Commit bb5dadd7 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #2236 from szk1509:invMarkerContourDetectionImproved

parents bb1dee17 93f910e9
......@@ -212,17 +212,20 @@ static void _reorderCandidatesCorners(vector< vector< Point2f > > &candidates) {
/**
* @brief Check candidates that are too close to each other and remove the smaller one
* @brief Check candidates that are too close to each other, save the potential candidates
* (i.e. biggest/smallest contour) and remove the rest
*/
static void _filterTooCloseCandidates(const vector< vector< Point2f > > &candidatesIn,
vector< vector< Point2f > > &candidatesOut,
vector< vector< vector< Point2f > > > &candidatesSetOut,
const vector< vector< Point > > &contoursIn,
vector< vector< Point > > &contoursOut,
double minMarkerDistanceRate) {
vector< vector< vector< Point > > > &contoursSetOut,
double minMarkerDistanceRate, bool detectInvertedMarker) {
CV_Assert(minMarkerDistanceRate >= 0);
vector< pair< int, int > > nearCandidates;
vector<int> candGroup;
candGroup.resize(candidatesIn.size(), -1);
vector< vector<unsigned int> > groupedCandidates;
for(unsigned int i = 0; i < candidatesIn.size(); i++) {
for(unsigned int j = i + 1; j < candidatesIn.size(); j++) {
......@@ -244,39 +247,86 @@ static void _filterTooCloseCandidates(const vector< vector< Point2f > > &candida
// if mean square distance is too low, remove the smaller one of the two markers
double minMarkerDistancePixels = double(minimumPerimeter) * minMarkerDistanceRate;
if(distSq < minMarkerDistancePixels * minMarkerDistancePixels) {
nearCandidates.push_back(pair< int, int >(i, j));
break;
// i and j are not related to a group
if(candGroup[i]<0 && candGroup[j]<0){
// mark candidates with their corresponding group number
candGroup[i] = candGroup[j] = (int)groupedCandidates.size();
// create group
vector<unsigned int> grouped;
grouped.push_back(i);
grouped.push_back(j);
groupedCandidates.push_back( grouped );
}
// i is related to a group
else if(candGroup[i] > -1 && candGroup[j] == -1){
int group = candGroup[i];
candGroup[j] = group;
// add to group
groupedCandidates[group].push_back( j );
}
// j is related to a group
else if(candGroup[j] > -1 && candGroup[i] == -1){
int group = candGroup[j];
candGroup[i] = group;
// add to group
groupedCandidates[group].push_back( i );
}
}
}
}
}
// mark smaller one in pairs to remove
vector< bool > toRemove(candidatesIn.size(), false);
for(unsigned int i = 0; i < nearCandidates.size(); i++) {
// if one of the marker has been already markerd to removed, dont need to do anything
if(toRemove[nearCandidates[i].first] || toRemove[nearCandidates[i].second]) continue;
size_t perimeter1 = contoursIn[nearCandidates[i].first].size();
size_t perimeter2 = contoursIn[nearCandidates[i].second].size();
if(perimeter1 > perimeter2)
toRemove[nearCandidates[i].second] = true;
else
toRemove[nearCandidates[i].first] = true;
}
// remove extra candidates
candidatesOut.clear();
unsigned long totalRemaining = 0;
for(unsigned int i = 0; i < toRemove.size(); i++)
if(!toRemove[i]) totalRemaining++;
candidatesOut.resize(totalRemaining);
contoursOut.resize(totalRemaining);
for(unsigned int i = 0, currIdx = 0; i < candidatesIn.size(); i++) {
if(toRemove[i]) continue;
candidatesOut[currIdx] = candidatesIn[i];
contoursOut[currIdx] = contoursIn[i];
currIdx++;
// save possible candidates
candidatesSetOut.clear();
contoursSetOut.clear();
vector< vector< Point2f > > biggerCandidates;
vector< vector< Point > > biggerContours;
vector< vector< Point2f > > smallerCandidates;
vector< vector< Point > > smallerContours;
// save possible candidates
for( unsigned int i = 0; i < groupedCandidates.size(); i++ ) {
int smallerIdx = groupedCandidates[i][0];
int biggerIdx = -1;
// evaluate group elements
for( unsigned int j = 1; j < groupedCandidates[i].size(); j++ ) {
size_t currPerim = contoursIn[ groupedCandidates[i][j] ].size();
// check if current contour is bigger
if ( biggerIdx < 0 )
biggerIdx = groupedCandidates[i][j];
else if(currPerim >= contoursIn[ biggerIdx ].size())
biggerIdx = groupedCandidates[i][j];
// check if current contour is smaller
if(currPerim < contoursIn[ smallerIdx ].size() && detectInvertedMarker)
smallerIdx = groupedCandidates[i][j];
}
// add contours und candidates
if(biggerIdx > -1){
biggerCandidates.push_back(candidatesIn[biggerIdx]);
biggerContours.push_back(contoursIn[biggerIdx]);
if( detectInvertedMarker ){
smallerCandidates.push_back(candidatesIn[smallerIdx]);
smallerContours.push_back(contoursIn[smallerIdx]);
}
}
}
// to preserve the structure :: candidateSet< defaultCandidates, whiteCandidates >
// default candidates
candidatesSetOut.push_back(biggerCandidates);
contoursSetOut.push_back(biggerContours);
// white candidates
candidatesSetOut.push_back(smallerCandidates);
contoursSetOut.push_back(smallerContours);
}
......@@ -370,8 +420,8 @@ static void _detectInitialCandidates(const Mat &grey, vector< vector< Point2f >
/**
* @brief Detect square candidates in the input image
*/
static void _detectCandidates(InputArray _image, vector< vector< Point2f > >& candidatesOut,
vector< vector< Point > >& contoursOut, const Ptr<DetectorParameters> &_params) {
static void _detectCandidates(InputArray _image, vector< vector< vector< Point2f > > >& candidatesSetOut,
vector< vector< vector< Point > > >& contoursSetOut, const Ptr<DetectorParameters> &_params) {
Mat image = _image.getMat();
CV_Assert(image.total() != 0);
......@@ -389,8 +439,9 @@ static void _detectCandidates(InputArray _image, vector< vector< Point2f > >& ca
_reorderCandidatesCorners(candidates);
/// 4. FILTER OUT NEAR CANDIDATE PAIRS
_filterTooCloseCandidates(candidates, candidatesOut, contours, contoursOut,
_params->minMarkerDistanceRate);
// save the outter/inner border (i.e. potential candidates)
_filterTooCloseCandidates(candidates, candidatesSetOut, contours, contoursSetOut,
_params->minMarkerDistanceRate, _params->detectInvertedMarker);
}
......@@ -493,8 +544,11 @@ static int _getBorderErrors(const Mat &bits, int markerSize, int borderSize) {
/**
* @brief Tries to identify one candidate given the dictionary
* @return candidate typ. zero if the candidate is not valid,
* 1 if the candidate is a black candidate (default candidate)
* 2 if the candidate is a white candidate
*/
static bool _identifyOneCandidate(const Ptr<Dictionary>& dictionary, InputArray _image,
static uint8_t _identifyOneCandidate(const Ptr<Dictionary>& dictionary, InputArray _image,
vector<Point2f>& _corners, int& idx,
const Ptr<DetectorParameters>& params)
{
......@@ -502,6 +556,7 @@ static bool _identifyOneCandidate(const Ptr<Dictionary>& dictionary, InputArray
CV_Assert(_image.getMat().total() != 0);
CV_Assert(params->markerBorderBits > 0);
uint8_t typ=1;
// get bits
Mat candidateBits =
_extractBits(_image, _corners, dictionary->markerSize, params->markerBorderBits,
......@@ -523,9 +578,10 @@ static bool _identifyOneCandidate(const Ptr<Dictionary>& dictionary, InputArray
if(invBError<borderErrors){
borderErrors = invBError;
invertedImg.copyTo(candidateBits);
typ=2;
}
}
if(borderErrors > maximumErrorsInBorder) return false;
if(borderErrors > maximumErrorsInBorder) return 0; // border is wrong
// take only inner bits
Mat onlyBits =
......@@ -536,13 +592,13 @@ static bool _identifyOneCandidate(const Ptr<Dictionary>& dictionary, InputArray
// try to indentify the marker
int rotation;
if(!dictionary->identify(onlyBits, idx, rotation, params->errorCorrectionRate))
return false;
return 0;
// shift corner positions to the correct rotation
if(rotation != 0) {
std::rotate(_corners.begin(), _corners.begin() + 4 - rotation, _corners.end());
}
return true;
return typ;
}
......@@ -554,22 +610,24 @@ class IdentifyCandidatesParallel : public ParallelLoopBody {
public:
IdentifyCandidatesParallel(const Mat& _grey, vector< vector< Point2f > >& _candidates,
const Ptr<Dictionary> &_dictionary,
vector< int >& _idsTmp, vector< char >& _validCandidates,
vector< int >& _idsTmp, vector< uint8_t >& _validCandidates,
const Ptr<DetectorParameters> &_params)
: grey(_grey), candidates(_candidates), dictionary(_dictionary),
idsTmp(_idsTmp), validCandidates(_validCandidates), params(_params) {}
void operator()(const Range &range) const CV_OVERRIDE {
void operator()(const Range &range) const CV_OVERRIDE
{
const int begin = range.start;
const int end = range.end;
for(int i = begin; i < end; i++) {
int currId;
if(_identifyOneCandidate(dictionary, grey, candidates[i], currId, params)) {
validCandidates[i] = 1;
validCandidates[i] = _identifyOneCandidate(dictionary, grey, candidates[i], currId, params);
if(validCandidates[i] > 0)
idsTmp[i] = currId;
}
}
}
private:
......@@ -579,7 +637,7 @@ class IdentifyCandidatesParallel : public ParallelLoopBody {
vector< vector< Point2f > >& candidates;
const Ptr<Dictionary> &dictionary;
vector< int > &idsTmp;
vector< char > &validCandidates;
vector< uint8_t > &validCandidates;
const Ptr<DetectorParameters> &params;
};
......@@ -623,14 +681,13 @@ static void _copyVector2Output(vector< vector< Point2f > > &vec, OutputArrayOfAr
/**
* @brief Identify square candidates according to a marker dictionary
*/
static void _identifyCandidates(InputArray _image, vector< vector< Point2f > >& _candidates,
vector< vector<Point> >& _contours, const Ptr<Dictionary> &_dictionary,
vector< vector< Point2f > >& _accepted, vector< int >& ids,
static void _identifyCandidates(InputArray _image, vector< vector< vector< Point2f > > >& _candidatesSet,
vector< vector< vector<Point> > >& _contoursSet, const Ptr<Dictionary> &_dictionary,
vector< vector< Point2f > >& _accepted, vector< vector<Point> >& _contours, vector< int >& ids,
const Ptr<DetectorParameters> &params,
OutputArrayOfArrays _rejected = noArray()) {
int ncandidates = (int)_candidates.size();
int ncandidates = (int)_candidatesSet[0].size();
vector< vector< Point2f > > accepted;
vector< vector< Point2f > > rejected;
......@@ -642,32 +699,33 @@ static void _identifyCandidates(InputArray _image, vector< vector< Point2f > >&
_convertToGrey(_image.getMat(), grey);
vector< int > idsTmp(ncandidates, -1);
vector< char > validCandidates(ncandidates, 0);
vector< uint8_t > validCandidates(ncandidates, 0);
//// Analyze each of the candidates
// for (int i = 0; i < ncandidates; i++) {
// int currId = i;
// Mat currentCandidate = _candidates.getMat(i);
// if (_identifyOneCandidate(dictionary, grey, currentCandidate, currId, params)) {
// validCandidates[i] = 1;
// idsTmp[i] = currId;
// }
//}
// this is the parallel call for the previous commented loop (result is equivalent)
parallel_for_(Range(0, ncandidates),
IdentifyCandidatesParallel(grey, _candidates, _dictionary, idsTmp,
IdentifyCandidatesParallel(grey,
params->detectInvertedMarker ? _candidatesSet[1] : _candidatesSet[0],
_dictionary, idsTmp,
validCandidates, params));
for(int i = 0; i < ncandidates; i++) {
if(validCandidates[i] == 1) {
accepted.push_back(_candidates[i]);
if(validCandidates[i] > 0) {
// add the white valid candidate
if( params->detectInvertedMarker && validCandidates[i] == 2 ){
accepted.push_back(_candidatesSet[1][i]);
ids.push_back(idsTmp[i]);
contours.push_back(_contoursSet[1][i]);
continue;
}
// add the default (black) valid candidate
accepted.push_back(_candidatesSet[0][i]);
ids.push_back(idsTmp[i]);
contours.push_back(_contours[i]);
contours.push_back(_contoursSet[0][i]);
} else {
rejected.push_back(_candidates[i]);
rejected.push_back(_candidatesSet[0][i]);
}
}
......@@ -682,80 +740,6 @@ static void _identifyCandidates(InputArray _image, vector< vector< Point2f > >&
}
/**
* @brief Final filter of markers after its identification
*/
static void _filterDetectedMarkers(vector< vector< Point2f > >& _corners, vector< int >& _ids, vector< vector< Point> >& _contours) {
CV_Assert(_corners.size() == _ids.size());
if(_corners.empty()) return;
// mark markers that will be removed
vector< bool > toRemove(_corners.size(), false);
bool atLeastOneRemove = false;
// remove repeated markers with same id, if one contains the other (doble border bug)
for(unsigned int i = 0; i < _corners.size() - 1; i++) {
for(unsigned int j = i + 1; j < _corners.size(); j++) {
if(_ids[i] != _ids[j]) continue;
// check if first marker is inside second
bool inside = true;
for(unsigned int p = 0; p < 4; p++) {
Point2f point = _corners[j][p];
if(pointPolygonTest(_corners[i], point, false) < 0) {
inside = false;
break;
}
}
if(inside) {
toRemove[j] = true;
atLeastOneRemove = true;
continue;
}
// check the second marker
inside = true;
for(unsigned int p = 0; p < 4; p++) {
Point2f point = _corners[i][p];
if(pointPolygonTest(_corners[j], point, false) < 0) {
inside = false;
break;
}
}
if(inside) {
toRemove[i] = true;
atLeastOneRemove = true;
continue;
}
}
}
// parse output
if(atLeastOneRemove) {
vector< vector< Point2f > >::iterator filteredCorners = _corners.begin();
vector< int >::iterator filteredIds = _ids.begin();
vector< vector< Point > >::iterator filteredContours = _contours.begin();
for(unsigned int i = 0; i < toRemove.size(); i++) {
if(!toRemove[i]) {
*filteredCorners++ = _corners[i];
*filteredIds++ = _ids[i];
*filteredContours++ = _contours[i];
}
}
_ids.erase(filteredIds, _ids.end());
_corners.erase(filteredCorners, _corners.end());
_contours.erase(filteredContours, _contours.end());
}
}
/**
* @brief Return object points for the system centered in a single marker, given the marker length
*/
......@@ -1127,26 +1111,29 @@ void detectMarkers(InputArray _image, const Ptr<Dictionary> &_dictionary, Output
vector< vector< Point > > contours;
vector< int > ids;
vector< vector< vector< Point2f > > > candidatesSet;
vector< vector< vector< Point > > > contoursSet;
/// STEP 1.a Detect marker candidates :: using AprilTag
if(_params->cornerRefinementMethod == CORNER_REFINE_APRILTAG)
if(_params->cornerRefinementMethod == CORNER_REFINE_APRILTAG){
_apriltag(grey, _params, candidates, contours);
candidatesSet.push_back(candidates);
contoursSet.push_back(contours);
}
/// STEP 1.b Detect marker candidates :: traditional way
else
_detectCandidates(grey, candidates, contours, _params);
_detectCandidates(grey, candidatesSet, contoursSet, _params);
/// STEP 2: Check candidate codification (identify markers)
_identifyCandidates(grey, candidates, contours, _dictionary, candidates, ids, _params,
_identifyCandidates(grey, candidatesSet, contoursSet, _dictionary, candidates, contours, ids, _params,
_rejectedImgPoints);
/// STEP 3: Filter detected markers;
_filterDetectedMarkers(candidates, ids, contours);
// copy to output arrays
_copyVector2Output(candidates, _corners);
Mat(ids).copyTo(_ids);
/// STEP 4: Corner refinement :: use corner subpix
/// STEP 3: Corner refinement :: use corner subpix
if( _params->cornerRefinementMethod == CORNER_REFINE_SUBPIX ) {
CV_Assert(_params->cornerRefinementWinSize > 0 && _params->cornerRefinementMaxIterations > 0 &&
_params->cornerRefinementMinAccuracy > 0);
......@@ -1165,7 +1152,7 @@ void detectMarkers(InputArray _image, const Ptr<Dictionary> &_dictionary, Output
MarkerSubpixelParallel(&grey, _corners, _params));
}
/// STEP 4, Optional : Corner refinement :: use contour container
/// STEP 3, Optional : Corner refinement :: use contour container
if( _params->cornerRefinementMethod == CORNER_REFINE_CONTOUR){
if(! _ids.empty()){
......
......@@ -322,19 +322,6 @@ void CV_ArucoDetectionPerspective::run(int tryWith) {
}
for(int c = 0; c < 4; c++) {
double dist = cv::norm(groundTruthCorners[c] - corners[0][c]); // TODO cvtest
if(CV_ArucoDetectionPerspective::DETECT_INVERTED_MARKER == tryWith){
if(szEnclosed && dist > 3){
ts->printf(cvtest::TS::LOG, "Incorrect marker corners position");
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
if(!szEnclosed && dist >15){
ts->printf(cvtest::TS::LOG, "Incorrect marker corners position");
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
else{
if(dist > 5) {
ts->printf(cvtest::TS::LOG, "Incorrect marker corners position");
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
......@@ -343,7 +330,6 @@ void CV_ArucoDetectionPerspective::run(int tryWith) {
}
}
}
}
// change the state :: to detect an enclosed inverted marker
if( CV_ArucoDetectionPerspective::DETECT_INVERTED_MARKER == tryWith && distance == 0.1 ){
distance -= 0.1;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment