Commit bae3dac9 authored by Vladimir's avatar Vladimir

Cleaning up debug prints/variables/flags/timers

parent 826cb28d
...@@ -75,7 +75,6 @@ namespace cv ...@@ -75,7 +75,6 @@ namespace cv
bool MultiTracker::update(const Mat& image) bool MultiTracker::update(const Mat& image)
{ {
printf("Naive-Loop MO-TLD Update....\n");
for (int i = 0; i < (int)trackers.size(); i++) for (int i = 0; i < (int)trackers.size(); i++)
if (!trackers[i]->update(image, boundingBoxes[i])) if (!trackers[i]->update(image, boundingBoxes[i]))
return false; return false;
...@@ -237,14 +236,7 @@ namespace cv ...@@ -237,14 +236,7 @@ namespace cv
} }
//Debug display candidates after Variance Filter
////////////////////////////////////////////////
Mat tmpImg = image;
for (int i = 0; i < (int)debugStack[0].size(); i++)
//rectangle(tmpImg, debugStack[0][i], Scalar(255, 255, 255), 1, 1, 0);
debugStack[0].clear();
tmpImg.copyTo(image);
////////////////////////////////////////////////
return true; return true;
} }
...@@ -342,7 +334,6 @@ namespace cv ...@@ -342,7 +334,6 @@ namespace cv
} while (size.width >= initSize.width && size.height >= initSize.height); } while (size.width >= initSize.width && size.height >= initSize.height);
//Encsemble classification //Encsemble classification
//e1 = getTickCount();
for (int k = 0; k < (int)trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
...@@ -385,7 +376,6 @@ namespace cv ...@@ -385,7 +376,6 @@ namespace cv
} }
//NN classification //NN classification
//e1 = getTickCount();
for (int k = 0; k < (int)trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
...@@ -538,7 +528,6 @@ namespace cv ...@@ -538,7 +528,6 @@ namespace cv
} while (size.width >= initSize.width && size.height >= initSize.height); } while (size.width >= initSize.width && size.height >= initSize.height);
//Encsemble classification //Encsemble classification
//e1 = getTickCount();
for (int k = 0; k < (int)trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
...@@ -581,7 +570,6 @@ namespace cv ...@@ -581,7 +570,6 @@ namespace cv
} }
//NN classification //NN classification
//e1 = getTickCount();
for (int k = 0; k < (int)trackers.size(); k++) for (int k = 0; k < (int)trackers.size(); k++)
{ {
//TLD Tracker data extraction //TLD Tracker data extraction
...@@ -589,7 +577,6 @@ namespace cv ...@@ -589,7 +577,6 @@ namespace cv
tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr); tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
//TLD Model Extraction //TLD Model Extraction
tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model)); tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
//Size InitSize = tldModel->getMinSize();
npos = 0; npos = 0;
nneg = 0; nneg = 0;
maxSc = -5.0; maxSc = -5.0;
......
This diff is collapsed.
...@@ -81,7 +81,6 @@ namespace cv ...@@ -81,7 +81,6 @@ namespace cv
double ocl_Sc(const Mat_<uchar>& patch); double ocl_Sc(const Mat_<uchar>& patch);
void ocl_batchSrSc(const Mat_<uchar>& patches, double *resultSr, double *resultSc, int numOfPatches); void ocl_batchSrSc(const Mat_<uchar>& patches, double *resultSr, double *resultSc, int numOfPatches);
std::vector <Rect2d> debugStack[10];
std::vector<TLDEnsembleClassifier> classifiers; std::vector<TLDEnsembleClassifier> classifiers;
Mat *posExp, *negExp; Mat *posExp, *negExp;
int *posNum, *negNum; int *posNum, *negNum;
......
...@@ -140,7 +140,6 @@ namespace cv ...@@ -140,7 +140,6 @@ namespace cv
detector->classifiers[k].integrate(blurredPatch, false); detector->classifiers[k].integrate(blurredPatch, false);
} }
} }
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
} }
...@@ -180,16 +179,6 @@ namespace cv ...@@ -180,16 +179,6 @@ namespace cv
detector->classifiers[i].integrate(blurredPatch, patches[k].isObject); detector->classifiers[i].integrate(blurredPatch, patches[k].isObject);
} }
} }
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
...@@ -198,9 +187,6 @@ namespace cv ...@@ -198,9 +187,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0; int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return; if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
for (int k = 0; k < (int)eForModel.size(); k++) for (int k = 0; k < (int)eForModel.size(); k++)
{ {
double sr = detector->Sr(eForModel[k]); double sr = detector->Sr(eForModel[k]);
...@@ -231,19 +217,6 @@ namespace cv ...@@ -231,19 +217,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive); detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive) void TrackerTLDModel::ocl_integrateAdditional(const std::vector<Mat_<uchar> >& eForModel, const std::vector<Mat_<uchar> >& eForEnsemble, bool isPositive)
...@@ -251,10 +224,6 @@ namespace cv ...@@ -251,10 +224,6 @@ namespace cv
int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0; int positiveIntoModel = 0, negativeIntoModel = 0, positiveIntoEnsemble = 0, negativeIntoEnsemble = 0;
if ((int)eForModel.size() == 0) return; if ((int)eForModel.size() == 0) return;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Prepare batch of patches //Prepare batch of patches
int numOfPatches = (int)eForModel.size(); int numOfPatches = (int)eForModel.size();
Mat_<uchar> stdPatches(numOfPatches, 225); Mat_<uchar> stdPatches(numOfPatches, 225);
...@@ -301,19 +270,6 @@ namespace cv ...@@ -301,19 +270,6 @@ namespace cv
detector->classifiers[i].integrate(eForEnsemble[k], isPositive); detector->classifiers[i].integrate(eForEnsemble[k], isPositive);
} }
} }
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency() * 1000;
//printf("Integrate Additional OCL: %fms\n", t);
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
} }
//Push the patch to the model //Push the patch to the model
......
...@@ -151,12 +151,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -151,12 +151,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
} }
std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end()); std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
//data->printme();
//tldModel->printme(stdout);
if( it == candidatesRes.end() ) if( it == candidatesRes.end() )
{ {
data->confident = false; data->confident = false;
...@@ -173,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -173,16 +167,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
#if 1 #if 1
if( it != candidatesRes.end() ) if( it != candidatesRes.end() )
{
resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch); resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif #endif
if( *it > CORE_THRESHOLD ) if( *it > CORE_THRESHOLD )
...@@ -213,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -213,7 +198,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
detectorResults[i].isObject = expertResult; detectorResults[i].isObject = expertResult;
} }
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults); tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble); pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL()) if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true); tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
...@@ -234,16 +218,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox) ...@@ -234,16 +218,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
#endif #endif
} }
//Debug display candidates after Variance Filter
////////////////////////////////////////////////
Mat tmpImg = image;
for (int i = 0; i < (int)tldModel->detector->debugStack[0].size(); i++)
//rectangle(tmpImg, tldModel->detector->debugStack[0][i], Scalar(255, 255, 255), 1, 1, 0);
tldModel->detector->debugStack[0].clear();
tmpImg.copyTo(image);
////////////////////////////////////////////////
return true; return true;
} }
...@@ -310,7 +284,6 @@ Data::Data(Rect2d initBox) ...@@ -310,7 +284,6 @@ Data::Data(Rect2d initBox)
minSize.width = (int)(initBox.width * 20.0 / minDim); minSize.width = (int)(initBox.width * 20.0 / minDim);
minSize.height = (int)(initBox.height * 20.0 / minDim); minSize.height = (int)(initBox.height * 20.0 / minDim);
frameNum = 0; frameNum = 0;
//dprintf(("minSize = %dx%d\n", minSize.width, minSize.height));
} }
void Data::printme(FILE* port) void Data::printme(FILE* port)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment