Commit b7dcf141 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #821 from sovrasov:fine_grained_saliency

parents 483d523c 73c03fd1
...@@ -22,3 +22,12 @@ ...@@ -22,3 +22,12 @@
year={2007}, year={2007},
organization={IEEE} organization={IEEE}
} }
@inproceedings{FGS,
title={Human Detection Using a Mobile Platform and Novel Features Derived from a Visual Saliency Mechanism},
author={Montabone, Sebastian and Soto, Alvaro},
booktitle={Image and Vision Computing, Vol. 28 Issue 3},
pages={391--402},
year={2010},
organization={Elsevier}
}
...@@ -113,6 +113,48 @@ protected: ...@@ -113,6 +113,48 @@ protected:
}; };
/** @brief the Fine Grained Saliency approach from @cite FGS
This method calculates saliency based on center-surround differences.
High resolution saliency maps are generated in real time by using integral images.
*/
class CV_EXPORTS_W StaticSaliencyFineGrained : public StaticSaliency
{
public:
StaticSaliencyFineGrained();
CV_WRAP static Ptr<StaticSaliencyFineGrained> create()
{
return makePtr<StaticSaliencyFineGrained>();
}
CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
{
if( image.empty() )
return false;
return computeSaliencyImpl( image, saliencyMap );
}
virtual ~StaticSaliencyFineGrained();
protected:
bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
private:
void calcIntensityChannel(Mat src, Mat dst);
void copyImage(Mat src, Mat dst);
void getIntensityScaled(Mat integralImage, Mat gray, Mat saliencyOn, Mat saliencyOff, int neighborhood);
float getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal);
void mixScales(Mat *saliencyOn, Mat intensityOn, Mat *saliencyOff, Mat intensityOff, const int numScales);
void mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensity);
void getIntensity(Mat srcArg, Mat dstArg, Mat dstOnArg, Mat dstOffArg, bool generateOnOff);
};
/************************************ Specific Motion Saliency Specialized Classes ************************************/ /************************************ Specific Motion Saliency Specialized Classes ************************************/
/*! /*!
......
...@@ -127,6 +127,17 @@ int main( int argc, char** argv ) ...@@ -127,6 +127,17 @@ int main( int argc, char** argv )
waitKey( 0 ); waitKey( 0 );
} }
}
else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 )
{
Mat saliencyMap;
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{
imshow( "Saliency Map", saliencyMap );
imshow( "Original Image", image );
waitKey( 0 );
}
} }
else if( saliency_algorithm.find( "BING" ) == 0 ) else if( saliency_algorithm.find( "BING" ) == 0 )
{ {
......
...@@ -55,6 +55,8 @@ Ptr<Saliency> Saliency::create( const String& saliencyType ) ...@@ -55,6 +55,8 @@ Ptr<Saliency> Saliency::create( const String& saliencyType )
{ {
if (saliencyType == "SPECTRAL_RESIDUAL") if (saliencyType == "SPECTRAL_RESIDUAL")
return makePtr<StaticSaliencySpectralResidual>(); return makePtr<StaticSaliencySpectralResidual>();
else if (saliencyType == "FINE_GRAINED")
return makePtr<StaticSaliencyFineGrained>();
else if (saliencyType == "BING") else if (saliencyType == "BING")
return makePtr<ObjectnessBING>(); return makePtr<ObjectnessBING>();
else if (saliencyType == "BinWangApr2014") else if (saliencyType == "BinWangApr2014")
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
namespace saliency
{
/**
* Fine Grained Saliency
*/
StaticSaliencyFineGrained::StaticSaliencyFineGrained()
{
className = "FINE_GRAINED";
}
StaticSaliencyFineGrained::~StaticSaliencyFineGrained()
{
}
bool StaticSaliencyFineGrained::computeSaliencyImpl(InputArray image, OutputArray saliencyMap )
{
Mat dst(Size(image.getMat().cols, image.getMat().rows), CV_8UC1);
calcIntensityChannel(image.getMat(), dst);
dst.copyTo(saliencyMap);
#ifdef SALIENCY_DEBUG
// visualize saliency map
imshow( "Saliency Map Interna", saliencyMap );
#endif
return true;
}
void StaticSaliencyFineGrained::copyImage(Mat srcArg, Mat dstArg)
{
srcArg.copyTo(dstArg);
}
void StaticSaliencyFineGrained::calcIntensityChannel(Mat srcArg, Mat dstArg)
{
if(dstArg.channels() > 1)
{
//("Error: Destiny image must have only one channel.\n");
return;
}
const int numScales = 6;
Mat intensityScaledOn[numScales];
Mat intensityScaledOff[numScales];
Mat gray = Mat::zeros(Size(srcArg.cols, srcArg.rows), CV_8UC1);
Mat integralImage(Size(srcArg.cols + 1, srcArg.rows + 1), CV_32FC1);
Mat intensity(Size(srcArg.cols, srcArg.rows), CV_8UC1);
Mat intensityOn(Size(srcArg.cols, srcArg.rows), CV_8UC1);
Mat intensityOff(Size(srcArg.cols, srcArg.rows), CV_8UC1);
int i;
int neighborhood;
int neighborhoods[] = {3*4, 3*4*2, 3*4*2*2, 7*4, 7*4*2, 7*4*2*2};
for(i=0; i<numScales; i++)
{
intensityScaledOn[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1);
intensityScaledOff[i] = Mat(Size(srcArg.cols, srcArg.rows), CV_8UC1);
}
// Prepare the input image: put it into a grayscale image.
if(srcArg.channels()==3)
{
cvtColor(srcArg, gray, COLOR_BGR2GRAY);
}
else
{
srcArg.copyTo(gray);
}
// smooth pixels at least twice, as done by Frintrop and Itti
GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 );
GaussianBlur( gray, gray, Size( 3, 3 ), 0, 0 );
// Calculate integral image, only once.
integral(gray, integralImage, CV_32F);
for(i=0; i< numScales; i++)
{
neighborhood = neighborhoods[i] ;
getIntensityScaled(integralImage, gray, intensityScaledOn[i], intensityScaledOff[i], neighborhood);
}
mixScales(intensityScaledOn, intensityOn, intensityScaledOff, intensityOff, numScales);
mixOnOff(intensityOn, intensityOff, intensity);
intensity.copyTo(dstArg);
}
void StaticSaliencyFineGrained::getIntensityScaled(Mat integralImage, Mat gray, Mat intensityScaledOn, Mat intensityScaledOff, int neighborhood)
{
float value, meanOn, meanOff;
Point2i point;
int x,y;
intensityScaledOn.setTo(Scalar::all(0));
intensityScaledOff.setTo(Scalar::all(0));
for(y = 0; y < gray.rows; y++)
{
for(x = 0; x < gray.cols; x++)
{
point.x = x;
point.y = y;
value = getMean(integralImage, point, neighborhood, gray.at<uchar>(y, x));
meanOn = gray.at<uchar>(y, x) - value;
meanOff = value - gray.at<uchar>(y, x);
if(meanOn > 0)
intensityScaledOn.at<uchar>(y, x) = (uchar)meanOn;
else
intensityScaledOn.at<uchar>(y, x) = 0;
if(meanOff > 0)
intensityScaledOff.at<uchar>(y, x) = (uchar)meanOff;
else
intensityScaledOff.at<uchar>(y, x) = 0;
}
}
}
float StaticSaliencyFineGrained::getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal)
{
Point2i P1, P2;
float value;
P1.x = PixArg.x - neighbourhood + 1;
P1.y = PixArg.y - neighbourhood + 1;
P2.x = PixArg.x + neighbourhood + 1;
P2.y = PixArg.y + neighbourhood + 1;
if(P1.x < 0)
P1.x = 0;
else if(P1.x > srcArg.cols - 1)
P1.x = srcArg.cols - 1;
if(P2.x < 0)
P2.x = 0;
else if(P2.x > srcArg.cols - 1)
P2.x = srcArg.cols - 1;
if(P1.y < 0)
P1.y = 0;
else if(P1.y > srcArg.rows - 1)
P1.y = srcArg.rows - 1;
if(P2.y < 0)
P2.y = 0;
else if(P2.y > srcArg.rows - 1)
P2.y = srcArg.rows - 1;
// we use the integral image to compute fast features
value = (float) (
(srcArg.at<float>(P2.y, P2.x)) +
(srcArg.at<float>(P1.y, P1.x)) -
(srcArg.at<float>(P2.y, P1.x)) -
(srcArg.at<float>(P1.y, P2.x))
);
value = (value - centerVal)/ (( (P2.x - P1.x) * (P2.y - P1.y))-1) ;
return value;
}
void StaticSaliencyFineGrained::mixScales(Mat *intensityScaledOn, Mat intensityOn, Mat *intensityScaledOff, Mat intensityOff, const int numScales)
{
int i=0, x, y;
int width = intensityScaledOn[0].cols;
int height = intensityScaledOn[0].rows;
short int maxValOn = 0, currValOn=0;
short int maxValOff = 0, currValOff=0;
int maxValSumOff = 0, maxValSumOn=0;
Mat mixedValuesOn(Size(width, height), CV_16UC1);
Mat mixedValuesOff(Size(width, height), CV_16UC1);
mixedValuesOn.setTo(Scalar::all(0));
mixedValuesOff.setTo(Scalar::all(0));
for(i=0;i<numScales;i++)
{
for(y=0;y<height;y++)
for(x=0;x<width;x++)
{
currValOn = intensityScaledOn[i].at<uchar>(y, x);
if(currValOn > maxValOn)
maxValOn = currValOn;
currValOff = intensityScaledOff[i].at<uchar>(y, x);
if(currValOff > maxValOff)
maxValOff = currValOff;
mixedValuesOn.at<unsigned short>(y, x) += currValOn;
mixedValuesOff.at<unsigned short>(y, x) += currValOff;
}
}
for(y=0;y<height;y++)
for(x=0;x<width;x++)
{
currValOn = mixedValuesOn.at<unsigned short>(y, x);
currValOff = mixedValuesOff.at<unsigned short>(y, x);
if(currValOff > maxValSumOff)
maxValSumOff = currValOff;
if(currValOn > maxValSumOn)
maxValSumOn = currValOn;
}
for(y=0;y<height;y++)
for(x=0;x<width;x++)
{
intensityOn.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOn.at<unsigned short>(y, x) / (float)maxValSumOn)));
intensityOff.at<uchar>(y, x) = (uchar)(255.*((float)(mixedValuesOff.at<unsigned short>(y, x) / (float)maxValSumOff)));
}
}
void StaticSaliencyFineGrained::mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensityArg)
{
int x,y;
int width = intensityOn.cols;
int height= intensityOn.rows;
int maxVal=0;
int currValOn, currValOff, maxValSumOff, maxValSumOn;
Mat intensity(Size(width, height), CV_8UC1);
maxValSumOff = 0;
maxValSumOn = 0;
for(y=0;y<height;y++)
for(x=0;x<width;x++)
{
currValOn = intensityOn.at<uchar>(y, x);
currValOff = intensityOff.at<uchar>(y, x);
if(currValOff > maxValSumOff)
maxValSumOff = currValOff;
if(currValOn > maxValSumOn)
maxValSumOn = currValOn;
}
if(maxValSumOn > maxValSumOff)
maxVal = maxValSumOn;
else
maxVal = maxValSumOff;
for(y=0;y<height;y++)
for(x=0;x<width;x++)
{
intensity.at<uchar>(y, x) = (uchar) (255. * (float) (intensityOn.at<uchar>(y, x) + intensityOff.at<uchar>(y, x)) / (float)maxVal);
}
intensity.copyTo(intensityArg);
}
} /* namespace saliency */
}/* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment