Commit b686f430 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents ec4d5c85 f0ecc092
......@@ -236,6 +236,8 @@ struct Application : public OgreBites::ApplicationContext, public OgreBites::Inp
return ret;
}
size_t numWindows() const { return mWindows.size(); }
void locateResources() CV_OVERRIDE
{
OgreBites::ApplicationContext::locateResources();
......@@ -277,9 +279,10 @@ class WindowSceneImpl : public WindowScene
Ptr<Rectangle2D> bgplane;
Ogre::RenderTarget* depthRTT;
int flags;
public:
WindowSceneImpl(Ptr<Application> app, const String& _title, const Size& sz, int flags)
: title(_title), root(app->getRoot()), depthRTT(NULL)
WindowSceneImpl(Ptr<Application> app, const String& _title, const Size& sz, int _flags)
: title(_title), root(app->getRoot()), depthRTT(NULL), flags(_flags)
{
if (!app->sceneMgr)
{
......@@ -337,6 +340,25 @@ public:
rWin->addViewport(cam);
}
~WindowSceneImpl()
{
if (flags & SCENE_SEPERATE)
{
MaterialManager::getSingleton().remove(bgplane->getMaterial());
bgplane.release();
String texName = sceneMgr->getName() + "_Background";
TextureManager::getSingleton().remove(texName, RESOURCEGROUP_NAME);
}
if(_app->sceneMgr == sceneMgr && (flags & SCENE_SEPERATE))
{
// this is the root window owning the context
CV_Assert(_app->numWindows() == 1 && "the first OVIS window must be deleted last");
_app->closeApp();
_app.release();
}
}
void setBackground(InputArray image) CV_OVERRIDE
{
CV_Assert(bgplane);
......
......@@ -159,7 +159,7 @@ public:
virtual void setMinProbability(float minProbability) = 0;
virtual void setMinProbabilityDiff(float minProbabilityDiff) = 0;
virtual void setNonMaxSuppression(bool nonMaxSuppression) = 0;
virtual int getNumRejected() = 0;
virtual int getNumRejected() const = 0;
};
......
......@@ -145,7 +145,7 @@ public:
void setMinProbability(float minProbability) CV_OVERRIDE;
void setMinProbabilityDiff(float minProbabilityDiff) CV_OVERRIDE;
void setNonMaxSuppression(bool nonMaxSuppression) CV_OVERRIDE;
int getNumRejected() CV_OVERRIDE;
int getNumRejected() const CV_OVERRIDE;
private:
// pointer to the input/output regions vector
......@@ -223,6 +223,8 @@ ERFilterNM::ERFilterNM()
// input/output for the second one.
void ERFilterNM::run( InputArray image, vector<ERStat>& _regions )
{
num_rejected_regions=0;
num_accepted_regions=0;
// assert correct image type
CV_Assert( image.getMat().type() == CV_8UC1 );
......@@ -999,7 +1001,7 @@ void ERFilterNM::setNonMaxSuppression(bool _nonMaxSuppression)
return;
}
int ERFilterNM::getNumRejected()
int ERFilterNM::getNumRejected() const
{
return num_rejected_regions;
}
......
......@@ -375,7 +375,7 @@ void rollingGuidanceFilter(InputArray src, OutputArray dst, int d = -1, double s
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/** @brief Interface for implementations of The Fast Bilateral Solver.
/** @brief Interface for implementations of Fast Bilateral Solver.
For more details about this solver see @cite BarronPoole2016 .
*/
......@@ -389,6 +389,8 @@ public:
@param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
@param dst destination image.
@note Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
*/
CV_WRAP virtual void filter(InputArray src, InputArray confidence, OutputArray dst) = 0;
};
......@@ -397,20 +399,23 @@ public:
@param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
@param sigma_spatial parameter, that is similar to spatial space sigma in bilateralFilter.
@param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
@param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
@param sigma_luma parameter, that is similar to luma space sigma in bilateralFilter.
@param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
@param sigma_chroma parameter, that is similar to chroma space sigma in bilateralFilter.
@param lambda smoothness strength parameter for solver.
@param num_iter number of iterations used for solving, 25 is usually enough.
@param num_iter number of iterations used for solver, 25 is usually enough.
@param max_tol solving tolerance used for solving.
@param max_tol convergence tolerance used for solver.
For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
*/
CV_EXPORTS_W Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter = 25, double max_tol = 1e-5);
CV_EXPORTS_W Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5);
/** @brief Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
......@@ -424,20 +429,26 @@ guide then use FastBilateralSolverFilter interface to avoid extra computations.
@param dst destination image.
@param sigma_spatial parameter, that is similar to spatial space sigma in bilateralFilter.
@param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
@param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
@param sigma_luma parameter, that is similar to luma space sigma in bilateralFilter.
@param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
@param sigma_chroma parameter, that is similar to chroma space sigma in bilateralFilter.
@param lambda smoothness strength parameter for solver.
@param num_iter number of iterations used for solving, 25 is usually enough.
@param num_iter number of iterations used for solver, 25 is usually enough.
@param max_tol solving tolerance used for solving.
@param max_tol convergence tolerance used for solver.
For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
@note Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
*/
CV_EXPORTS_W void fastBilateralSolverFilter(InputArray guide, InputArray src, InputArray confidence, OutputArray dst, double sigma_spatial = 8, double sigma_luma = 8, double sigma_chroma = 8, int num_iter = 25, double max_tol = 1e-5);
CV_EXPORTS_W void fastBilateralSolverFilter(InputArray guide, InputArray src, InputArray confidence, OutputArray dst, double sigma_spatial = 8, double sigma_luma = 8, double sigma_chroma = 8, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5);
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/** @brief Interface for implementations of Fast Global Smoother filter.
......
......@@ -33,6 +33,7 @@ const String keys =
"{fbs_spatial |16.0 | parameter of fbs post-filtering }"
"{fbs_luma |8.0 | parameter of fbs post-filtering }"
"{fbs_chroma |8.0 | parameter of fbs post-filtering }"
"{fbs_lambda |128.0 | parameter of fbs post-filtering }"
;
int main(int argc, char** argv)
......@@ -62,6 +63,7 @@ int main(int argc, char** argv)
double fbs_spatial = parser.get<double>("fbs_spatial");
double fbs_luma = parser.get<double>("fbs_luma");
double fbs_chroma = parser.get<double>("fbs_chroma");
double fbs_lambda = parser.get<double>("fbs_lambda");
double vis_mult = parser.get<double>("vis_mult");
int wsize;
......@@ -293,17 +295,18 @@ int main(int argc, char** argv)
#ifdef HAVE_EIGEN
//! [filtering_fbs]
solving_time = (double)getTickCount();
fastBilateralSolverFilter(left, left_disp_resized, conf_map/255.0f, solved_disp, fbs_spatial, fbs_luma, fbs_chroma);
fastBilateralSolverFilter(left, left_disp_resized, conf_map/255.0f, solved_disp, fbs_spatial, fbs_luma, fbs_chroma, fbs_lambda);
solving_time = ((double)getTickCount() - solving_time)/getTickFrequency();
//! [filtering_fbs]
//! [filtering_wls2fbs]
fastBilateralSolverFilter(left, filtered_disp, conf_map/255.0f, solved_filtered_disp, fbs_spatial, fbs_luma, fbs_chroma);
fastBilateralSolverFilter(left, filtered_disp, conf_map/255.0f, solved_filtered_disp, fbs_spatial, fbs_luma, fbs_chroma, fbs_lambda);
//! [filtering_wls2fbs]
#else
(void)fbs_spatial;
(void)fbs_luma;
(void)fbs_chroma;
(void)fbs_lambda;
#endif
}
else if(filter=="wls_no_conf")
......
......@@ -77,19 +77,19 @@ namespace ximgproc
{
public:
static Ptr<FastBilateralSolverFilterImpl> create(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter, double max_tol)
static Ptr<FastBilateralSolverFilterImpl> create(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
{
CV_Assert(guide.type() == CV_8UC1 || guide.type() == CV_8UC3);
FastBilateralSolverFilterImpl *fbs = new FastBilateralSolverFilterImpl();
Mat gui = guide.getMat();
fbs->init(gui,sigma_spatial,sigma_luma,sigma_chroma,num_iter,max_tol);
fbs->init(gui,sigma_spatial,sigma_luma,sigma_chroma,lambda,num_iter,max_tol);
return Ptr<FastBilateralSolverFilterImpl>(fbs);
}
void filter(InputArray src, InputArray confidence, OutputArray dst) CV_OVERRIDE
{
CV_Assert(!src.empty() && (src.depth() == CV_8U || src.depth() == CV_16S || src.depth() == CV_32F) && src.channels()<=4);
CV_Assert(!src.empty() && (src.depth() == CV_8U || src.depth() == CV_16S || src.depth() == CV_16U || src.depth() == CV_32F) && src.channels()<=4);
CV_Assert(!confidence.empty() && (confidence.depth() == CV_8U || confidence.depth() == CV_32F) && confidence.channels()==1);
if (src.rows() != rows || src.cols() != cols)
{
......@@ -133,7 +133,7 @@ namespace ximgproc
// protected:
void solve(cv::Mat& src, cv::Mat& confidence, cv::Mat& dst);
void init(cv::Mat& reference, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter, double max_tol);
void init(cv::Mat& reference, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol);
void Splat(Eigen::VectorXf& input, Eigen::VectorXf& dst);
void Blur(Eigen::VectorXf& input, Eigen::VectorXf& dst);
......@@ -174,8 +174,8 @@ namespace ximgproc
grid_params()
{
spatialSigma = 8.0;
lumaSigma = 4.0;
chromaSigma = 4.0;
lumaSigma = 8.0;
chromaSigma = 8.0;
}
};
......@@ -201,9 +201,10 @@ namespace ximgproc
void FastBilateralSolverFilterImpl::init(cv::Mat& reference, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter, double max_tol)
void FastBilateralSolverFilterImpl::init(cv::Mat& reference, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
{
bs_param.lam = lambda;
bs_param.cg_maxiter = num_iter;
bs_param.cg_tol = max_tol;
......@@ -266,7 +267,6 @@ namespace ximgproc
// construct Blur matrices
Eigen::VectorXf ones_nvertices = Eigen::VectorXf::Ones(nvertices);
Eigen::VectorXf ones_npixels = Eigen::VectorXf::Ones(npixels);
diagonal(ones_nvertices,blurs);
blurs *= 10;
for(int offset = -1; offset <= 1;++offset)
......@@ -379,7 +379,6 @@ namespace ximgproc
// construct Blur matrices
Eigen::VectorXf ones_nvertices = Eigen::VectorXf::Ones(nvertices);
Eigen::VectorXf ones_npixels = Eigen::VectorXf::Ones(npixels);
diagonal(ones_nvertices,blurs);
blurs *= 10;
for(int offset = -1; offset <= 1;++offset)
......@@ -486,6 +485,14 @@ namespace ximgproc
x(i) = (cv::saturate_cast<float>(pft[i])+32768.0f)/65535.0f;
}
}
else if(target.depth() == CV_16U)
{
const uint16_t *pft = reinterpret_cast<const uint16_t*>(target.data);
for (int i = 0; i < npixels; i++)
{
x(i) = cv::saturate_cast<float>(pft[i])/65535.0f;
}
}
else if(target.depth() == CV_8U)
{
const uchar *pft = reinterpret_cast<const uchar*>(target.data);
......@@ -566,7 +573,15 @@ namespace ximgproc
int16_t *pftar = (int16_t*) output.data;
for (int i = 0; i < int(splat_idx.size()); i++)
{
pftar[i] = cv::saturate_cast<ushort>(y(splat_idx[i]) * 65535.0f - 32768.0f);
pftar[i] = cv::saturate_cast<short>(y(splat_idx[i]) * 65535.0f - 32768.0f);
}
}
else if(target.depth() == CV_16U)
{
uint16_t *pftar = (uint16_t*) output.data;
for (int i = 0; i < int(splat_idx.size()); i++)
{
pftar[i] = cv::saturate_cast<ushort>(y(splat_idx[i]) * 65535.0f);
}
}
else if (target.depth() == CV_8U)
......@@ -592,14 +607,14 @@ namespace ximgproc
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter, double max_tol)
Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
{
return Ptr<FastBilateralSolverFilter>(FastBilateralSolverFilterImpl::create(guide, sigma_spatial, sigma_luma, sigma_chroma, num_iter, max_tol));
return Ptr<FastBilateralSolverFilter>(FastBilateralSolverFilterImpl::create(guide, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol));
}
void fastBilateralSolverFilter(InputArray guide, InputArray src, InputArray confidence, OutputArray dst, double sigma_spatial, double sigma_luma, double sigma_chroma, int num_iter, double max_tol)
void fastBilateralSolverFilter(InputArray guide, InputArray src, InputArray confidence, OutputArray dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
{
Ptr<FastBilateralSolverFilter> fbs = createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma, num_iter, max_tol);
Ptr<FastBilateralSolverFilter> fbs = createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol);
fbs->filter(src, confidence, dst);
}
......@@ -614,12 +629,12 @@ namespace cv
namespace ximgproc
{
Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray, double, double, double, int, double)
Ptr<FastBilateralSolverFilter> createFastBilateralSolverFilter(InputArray, double, double, double, double, int, double)
{
CV_Error(Error::StsNotImplemented, "createFastBilateralSolverFilter : needs to be compiled with EIGEN");
}
void fastBilateralSolverFilter(InputArray, InputArray, InputArray, OutputArray, double, double, double, int, double)
void fastBilateralSolverFilter(InputArray, InputArray, InputArray, OutputArray, double, double, double, double, int, double)
{
CV_Error(Error::StsNotImplemented, "fastBilateralSolverFilter : needs to be compiled with EIGEN");
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment