Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
b964d3a1
Commit
b964d3a1
authored
Feb 15, 2017
by
arrybn
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added few tests for torch
parent
5d9808b0
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
56 additions
and
16 deletions
+56
-16
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+8
-1
max_unpooling_layer.cpp
modules/dnn/src/layers/max_unpooling_layer.cpp
+2
-0
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+29
-11
torch_gen_test_data.lua
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
+17
-4
No files found.
modules/dnn/samples/torch_enet.cpp
View file @
b964d3a1
...
...
@@ -23,6 +23,7 @@ const String keys =
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
"{show s || whether to show all output channels or not}"
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
;
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
...
...
@@ -112,7 +113,13 @@ int main(int argc, char **argv)
//! [Gather output]
dnn
::
Blob
prob
=
net
.
getBlob
(
net
.
getLayerNames
().
back
());
//gather output of "prob" layer
String
oBlob
=
net
.
getLayerNames
().
back
();
if
(
!
parser
.
get
<
String
>
(
"o_blob"
).
empty
())
{
oBlob
=
parser
.
get
<
String
>
(
"o_blob"
);
}
dnn
::
Blob
prob
=
net
.
getBlob
(
oBlob
);
//gather output of "prob" layer
Mat
&
result
=
prob
.
matRef
();
...
...
modules/dnn/src/layers/max_unpooling_layer.cpp
View file @
b964d3a1
...
...
@@ -28,6 +28,8 @@ void MaxUnpoolLayerImpl::allocate(const std::vector<Blob*> &inputs, std::vector<
outShape
[
2
]
=
outSize
.
height
;
outShape
[
3
]
=
outSize
.
width
;
CV_Assert
(
inputs
[
0
]
->
total
()
==
inputs
[
1
]
->
total
());
outputs
.
resize
(
1
);
outputs
[
0
].
create
(
outShape
);
}
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
b964d3a1
...
...
@@ -72,7 +72,8 @@ TEST(Torch_Importer, simple_read)
importer
->
populateNet
(
net
);
}
static
void
runTorchNet
(
String
prefix
,
String
outLayerName
,
bool
isBinary
)
static
void
runTorchNet
(
String
prefix
,
String
outLayerName
=
""
,
bool
check2ndBlob
=
false
,
bool
isBinary
=
false
)
{
String
suffix
=
(
isBinary
)
?
".dat"
:
".txt"
;
...
...
@@ -92,52 +93,69 @@ static void runTorchNet(String prefix, String outLayerName, bool isBinary)
Blob
out
=
net
.
getBlob
(
outLayerName
);
normAssert
(
outRef
,
out
);
if
(
check2ndBlob
)
{
Blob
out2
=
net
.
getBlob
(
outLayerName
+
".1"
);
Blob
ref2
=
readTorchBlob
(
_tf
(
prefix
+
"_output_2"
+
suffix
),
isBinary
);
normAssert
(
out2
,
ref2
);
}
}
TEST
(
Torch_Importer
,
run_convolution
)
{
runTorchNet
(
"net_conv"
,
"l1_Convolution"
,
false
);
runTorchNet
(
"net_conv"
);
}
TEST
(
Torch_Importer
,
run_pool_max
)
{
runTorchNet
(
"net_pool_max"
,
"
l1_Pooling"
,
fals
e
);
runTorchNet
(
"net_pool_max"
,
"
"
,
tru
e
);
}
TEST
(
Torch_Importer
,
run_pool_ave
)
{
runTorchNet
(
"net_pool_ave"
,
"l1_Pooling"
,
false
);
runTorchNet
(
"net_pool_ave"
);
}
TEST
(
Torch_Importer
,
run_reshape
)
{
runTorchNet
(
"net_reshape"
,
"l1_Reshape"
,
false
);
runTorchNet
(
"net_reshape_batch"
,
"l1_Reshape"
,
false
);
runTorchNet
(
"net_reshape"
);
runTorchNet
(
"net_reshape_batch"
);
}
TEST
(
Torch_Importer
,
run_linear
)
{
runTorchNet
(
"net_linear_2d"
,
"l1_InnerProduct"
,
false
);
runTorchNet
(
"net_linear_2d"
);
}
TEST
(
Torch_Importer
,
run_paralel
)
{
runTorchNet
(
"net_parallel"
,
"l2_torchMerge"
,
false
);
runTorchNet
(
"net_parallel"
,
"l2_torchMerge"
);
}
TEST
(
Torch_Importer
,
run_concat
)
{
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
,
false
);
runTorchNet
(
"net_concat"
,
"l2_torchMerge"
);
}
TEST
(
Torch_Importer
,
run_deconv
)
{
runTorchNet
(
"net_deconv"
,
""
,
false
);
runTorchNet
(
"net_deconv"
);
}
TEST
(
Torch_Importer
,
run_batch_norm
)
{
runTorchNet
(
"net_batch_norm"
,
""
,
false
);
runTorchNet
(
"net_batch_norm"
);
}
TEST
(
Torch_Importer
,
net_prelu
)
{
runTorchNet
(
"net_prelu"
);
}
TEST
(
Torch_Importer
,
net_cadd_table
)
{
runTorchNet
(
"net_cadd_table"
);
}
#if defined(ENABLE_TORCH_ENET_TESTS)
...
...
modules/dnn/testdata/dnn/torch/torch_gen_test_data.lua
View file @
b964d3a1
...
...
@@ -27,6 +27,8 @@ function save(net, input, label)
torch
.
save
(
label
..
'_input.txt'
,
input
,
'ascii'
)
--torch.save(label .. '_output.dat', output)
torch
.
save
(
label
..
'_output.txt'
,
output
,
'ascii'
)
return
net
end
local
net_simple
=
nn
.
Sequential
()
...
...
@@ -38,7 +40,8 @@ save(net_simple, torch.Tensor(2, 3, 25, 35), 'net_simple')
local
net_pool_max
=
nn
.
Sequential
()
net_pool_max
:
add
(
nn
.
SpatialMaxPooling
(
4
,
5
,
3
,
2
,
1
,
2
):
ceil
())
--TODO: add ceil and floor modes
save
(
net_pool_max
,
torch
.
rand
(
2
,
3
,
50
,
30
),
'net_pool_max'
)
local
net
=
save
(
net_pool_max
,
torch
.
rand
(
2
,
3
,
50
,
30
),
'net_pool_max'
)
torch
.
save
(
'net_pool_max_output_2.txt'
,
net
.
modules
[
1
].
indices
-
1
,
'ascii'
)
local
net_pool_ave
=
nn
.
Sequential
()
net_pool_ave
:
add
(
nn
.
SpatialAveragePooling
(
4
,
5
,
2
,
1
,
1
,
2
))
...
...
@@ -74,5 +77,15 @@ net_deconv:add(nn.SpatialFullConvolution(3, 9, 4, 5, 1, 2, 0, 1, 0, 1))
save
(
net_deconv
,
torch
.
rand
(
2
,
3
,
4
,
3
)
-
0
.
5
,
'net_deconv'
)
local
net_batch_norm
=
nn
.
Sequential
()
net_batch_norm
:
add
(
nn
.
SpatialBatchNormalization
(
3
))
save
(
net_batch_norm
,
torch
.
rand
(
1
,
3
,
4
,
3
)
-
0
.
5
,
'net_batch_norm'
)
\ No newline at end of file
net_batch_norm
:
add
(
nn
.
SpatialBatchNormalization
(
4
,
1e-3
))
save
(
net_batch_norm
,
torch
.
rand
(
1
,
4
,
5
,
6
)
-
0
.
5
,
'net_batch_norm'
)
local
net_prelu
=
nn
.
Sequential
()
net_prelu
:
add
(
nn
.
PReLU
(
5
))
save
(
net_prelu
,
torch
.
rand
(
1
,
5
,
40
,
50
)
-
0
.
5
,
'net_prelu'
)
local
net_cadd_table
=
nn
.
Sequential
()
local
sum
=
nn
.
ConcatTable
()
sum
:
add
(
nn
.
Identity
()):
add
(
nn
.
Identity
())
net_cadd_table
:
add
(
sum
):
add
(
nn
.
CAddTable
())
save
(
net_cadd_table
,
torch
.
rand
(
1
,
5
,
40
,
50
)
-
0
.
5
,
'net_cadd_table'
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment