Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
b07272f9
Commit
b07272f9
authored
Jul 17, 2014
by
jaco
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Skeleton of new motion algorithm created
parent
ccde01a6
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
66 additions
and
2 deletions
+66
-2
saliencySpecializedClasses.hpp
...y/include/opencv2/saliency/saliencySpecializedClasses.hpp
+66
-2
No files found.
modules/saliency/include/opencv2/saliency/saliencySpecializedClasses.hpp
View file @
b07272f9
...
...
@@ -85,11 +85,75 @@ class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
/************************************ Specific Motion Saliency Specialized Classes ************************************/
/*!
* A Fast Self-tuning Background Subtraction Algorithm.
*
* This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
* [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
*
*/
class
CV_EXPORTS_W
MotionSaliencyBinWangApr2014
:
public
MotionSaliency
{
public
:
MotionSaliencyBinWangApr2014
();
~
MotionSaliencyBinWangApr2014
();
protected
:
bool
computeSaliencyImpl
(
const
InputArray
image
,
OutputArray
saliencyMap
);
AlgorithmInfo
*
info
()
const
;
private
:
// classification (and adaptation) functions
bool
fullResolutionDetection
(
Mat
image
,
Mat
highResBFMask
);
bool
lowResolutionDetection
(
Mat
image
,
Mat
lowResBFMask
);
bool
templateUpdate
(
Mat
highResBFMask
);
// Background model maintenance functions
bool
templateOrdering
();
bool
templateReplacement
(
Mat
finalBFMask
);
// Decision threshold adaptation and Activity control function
bool
activityControl
(
vector
<
Mat
>
noisePixelMask
);
bool
decisionThresholdAdaptation
();
// changing structure
vector
<
Mat
>
backgroundModel
;
// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat
potentialBackground
;
// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value.
Mat
epslonPixelsValue
;
// epslon threshold
//Mat activityPixelsValue; // Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
// detection process,however, after the low resolution detection, it has become a
// background pixel. In a noise-pixel mask, the identified noise-pixels are set to 1 while other pixels are 0;
//fixed parameter
int
K
;
// Number of background model template
float
alpha
;
// Learning rate
int
L0
,
L1
;
// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
int
thetaL
;
// T0, T1 swap threshold
int
gamma
;
// Parameter that controls the time that the newly updated long-term background value will remain in the
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts.
//int Ainc; // Activity Incrementation;
//int Bmax; // Upper-bound value for pixel activity
//int Bth; // Max activity threshold
//int Binc, Bdec; // Threshold for pixel-level decision threshold (epslon) adaptation
//int deltaINC, deltaDEC; // Increment-decrement value for epslon adaptation
//int epslonMIN, epslonMAX; // Range values for epslon threshold
};
/************************************ Specific Objectness Specialized Classes ************************************/
/**
* \brief Objectness algorithms based on [
4
]
* [
4
] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
* \brief Objectness algorithms based on [
3
]
* [
3
] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
*/
class
CV_EXPORTS_W
ObjectnessBING
:
public
Objectness
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment