// return;
// }
//cap >> frame;
//From TLD dataset
selectObject = true;
boundingBox = tld::tld_InitDataset(TEST_VIDEO_INDEX, "D:/opencv/TLD_dataset");
frame = tld::tld_getNextDatasetFrame();
frame.copyTo(image);
// Setup output video //Read first frame
#ifdef RECORD_VIDEO_FLG dataset->getNextFrame(frame);
String outputFilename = "test.avi"; frame.copyTo(image);
VideoWriter outputVideo;
outputVideo.open(outputFilename, -1, 30, Size(image.cols, image.rows));
if (!outputVideo.isOpened())
{
std::cout << "!!! Output video could not be opened" << std::endl;
getchar();
return;
}
#endif
rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1); rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
imshow("Tracking API", image); imshow("Tracking API", image);
bool initialized = false; bool initialized = false;
paused = true;
int frameCounter = 0; int frameCounter = 0;
//Time measurment //Time measurment
int64 e3 = getTickCount(); int64 e3 = getTickCount();
for (;;) for (;;)
{ {
//Time measurment
int64 e1 = getTickCount();
//Frame num
frameCounter++;
if (frameCounter == NUM_TEST_FRAMES) break;
char c = (char)waitKey(2);
if (c == 'q' || c == 27)
break;
if (c == 'p')
paused = !paused;
if (!paused) if (!paused)
{ {
//cap >> frame; //Time measurment
frame = tld::tld_getNextDatasetFrame(); int64 e1 = getTickCount();
if (frame.empty()) if (initialized){
{ if (!dataset->getNextFrame(frame))
break; break;
frame.copyTo(image);
} }
frame.copyTo(image);
if (selectObject) if (!initialized && selectObject)
{ {
if (!initialized) //initializes the tracker
if (!tracker->init(frame, boundingBox))
{ {
//initializes the tracker cout << "***Could not initialize tracker...***\n";
if (!tracker->init(frame, boundingBox)) return -1;
{
cout << "***Could not initialize tracker...***\n";
return 0;
}
initialized = true;
rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
} }
else initialized = true;
}
else if (initialized)
{
//updates the tracker
if (tracker->update(frame, boundingBox))
{ {
//updates the tracker rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
if (tracker->update(frame, boundingBox))
{
rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
}
} }
} }
imshow("Tracking API", image); imshow("Tracking API", image);
frameCounter++;
#ifdef RECORD_VIDEO_FLG
outputVideo << image;
#endif
//Time measurment //Time measurment
int64 e2 = getTickCount(); int64 e2 = getTickCount();
double t1 = (e2 - e1) / getTickFrequency(); double t1 = (e2 - e1) / getTickFrequency();
cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl; cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl;
//waitKey(0);
} }
char c = (char)waitKey(2);
if (c == 'q')
break;
if (c == 'p')
paused = !paused;
//waitKey(0);
} }
//Time measurment //Time measurment
......
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_MULTITRACKER
#define OPENCV_MULTITRACKER
#include "precomp.hpp"
#include "tldTracker.hpp"
#include "tldUtils.hpp"
#include <math.h>
namespace cv
{
void detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches,
std::vector<bool>& detect_flgs, std::vector<Ptr<Tracker> >& trackers);
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch > > &patches,
std::vector<bool>& detect_flgs, std::vector<Ptr<Tracker> >& trackers);
}
#endif
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv {
// constructor
MultiTracker::MultiTracker(const String& trackerType):defaultAlgorithm(trackerType){};
// destructor
MultiTracker::~MultiTracker(){};
// add an object to be tracked, defaultAlgorithm is used
bool MultiTracker::add(const Mat& image, const Rect2d& boundingBox){
// quit if defaultAlgorithm has not been configured
if(defaultAlgorithm==""){
printf("Default algorithm was not defined!\n");
return false;
}
// add a new tracked object
return add(defaultAlgorithm.c_str(), image, boundingBox);
};
// add a new tracked object
bool MultiTracker::add( const String& trackerType, const Mat& image, const Rect2d& boundingBox ){
// declare a new tracker
Ptr<Tracker> newTracker = Tracker::create( trackerType );
// add the created tracker algorithm to the trackers list
trackerList.push_back(newTracker);
// add the ROI to the bounding box list
objects.push_back(boundingBox);
// initialize the created tracker
return trackerList.back()->init(image, boundingBox);
};
// add a set of objects to be tracked
bool MultiTracker::add(const String& trackerType, const Mat& image, std::vector<Rect2d> boundingBox){
// status of the tracker addition
bool stat=false;
// add tracker for all input objects
for(unsigned i =0;i<boundingBox.size();i++){
stat=add(trackerType,image,boundingBox[i]);
if(!stat)break;
}
// return the status
return stat;
};
// add a set of object to be tracked, defaultAlgorithm is used.
bool MultiTracker::add(const Mat& image, std::vector<Rect2d> boundingBox){
// quit if defaultAlgorithm has not been configured
if(defaultAlgorithm==""){
printf("Default algorithm was not defined!\n");
return false;
}
return add(defaultAlgorithm.c_str(), image, boundingBox);
};
// update position of the tracked objects, the result is stored in internal storage
bool MultiTracker::update( const Mat& image){
for(unsigned i=0;i< trackerList.size(); i++){
trackerList[i]->update(image, objects[i]);
}
return true;
};
// update position of the tracked objects, the result is copied to external variable
bool MultiTracker::update( const Mat& image, std::vector<Rect2d> & boundingBox ){
update(image);
boundingBox=objects;
return true;
};
} /* namespace cv */
\ No newline at end of file
...@@ -48,70 +48,108 @@ namespace cv ...@@ -48,70 +48,108 @@ namespace cv
char tldRootPath[100]; char tldRootPath[100];
int frameNum = 0; int frameNum = 0;
bool flagPNG = false; bool flagPNG = false;
bool flagVOT = false;
cv::Rect2d tld_InitDataset(int datasetInd,const char* rootPath) //TLD Dataset Parameters
const char* tldFolderName[10] = {
"01_david",
"02_jumping",
"03_pedestrian1",
"04_pedestrian2",
"05_pedestrian3",
"06_car",
"07_motocross",
"08_volkswagen",
"09_carchase",
"10_panda"
};
const char* votFolderName[60] = {
"bag", "ball1", "ball2", "basketball", "birds1", "birds2", "blanket", "bmx", "bolt1", "bolt2",
"book", "butterfly", "car1", "car2", "crossing", "dinosaur", "fernando", "fish1", "fish2", "fish3",
"fish4", "girl", "glove", "godfather", "graduate", "gymnastics1", "gymnastics2 ", "gymnastics3", "gymnastics4", "hand",
"handball1", "handball2", "helicopter", "iceskater1", "iceskater2", "leaves", "marching", "matrix", "motocross1", "motocross2",
"nature", "octopus", "pedestrian1", "pedestrian2", "rabbit", "racing", "road", "shaking", "sheep", "singer1",
"singer2", "singer3", "soccer1", "soccer2", "soldier", "sphere", "tiger", "traffic", "tunnel", "wiper"
};
const Rect2d tldInitBB[10] = {
Rect2d(165, 93, 51, 54), Rect2d(147, 110, 33, 32), Rect2d(47, 51, 21, 36), Rect2d(130, 134, 21, 53), Rect2d(154, 102, 24, 52),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(337, 219, 54, 37), Rect2d(58, 100, 27, 22)
};
const Rect2d votInitBB[60] = {
Rect2d(142, 125, 90, 39), Rect2d(490, 400, 40, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(450, 380, 60, 60), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(225, 175, 50, 50), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(560, 460, 50, 120),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
Rect2d(142, 125, 90, 39), Rect2d(290, 43, 23, 40), Rect2d(273, 77, 27, 25), Rect2d(145, 84, 54, 37), Rect2d(58, 100, 27, 22),
};
int tldFrameOffset[10] = { 100, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
int votFrameOffset[60] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
bool tldFlagPNG[10] = { 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 };
bool votFlagPNG[60] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
cv::Rect2d tld_InitDataset(int videoInd, const char* rootPath, int datasetInd)
{ {
char* folderName = (char *)""; char* folderName = (char *)"";
int x = 0; double x = 0,
int y = 0; y = 0,
int w = 0; w = 0,
int h = 0; h = 0;
flagPNG = false;
//Index range
frameNum = 1; // 1-10 TLD Dataset
// 1-60 VOT 2015 Dataset
if (datasetInd == 1) { int id = videoInd - 1;
folderName = (char *)"01_david";
x = 165, y = 83; if (datasetInd == 0)
w = 51; h = 54; {
frameNum = 100; folderName = (char*)tldFolderName[id];
} x = tldInitBB[id].x;
if (datasetInd == 2) { y = tldInitBB[id].y;
folderName = (char *)"02_jumping"; w = tldInitBB[id].width;
x = 147, y = 110; h = tldInitBB[id].height;
w = 33; h = 32; frameNum = tldFrameOffset[id];
} flagPNG = tldFlagPNG[id];
if (datasetInd == 3) { flagVOT = false;
folderName = (char *)"03_pedestrian1";
x = 47, y = 51;
w = 21; h = 36;
}
if (datasetInd == 4) {
folderName = (char *)"04_pedestrian2";
x = 130, y = 134;
w = 21; h = 53;
}
if (datasetInd == 5) {
folderName = (char *)"05_pedestrian3";
x = 154, y = 102;
w = 24; h = 52;
}
if (datasetInd == 6) {
folderName = (char *)"06_car";
x = 142, y = 125;
w = 90; h = 39;
}
if (datasetInd == 7) {
folderName = (char *)"07_motocross";
x = 290, y = 43;
w = 23; h = 40;
flagPNG = true;
}
if (datasetInd == 8) {
folderName = (char *)"08_volkswagen";
x = 273, y = 77;
w = 27; h = 25;
}
if (datasetInd == 9) {
folderName = (char *)"09_carchase";
x = 145, y = 84;
w = 54; h = 37;
}
if (datasetInd == 10){
folderName = (char *)"10_panda";
x = 58, y = 100;
w = 27; h = 22;
} }
if (datasetInd == 1)
{
folderName = (char*)votFolderName[id];
x = votInitBB[id].x;
y = votInitBB[id].y;
w = votInitBB[id].width;
h = votInitBB[id].height;
frameNum = votFrameOffset[id];
flagPNG = votFlagPNG[id];
flagVOT = true;
}
strcpy(tldRootPath, rootPath); strcpy(tldRootPath, rootPath);
strcat(tldRootPath, "\\"); strcat(tldRootPath, "\\");
...@@ -127,6 +165,8 @@ namespace cv ...@@ -127,6 +165,8 @@ namespace cv
char numStr[10]; char numStr[10];
strcpy(fullPath, tldRootPath); strcpy(fullPath, tldRootPath);
strcat(fullPath, "\\"); strcat(fullPath, "\\");
if (flagVOT)
strcat(fullPath, "000");
if (frameNum < 10) strcat(fullPath, "0000"); if (frameNum < 10) strcat(fullPath, "0000");
else if (frameNum < 100) strcat(fullPath, "000"); else if (frameNum < 100) strcat(fullPath, "000");
else if (frameNum < 1000) strcat(fullPath, "00"); else if (frameNum < 1000) strcat(fullPath, "00");
......
This diff is collapsed.
...@@ -66,13 +66,15 @@ namespace cv ...@@ -66,13 +66,15 @@ namespace cv
static const cv::Size GaussBlurKernelSize(3, 3); static const cv::Size GaussBlurKernelSize(3, 3);
class TLDDetector class TLDDetector
{ {
public: public:
TLDDetector(){} TLDDetector(){}
~TLDDetector(){} ~TLDDetector(){}
inline double ensembleClassifierNum(const uchar* data); double ensembleClassifierNum(const uchar* data);
inline void prepareClassifiers(int rowstep); void prepareClassifiers(int rowstep);
double Sr(const Mat_<uchar>& patch); double Sr(const Mat_<uchar>& patch);
double ocl_Sr(const Mat_<uchar>& patch); double ocl_Sr(const Mat_<uchar>& patch);
double Sc(const Mat_<uchar>& patch); double Sc(const Mat_<uchar>& patch);
...@@ -93,15 +95,14 @@ namespace cv ...@@ -93,15 +95,14 @@ namespace cv
bool isObject, shouldBeIntegrated; bool isObject, shouldBeIntegrated;
}; };
bool detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize); bool detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize);
bool ocl_detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize); bool ocl_detect(const Mat& img, const Mat& imgBlurred, Rect2d& res, std::vector<LabeledPatch>& patches, Size initSize);
protected:
friend class MyMouseCallbackDEBUG; friend class MyMouseCallbackDEBUG;
void computeIntegralImages(const Mat& img, Mat_<double>& intImgP, Mat_<double>& intImgP2){ integral(img, intImgP, intImgP2, CV_64F); } static void computeIntegralImages(const Mat& img, Mat_<double>& intImgP, Mat_<double>& intImgP2){ integral(img, intImgP, intImgP2, CV_64F); }
inline bool patchVariance(Mat_<double>& intImgP, Mat_<double>& intImgP2, double *originalVariance, Point pt, Size size); static inline bool patchVariance(Mat_<double>& intImgP, Mat_<double>& intImgP2, double *originalVariance, Point pt, Size size);
}; };
} }
} }
......
...@@ -54,7 +54,7 @@ namespace cv ...@@ -54,7 +54,7 @@ namespace cv
double posteriorProbability(const uchar* data, int rowstep) const; double posteriorProbability(const uchar* data, int rowstep) const;
double posteriorProbabilityFast(const uchar* data) const; double posteriorProbabilityFast(const uchar* data) const;
void prepareClassifier(int rowstep); void prepareClassifier(int rowstep);
private:
TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end); TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end);
static void stepPrefSuff(std::vector<Vec4b> & arr, int pos, int len, int gridSize); static void stepPrefSuff(std::vector<Vec4b> & arr, int pos, int len, int gridSize);
int code(const uchar* data, int rowstep) const; int code(const uchar* data, int rowstep) const;
......
...@@ -140,7 +140,6 @@ namespace cv ...@@ -140,7 +140,6 @@ namespace cv
detector->classifiers[k].integrate(blurredPatch, false); detector->classifiers[k].integrate(blurredPatch, false);
} }
} }
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
} }
...@@ -180,16 +179,6 @@ namespace cv ...@@ -180,16 +179,6 @@ namespace cv
detector->classifiers[i].integrate(blurredPatch, patches[k].isObject); detector->classifiers[i].integrate(blurredPatch, patches[k].isObject);
} }
} }
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
...@@ -198,9 +187,6 @@ namespace cv ...@@ -198,9 +187,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0; int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return; if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
for (int k = 0; k < (int)eForModel.size(); k++) for (int k = 0; k < (int)eForModel.size(); k++)
{ {
double sr = detector->Sr(eForModel[k]); double sr = detector->Sr(eForModel[k]);
...@@ -231,19 +217,6 @@ namespace cv ...@@ -231,19 +217,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive); detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive) void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive)
...@@ -251,10 +224,6 @@ namespace cv ...@@ -251,10 +224,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0; int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return; if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Prepare batch of patches //Prepare batch of patches
int numOfPatches = (int)eForModel.size(); int numOfPatches = (int)eForModel.size();
Mat_<uchar> stdPatches(numOfPatches, 225); Mat_<uchar> stdPatches(numOfPatches, 225);
...@@ -301,19 +270,6 @@ namespace cv ...@@ -301,19 +270,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive); detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional OCL: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
//Push the patch to the model //Push the patch to the model
......
...@@ -45,6 +45,13 @@ ...@@ -45,6 +45,13 @@
namespace cv namespace cv
{ {
TrackerTLD::Params::Params(){}
void TrackerTLD::Params::read(const cv::FileNode& /*fn*/){}
void TrackerTLD::Params::write(cv::FileStorage& /*fs*/) const {}
Ptr<TrackerTLD> TrackerTLD::createTracker(const TrackerTLD::Params &parameters) Ptr<TrackerTLD> TrackerTLD::createTracker(const TrackerTLD::Params &parameters)
{ {
return Ptr<tld::TrackerTLDImpl>(new tld::TrackerTLDImpl(parameters)); return Ptr<tld::TrackerTLDImpl>(new tld::TrackerTLDImpl(parameters));
...@@ -112,7 +119,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -112,7 +119,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE); Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE, STANDARD_PATCH_SIZE);
std::vector<TLDDetector::LabeledPatch> detectorResults; std::vector<TLDDetector::LabeledPatch> detectorResults;
//best overlap around 92% //best overlap around 92%
std::vector<Rect2d> candidates; std::vector<Rect2d> candidates;
std::vector<double> candidatesRes; std::vector<double> candidatesRes;
bool trackerNeedsReInit = false; bool trackerNeedsReInit = false;
...@@ -128,7 +134,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -128,7 +134,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
else else
DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize()); DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
} }
if( ( (i == 0) && !data->failedLastTime && trackerProxy->update(image, tmpCandid) ) || ( DETECT_FLG)) if( ( (i == 0) && !data->failedLastTime && trackerProxy->update(image, tmpCandid) ) || ( DETECT_FLG))
{ {
candidates.push_back(tmpCandid); candidates.push_back(tmpCandid);
...@@ -144,15 +149,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -144,15 +149,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
trackerNeedsReInit = true; trackerNeedsReInit = true;
} }
} }
std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end()); std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
//data->printme();
//tldModel->printme(stdout);
if( it == candidatesRes.end() ) if( it == candidatesRes.end() )
{ {
data->confident = false; data->confident = false;
...@@ -169,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -169,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
#if 1 #if 1
if( it != candidatesRes.end() ) if( it != candidatesRes.end() )
{
resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch); resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif #endif
if( *it > CORE_THRESHOLD ) if( *it > CORE_THRESHOLD )
...@@ -209,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -209,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
detectorResults[i].isObject = expertResult; detectorResults[i].isObject = expertResult;
} }
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults); tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble); pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL()) if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true); tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
...@@ -296,7 +284,6 @@ Data::Data(Rect2d initBox) ...@@ -296,7 +284,6 @@ Data::Data(Rect2d initBox)
minSize.width = (int)(initBox.width * 20.0 / minDim); minSize.width = (int)(initBox.width * 20.0 / minDim);
minSize.height = (int)(initBox.height * 20.0 / minDim); minSize.height = (int)(initBox.height * 20.0 / minDim);
frameNum = 0; frameNum = 0;
//dprintf(("minSize = %dx%d\n", minSize.width, minSize.height));
} }
void Data::printme(FILE* port) void Data::printme(FILE* port)
......
...@@ -52,12 +52,6 @@ ...@@ -52,12 +52,6 @@
namespace cv namespace cv
{ {
TrackerTLD::Params::Params(){}
void TrackerTLD::Params::read(const cv::FileNode& /*fn*/){}
void TrackerTLD::Params::write(cv::FileStorage& /*fs*/) const {}
namespace tld namespace tld
{ {
class TrackerProxy class TrackerProxy
...@@ -128,7 +122,6 @@ public: ...@@ -128,7 +122,6 @@ public:
void read(const FileNode& fn); void read(const FileNode& fn);
void write(FileStorage& fs) const; void write(FileStorage& fs) const;
protected:
class Pexpert class Pexpert
{ {
public: public:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment